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Abstract. Two synthesis methods for the design of non-circular cylindrical
gears are presented here. One of the methods generalizes the use of n-lobed
ellipses as pitch curves. It is shown that n-lobed hyperbolas and parabolas can
be used as well as internal rolling n-lobed ellipses. The resulting transmission
ratio is determined by the two lobe numbers of the gears and one real design
parameter. The other synthesis method solves the following problem: Prescribed
input and output functions of revolution of two planes rotating about two fixed
points are given. Determine centrodes (pitch curves) which realize this motion
between the two planes by rolling on each other. The general solution takes
account of additional mechanical constraints.
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1. Introduction

First known publications [2, 8, 13] on non-circular cylindrical gears are by H. Holditch

(1842), H.T. Brown (1871), and F. Reuleaux (1875). The most common form of non-
circular gears is elliptical because of the geometric shape of their centrodes (pitch curves).
Such gears are congruent and rotate about focal points.

In [9], the design of so-called modified elliptical gears was presented by F.L. Litvin.
Wunderlich [15] also investigated such gears in terms of centrodes of a special plane mo-
tion. He calls such centrodes n-lobed ellipses. D.B. Dooner [4] treats basic relations for
generalized function transmission with toothed bodies.

In [7] the synthesis of external non-circular gears is shown where an m-lobed ellipse is
rolling on an n-lobed ellipse given the lobe numbers n and m as well as the maximum and
minimum radii of the m-lobed ellipse. The center distance is then determined. The resulting
transmission ratio and the rack centrode are also calculated. The paper studies relations
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between lobe numbers and other geometric parameters by using extremal radii. Here, we will
show that a restriction on positive radii is not necessary. In this way n-lobed hyperbolas and
parabolas as well as internal running centrodes (internal non-circular gears) are obtained.

In [14], a Fourier series method is used to approximate either one of the pitch curves or
the intended transmission ratio.

Continuing interest in the theory of non-circular gearing is shown by recent papers like
[3, 5, 6, 7, 10, 11, 14]. One of the challenges is planar motion generation by link mechanisms
coupled with circular elements. The problem statement is: Given the input and output
functions of revolution of two planes rotating about two fixed points. Determine centrodes
which realize this motion between the two planes by rolling on each other. The paper presents
a general solution which considers additional mechanical constraints.

2. Basic relations for centrodes of non-circular cylindrical gears

Basic relations for centrodes of non-circular gears follow from the theorem by Aronhold-
Kennedy [1] adapted to the pole-configuration of the relative motions of two planes that are
rotating about two fixed points in a third plane. For this purpose, in Fig. 1 we consider
coordinate systems which represent the planes involved: The coordinate system (O1; x1, y1)
is attached to a first plane Σ1 rotating about the point O1 = O0 with angular velocity ϕ̇1(t).
The coordinate system (O2; x2, y2) is attached to a second plane Σ2 rotating about the point
O2 = O4 with angular velocity ϕ̇2(t).

Figure 1: Two planes rotating about two fixed points of a third plane

The coordinate systems (O0; x0, y0) and (O4; x4, y4) are fixed to the ground plane and it
is assumed that their origins have the center distance

a0 = O1O2 6= 0. (1)

Let Σk denote a coordinate system (Ok; xk, yk) as well as a plane which is represented by
the system. The subscript k may be 0, 1, 2, 3, and 4. The subscr ipt k is used to indicate
that any point X of the plane is described by the coordinate system Σk . For instance, X1

indicates a point which is refered to Σ1: Furthermore, representing the coordinates xk and yk

of a point Xk as the real and imaginary parts of a complex number, respectively, we obtain

Xk = xk + iyk = ρke
iθk

where i2 = −1. Here, the second equation is called the exponential representation of Xk where
ρk is the absolute value (modulus) and Θk the argument of Xk . Let ϕk be the rotation angle
of the frame Σk (k = 1, 2).
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With this notation [15, 1] we obtain the coordinate transformations

X0 = X1e
iϕ1

X4 = X2e
iϕ2

X0 = a0 + X4.

Therefore, the relative displacement of Σ2 with respect to Σ1 is represented by

X1 = a0e
−iϕ1 + X2e

i(ϕ2−ϕ1). (2)

Now we assume that the three planes perform a composite one-parameter motion. Let
t ∈ I ⊂ R be the parameter of this motion with revolution angles ϕ1(t) and ϕ2(t).

The relative motion of frame Σi with respect to frame Σ0 is a rotation with respect to the
pole P i0. The relative motion of frame Σ2 with respect to Σ1 has the pole P 21. According
to the Aronhold- Kennedy theorem the pole distances are related to the angular velocities as
follows:

ϕ̇2(P
20
0 − P 21

0 ) = ϕ̇1(P
10
0 − P 21

0 ).

With our choice of the motion and the coordinate frames, we have

P 10
0 = 0, P 20

0 = a0,

and
ϕ̇2(a0 − P 21

0 ) = −ϕ̇1P
21
0 . (3)

When ϕ̇1 = 0 and ϕ̇2 6= 0 the third pole P 21 coincides with P 20.
In the case ϕ̇1 6= 0 we define the instantaneous transmission ratio as

ω(t) :=
ϕ̇2(t)

ϕ̇1(t)
(4)

and with (3) the third pole can be determined:

P 21
0 = a0

ω

ω − 1
.

Then the centrodes P1(t) and P2(t) of the motion of frame Σ2 with respect to frame Σ1 are
determined by the transformations of pole P 21 into Σ1 and Σ2, respectively, at each moment t.
In this way, the two centrodes (pitch curves) are determined and we find polar representations

of the centrodes:

P1(t) = a0
ω(t)

ω(t) − 1
e−iϕ1t) = r1(t) e−iϕ1(t) where r1(t) = a0

ω(t)

ω(t) − 1
(5)

and

P2(t) = r2(t) e−iϕ2(t) where r2(t) = a0
1

ω(t) − 1
. (6)

The functions r1(t) and r2(t) describe the polar radii and ϕ1(t) and ϕ2(t) are the polar angles
of the centrodes described with respect to Σ1 and Σ2, respectively.

With (3), (4), (5), (6) we can easily conclude

Proposition 1 a) The pole P 21 lies outside the line segment O1O2 iff ω(t) > 0.

b) If ω(t) = 0 then P 21 = O1 . That means r1(t) = 0 and r2(t) = −a0.
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The parameter transformation ϕ := ϕ1(t), 0 ≤ ϕ ≤ 2π, introduces the polar angle of P1

and transforms eqs. (4),(5), (6) into

ω(ϕ) :=
dϕ2

dϕ
(7)

P1(ϕ) = a0
ω(ϕ)

ω(ϕ) − 1
e−iϕ = r1(ϕ)e−iϕ (8)

where

r1(ϕ) = a0
ω(ϕ)

ω(ϕ) − 1
(9)

P2(ϕ) = r2(ϕ)e−iϕ2(ϕ) (10)

where

r2(ϕ) = a0
1

ω(ϕ) − 1
. (11)

By dividing the polar radii, it follows that

ω(ϕ) =
r1(ϕ)

r2(ϕ)
. (12)

Furthermore, the center distance satisfies

a0 = r1(ϕ) − r2(ϕ). (13)

A plane motion described by the equations (1) to (13), together with the given assump-
tions, is called a gear motion (GM). It is called n1/n2-periodic if n1 full revolutions of the
frame Σ1 about O1 and n2 full revolutions of the frame Σ2 about O2 result in the initial
position ϕ1 = ϕ2 = 0 mod 2π.

Proposition 2 A GM is n1/n2-periodic iff

2πn1
∫

0

ω(x) dx = 2πn2 .

Proof: If a GM is n1/n2-periodic, then 2πn1 is the revolution angle for n1 full revolutions
of the frame Σ1 about O1 . The revolution angle for n2 full revolutions of the frame Σ2

about O2 is ϕ2(2πn1) = 2πn2 . Applying (7) to the left hand side of this equation yields
the n1/n2-periodic condition. If the n1/n2-periodic condition holds for a GM then by (7) it
follows

ϕ2(2πn1) =

2πn1
∫

0

ω(x) dx = 2πn2 .

Therefore, n1 full revolutions of the frame Σ1 result in n2 full revolutions of the frame Σ2 .

Let us consider the case in which the polar radius rj(ϕ) is
2π

nj

-periodic for some index j.

That means

rj(ϕ) = rj

(

ϕ +
2π

nj

)

, j = 1, 2.

If rj(ϕ) is
2π

nj

-periodic then it is also k
2π

nj

-periodic with any integer k, as well as 2π-periodic.

By Eq. (13) it follows
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Proposition 3 For each integer k ∈ Z, r1(ϕ) is
2π

k
-periodic iff r2(ϕ) is

2π

k
-periodic.

By Eq. (8) we can easily show

Proposition 4 The centrode P1 is a closed curve when r1(ϕ) is 2π-periodic and finite
for all ϕ.

Furthermore, we find

Proposition 5 For j = 1, 2, the polar radius rj(ϕ) is
2π

nj

-periodic iff the transmission ratio

ω(ϕ) is
2π

nj

-periodic.

Proof: Eqs. (9) and (11) yield ω(ϕ) =
r1(ϕ)

r1(ϕ) − a0

and ω(ϕ) =
r2(ϕ) + a0

r2(ϕ)
.

In order to become more familiar with the relations we study the following

Question: Determine the centrodes for given input and output functions of revolution and
the centre distance.

Solution: The first derivatives of the given functions ϕj(t) determine the transmission ratio
with (4). Choosing ϕ := ϕ1(t) and introducing the transmission-ratio into equations (9)
and (11), the polar radii rj(ϕ) are determined. However, for the polar representation of
the centrode (10) we need the revolution-angle function explicitly. It can be obtained by
integration of the transmission ratio (7):

ϕ2(ϕ) =

ϕ
∫

0

ω(x) dx + ϕ20 (14)

with an integration constant ϕ20 .
Therefore, the solution of the problem depends on the integrability in Eq. (14). This is

not necessary fulfilled for given arbitrary input and output functions ϕj(t). If Eq. (14) is
integrable then ϕ2(ϕ) is obtained. Inserting the revolution angles into Eqs. (8) and (10), the
centrodes are uniquely determined.

Figure 2: Constant transmission ratios

Examples: Two numerical examples are given in Fig. 2. In each case the transmission ratio
is chosen to be constant. In this way, the resulting centrodes are circles, rolling externally
(ω < 0) and internally (ω > 0), respectively, corresponding to Proposition 1.
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Figure 3: Example centrodes Pj(ϕ) for the position ϕ = 0.1

In the example illustrated in Fig. 3, the transmission ratio is the 2π-periodic function

ω(ϕ) =
3 + cosϕ

2
. Then, the resulting polar radii are r1(ϕ) = a0

3 + cosϕ

1 + cosϕ
and r2(ϕ) = r1(ϕ)−a0

which are also 2π-periodic. The second revolution angle is ϕ2(ϕ) = 3
2
ϕ + 1

2
sin ϕ. The GM is

2/3-periodic but the centrodes are not closed because r1(π) is not finite.

Proposition 6 The common tangent to the centrodes at a pole P 21(ϕ) has the slope angle

α1(ϕ) = α0(ϕ) − ϕ (15)

with respect to the x1-axis, and the slope angle

α0(ϕ) = arctan
(ω(ϕ) − 1)ω(ϕ)

ω̇(ϕ)

with respect to the x0-axis, respectively. If the pole P 21(ϕ∞) is a point at infinity and
ω̇(ϕ∞) 6= 0 then α0(ϕ∞) = 0.

Proof. The slope angle of the tangent line at a pole P 21(ϕ) with respect to the x1-axis is

α1(ϕ) = arg
(

d

dϕ
P1(ϕ)

)

= (ṙ1(ϕ) − ir1(ϕ)) exp(−iϕ).

Therefore, α1(ϕ) = α0(ϕ) − ϕ

α0(ϕ) = arg(ṙ1(ϕ) − ir1(ϕ)) = arctan
(ω(ϕ) − 1)ω(ϕ)

ω̇(ϕ)
.

A geometrical interpretation of Equation (15) is given in Fig. 1. The slope angle in
question is shown as α0 .

By (9) and (11) we see that each point at infinity of a centrode is also a point on the
other centrode. Such a point at infinity is given by a parameter ϕ∞ ∈ [0, 2π] with

ω(ϕ∞) = ϕ̇2(ϕ∞) = 1. (16)

In this case with ω̇(ϕ∞) 6= 0 Equation (15) yields α0(ϕ∞) = 0.
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3. Lobed Conics

Let us consider the following problem: Determine the centrode P2(ϕ) and also the transmission
ratio when the centrode P1(ϕ) is given by a generalized non-degenerate conic section, a so-
called n1-lobed conic.

Solution: Let the n1-lobed conic centrode P1(ϕ) be given by the polar equation

r1(ϕ1) =
h1

1 − ε1 cos n1ϕ1

. (17)

In the case n1 = 1 it is well known that this polar equation describes a non-degenerate conic
where ϕ1 is the polar angle, h1 is the half parameter, and ε1 is the numerical eccentricity.

In particular, the non-degenerate conics are the ellipse (|ε1| < 1), parabola (|ε1| = 1), and
hyperbola (|ε1| > 1).

In the general case n1 is the number of lobes. We see

r1

(

ϕ1 +
2π

n1

)

=
h1

1 − ε1 cos n1(ϕ1 + 2π
n1

)
= r1(ϕ1).

Hence, the polar radius r1(ϕ1) is
2π

n1

-periodic with the lobe number n1 . Now we proceed to

the solution of the given problem. By Eq. (13) we obtain r2(t) = r1(t)−a0. Then ω(t) =
r1(t)

r2(t)

is determined. Then we try to integrate Eq. (14). In the case of integrability the desired
centrode P2(ϕ) is given by Eq. (10).

We can ask for a solution centrode P2(ϕ) which has a periodic number n2 . Then Propo-
sitions 2 and 5 tell us that the following equation has to be fulfilled:

2π

n2
=

1

n1

2π
∫

0

ω(ϕ) dϕ =
1

n1

2π
∫

0

r1(ϕ)

r1(ϕ) − a0
dϕ. (18)

This condition can be used to determine the eccentricity and half parameter for r1(ϕ1) ac-
cording to (17) when the center distance is fixed and the GM is specified to be n1/n2-periodic.
Eq. (18) is integrable in all cases. In the elliptic and hyperbolic case we obtain

r1(ϕ1) = a0
n1(1 − m2)

n1(1 − m2) + n2(1 + m2) + 2mn2 cos n1ϕ1

r2(ϕ2) = a0
−n2(1 − m2)

n1(1 + m2) + n2(1 − m2) − 2mn1 cos n2ϕ2

ϕ2(ϕ1) =
2

n2
arctan

(

m − 1

m + 1
tann1

ϕ1

2

)

.

The parameter m ∈ R\{−1, 0, 1} determines the class of the lobed centrode as given in
Table 1. Note that an arbitrary center distance can be used.
Different cases are illustrated in Figs. 4–7.

In the case of lobed hyperbolas the number of lobes corresponds to the number of pairs
of branches that is also the number of pairs of asymptotes. From the condition for infinite
points,

ω(ϕ1) =
n1

n2

(m − 1)(1 + m)

1 + m2 + 2m cosn1ϕ1
= 1 ,
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Table 1: Parameter and class of conic

Parameter n1-lobed centrode P1(ϕ) n2-lobed centrode P2(ϕ)

0 < |m| < 1 ellipse ellipse and ω(ϕ) < 0

1 < |m| < m∗ =
∣

∣

∣

n1 + n2

n1 − n2

∣

∣

∣
hyperbola hyperbola

m = m∗ and n1 6= n2 parabola parabola

m∗ < |m| ellipse ellipse and ω(ϕ) > 0

Figure 4: 2-lobed with 3-lobed ellipse Figure 5: 1-lobed with 2-lobed hyperbola

Figure 6: 1-lobed with 3-lobed parabola Figure 7: 3-lobed with 4-lobed ellipse

we find

cos n1ϕ1 =
n1(1 − m2) + n2(1 + m2)

2mn2

.

As in the considered case the absolute value of the denominator is not smaller than the
absolute value of the numerator, the condition has two principal solutions ϕ

(1,2)
1 . So, we have

Proposition 7 Both centrodes have infinite polar radii for the parameters

ϕ
(1,2,...,2n1)
1 = ϕ

(1,2)
1 +

n1−1
∑

k=0

2πk/n1.
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Figure 5 illustrates this proposition. We can summarize:

Theorem 1 For prescribed lobe numbers n1, n2 and each real number m ∈ R\{−1, 0, 1} with
restrictions according to Table 1, lobed conics of the same class are determined in order to
represent the pitch curves of an n1/n2-periodic motion composed of two rotations about focal
points of the lobed conics.

4. Synthesis of periodic GM with given revolution-angle functions

It may be considered a disadvantage in technological application of lobed conics that the
transmission ratio is determined by the three parameters n1, n2, and m of the design. Moti-
vated by mechanical applications as shown in the introduction, we are now facing a problem
where revolution-angle functions ϕ1(t) and ϕ2(t) of a motion composed of two rotations,
are given. We want to find centrodes that generate these revolution-angle functions. The
following ansatz (approach) to the revolution-angle functions is proposed

Φj(t) := njt + Sj(t) (19)

where

Sj(t) =
aj0

2
+

Nj
∑

k=1

(ajk cos mjkt + bjk sin mjkt) , j = 1, 2 (20)

with so-called rotation numbers nj , amplitudes ajk, bjk, periods Tj, frequencies
2π

Tj

, and fre-

quency multiples mjk :=
2π

Tj

k.

The function Sj(t) is known as Fourier partial sum of the first Nj terms. The functions
Sj(t) and their derivatives are Tj-periodic. So, the first derivative is

Φ̇j(t) = nj +

Nj
∑

k=1

(−ajkmjk sin(mjkt) + bjkmjk cos(mjkt)) for j = 1, 2. (21)

Therefore, the transmission ratio is

ω(t) =
Φ̇2(t)

Φ̇1(t)
. (22)

Looking at Proposition 5, for Φ̇j(t) we choose the period

Tj =
2π

zj

(23)

with an integer zj , in order to obtain a periodic transmission ratio. Then, the frequency
multiples are

mjk = zjk. (24)

Now it is easy to show:

Proposition 8 With Tj =
2π

zj

, j = 1, 2, the transmission ratio ω(t) =
Φ̇2(t)

Φ̇1(t)
has the period

T =
2z

z1z2

π where z = LCM(z1, z2) is the least common multiple of the integers z1 and z2 .
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A periodic transmission ratio is necessary but not sufficient for a periodic GM. So, we
now require the period of the revolution-angle function, assuming a common period T for the
Fourier partial sums. For any integer gj we have

Φj(t + gjT ) = Φj(t) + gjnjT = Φj(t) + gjnj
2πz

z1z2

.

For t = 0 it follows
Φj(gjT ) = Φj(0) + gjnj

2πz

z1z2

and there is always a g′

j with

Φj(g
′

jT ) = Φj(0) + 2πnj (j = 1, 2).

For convenience let us call the approach (19) the Fourier ansatz (FA). Then it is proven:

Proposition 9 Revolution-angle functions of the FA result in an n1/n2-periodic GM if the
Fourier partial sums have the common period of the transmission ratio according to Propo-
sition 8.

Remark: With arbitrary revolution angle functions we get an n1/n2-periodic GM only in the
case in which the integral in Proposition 2 exists. With the proposed FA, a n1/n2-periodic GM
is easily obtained by choosing coefficients nj; ajk, bjk and a common period of the transmission
ratio.

The Figures 8–10 display some interesting examples.

Figure 8: Functions and centrodes of a
Fourier ansatz with z1 = z2 = z

Figure 9: Functions and centrodes of a
Fourier ansatz with z1 = 1, z2 = z = 2
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Figure 10: Functions and centrodes of a Fourier ansatz with z1 = 1, z2 = z = 2

Theorem 2 For each given pair of piecewise continously differentiable revolution-angle func-
tions ϕ1(t) and ϕ2(t) on an nterval 0 < t < T , where T is a common period for the Fourier
partial sums, the centrodes of a n1/n2-periodic GM are uniquely determined in such a way
that their rolling generates the given revolution-angle functions.

The proof of Theorem 2 is a conclusion drawn from the Dirichlet theorem: For given
ϕj(t), 0 < t < T , we satisfy the condition

Φj(t) = njt + Sj(t)
.
= ϕj(t)

in terms of Fourier-series convergence determining the coefficients ajk, bjk by the Euler formula
applied to the function

Sj(t) = ϕj(t) − njt.

Conclusions

With Theorem 1, the paper revealed all types of lobed conics which represent the pitch curves
of an n1/n2-periodic GM. Lobed ellipses, hyperbolas, and parabolas can be used as well as
internal rolling lobed ellipses. The transmission ratio is determined by the two lobe numbers
of the gears and one real design parameter.

With Theorem 2, a second synthesis method is presented: For each everywhere-finite and
piecewise monotone driving and driven functions of revolution, an approximating function is
determined which includes a Fourier series. Then, the centrodes can be calculated so as to
realize an n1/n2-periodic GM. Thereby, the coefficients of the driving and driven functions
can be explained geometrically. In an application, the coefficients of the Fourier-series can
be easily calculated by the help of equally spaced control points for the desired driving and
driven functions.
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It is easily possible to obtain closed centrodes. However, segments of centrodes are also
interesting. Engineering requirements like

• Rotation index of a centrode is to be 1

• Curvature of a centrode is to be bounded

• Centrode is to be convex suggest further investigation.

What are appropriate relations for the coefficients of the Fourier-series?
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