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Abstract. In this paper we classify the ∆012-regular hypermaps of characteristic
χ ≥ −2. We also define and compute the upper and lower irregularity group
which are a generalization of the chirality group defined in [8]. From the obtained
classification it follows that there is no edge-transitive map of characteristic χ ≥
−2 and type 5P (defined in [11], see [13] for the torus case).
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1. Introduction

The hemicube is the regular map on the projective plane obtained by identifying the antipodal
points of the cube. Labelling (or colouring) its three faces with 0, 1 and 2, we obtain the
James representation of a hypermap with one hypervertex (the face labelled 0), one hyperedge
(the face labelled 1), one hyperface (the face labelled 2) and four flags (the vertices of the
underlying graph).

The free product ∆ = C2 ∗ C2 ∗ C2 generated by R0, R1, R2 acts on the set of vertices
of the face-labelled hemicube (the flags): for every vertex v of the hemicube, vRi is the
vertex adjacent to v such that the edge {v, vRi} is not incident to the face labelled i. The
subgroup ∆012 of ∆ generated by R1R0R2, R2R1R0 and R0R2R1, is a normal subgroup of
index 4 which acts trivially on the vertices of the hemicube. Moreover, the quotient ∆/∆012

describes the face-labelled hemicube as a regular ∆012-marked hypermap [5]. For this reason
we denote the hemicube by T

∆012
and call it the trivial ∆012-regular hypermap. Every label-

preserving covering of T
∆012 corresponds to a subgroup of ∆012, and a regular covering to
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Figure 1: The James representation (left) and the Walsh representation (right)
of the hemicube

a normal subgroup. Regular coverings of the face-labelled hemicube have been not totally
absent in the literature, for example in [13] there is an indirect classification of the “just”
regular coverings of genus one (see [5] for more details), where “just” means that the covering
to any other regular hypermap properly covered by T

∆012 is not regular.

In this paper we classify the regular label-preserving coverings of the face-labelled hemicube
of characteristic χ ≥ −2. In other words, we classify the ∆012-regular hypermaps, or the hy-
permaps of characteristic χ ≥ −2 that regularly cover T

∆012 . By an exhaustive use of the
techniques presented in this paper, the classification can be extended further down, to lower
characteristic bounds. However, these values already give a representative picture, not only of
the techniques, but also of the kind of classification we expect to find. As a natural extension
of the chirality group defined in [8], we introduce a group that measures the quality of the
irregularity of restricted-regular hypermaps [5].

This paper is organised as follows: the rest of Chapter 1 introduces restrictedly-marked
hypermaps; Chapter 2 defines upper and lower irregularity groups and their respective irregu-
larity indices; Chapter 3 gives the classification of the ∆012-regular hypermaps of characteristic
χ ≥ −2; and Chapter 4 gives the calculations of the upper and lower irregularity groups.

Restrictedly-marked hypermaps

Hypermaps are trivalent face-labelled maps where each vertex is incident to three faces car-
rying different labels, and coverings are label-preserving map coverings. Algebraically, a
hypermap is a four-tuple H = (F ; r0, r1, r2) consisting of a non-empty finite set F , called
the set of flags, and three permutations r0, r1, r2 of F satisfying r0

2 = r1
2 = r2

2 = 1 and
generating a permutation group Mon(H) = 〈r0, r1, r2〉, called the monodromy group of H,
acting transitively on F . The transitivity of the action implies that |Mon(H)| ≥ |F |, and
equality occurs if and only if the automorphism group of H, Aut(H), acts transitively on F ,
that is, if H is regular. Hypermaps correspond to finite transitive permutation representations
ρ : ∆ → Mon(H), Ri 7→ ri, where ∆ = C2 ∗ C2 ∗ C2 is the free product generated by the
reflections on the sides of a triangle with zero internal angles on the hyperbolic plane. Any
normal subgroup Θ of ∆ of finite index acts on the set of flags with orbits of the same size.

A fundamental subgroup or hypermap subgroup for H is the stabilizer of a flag of H by the
action of ∆. Fundamental subgroups are unique up to conjugation in ∆. Every hypermap is
completely described by a fundamental subgroup. The hypermap H is Θ-conservative if its
fundamental subgroup H is a subgroup of Θ and it is Θ-regular if the automorphism group
of H acts transitively on each Θ-orbit, or equivalently, if H is a normal subgroup of Θ. We
say that H is just-Θ-regular if it is Θ-regular but not Π-regular for any normal subgroup Π
in ∆ that properly contains Θ. By the Kurosh Subgroup Theorem [10], Θ freely decomposes
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uniquely (up to a permutation of the factors) in a free product C2 ∗ · · · ∗C2 ∗C∞ ∗ · · · ∗C∞ =
〈X1, . . . , Xm | Xi

2 = 1, i = 1 . . . s〉, for some 0 ≤ s ≤ m.
A Θ-conservative hypermap is described by a (m + 1)-tuple Q = (Ω, x1, . . . , xm) where Ω

is a finite set, and x1, . . . , xm are permutations acting transitively on Ω. In particular, Q is a
marked transitive permutation group [12], and the assignment Xi 7→ xi, i = 1, . . . , m, induces
an epimorphism. Such an (m + 1)-tuple is called a Θ-marked hypermap; homomorphisms
and automorphisms of Θ-marked hypermaps are just homomorphisms and automorphisms of
marked transitive permutation groups. For more details, such as the characteristic formula,
the Θ-type and so on, we refer the reader to [5].

A Θ-conservative hypermap H can be represented in two forms: the usual ∆-form H =
(F ; r0, r1, r2) and the ∆012-form Q = (F ′; x, y, z), where |F ′| = |F |/4. In the first form we use
the terms regular and ∆012-regular with the meaning as explained above, while in the second
we use the local terminology ∆-regular and regular, respectively.

2. Irregularity

Let H be a hypermap with fundamental subgroup H ≤ ∆. Then H is ∆-regular if and only if
H is normal in ∆. The closure cover H

∆
of H is the hypermap whose fundamental subgroup

is the normal closure H
∆

of H in ∆; it is the largest ∆-regular hypermap covered by H. The
covering core H

∆
of H is the hypermap whose fundamental subgroup is the core H

∆
of H

in ∆; it is the smallest ∆-regular hypermap covering H. Note that H
∆

is always a normal
subgroup of H but H may be not normal in H

∆
. In fact H is normal in H

∆
if and only if H

is normal in Θ, for some normal subgroup Θ of ∆. We have a group

Υ
∆
(H) = H/H

∆

called the “chirality group” in [4, 8, 2, 3], when H is ∆+-regular (that is, orientably-regular).
In this paper we call it the lower irregularity group of H, and its size is called the lower

irregularity index and denoted by ι
∆
(H). The upper irregularity index is the index |H

∆
: H|

and is denoted by ι
∆
(H). When H is Θ-regular, for some normal subgroup Θ of ∆, then

H ⊳ H∆ and we have another group, the upper irregularity group

Υ
∆

(H) = H
∆

/H .

Upper and lower irregularity indices may be not equal. We say that H is balanced if its upper
and lower irregularity indices are equal, and unbalanced otherwise. Balanced hypermaps with
Υ

∆ ∼= Υ
∆

are called fully-balanced. When H is balanced, we say irregularity index instead of
upper or lower irregularity index, for short.

In [8] the authors showed that all ∆+-regular hypermaps are fully-balanced. This result
extends similarly to Θ-regular hypermaps when Θ has index 2 in ∆ (see following lemma).
However, if Θ has not index 2 in ∆, then H can be unbalanced (see Chapter 3 for examples).

Lemma 1 Let Θ be a normal subgroup of index 2 in ∆. If H is Θ-regular, then H is

fully-balanced.

Computing the irregularity groups

In general, it may not be easy to compute the upper irregularity index. However, if H is
Θ-regular, for some normal subgroup Θ of ∆ of finite index, then the upper irregularity group
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H
∆
/H is a normal subgroup of its Θ-monodromy group Θ/H , and hence, it can be obtained

from a presentation of Θ/H (Theorem 3).

Lemma 2 Let Θ be a normal subgroup of index n in ∆ and T = {b1, b2, . . . , bn} be a

transversal for Θ in ∆. If H is normal in Θ, then

(1) H is normal in ∆ if and only if Hbi = H , for i = 1, . . . , n.

(2) H
∆

= 〈Hb1 , Hb2, . . . , Hbn〉 = Hb1Hb2 · · ·Hbn.

(3) H
∆

=
⋂n

i=1 Hbi.

The hypermap H, being Θ-regular, is described by a regular Θ-marked hypermap

Q = (G; x1, . . . , xm) ∼= (Θ/H ; HX1, . . . , HXm) ,

where Θ = 〈X1, . . . , Xm〉 is a free product of the form C2 ∗ · · · ∗ C2 ∗ C∞ ∗ · · · ∗ C∞, with a
finite number of factors, H is a fundamental subgroup for Q, and G is the group generated
by x1, . . . , xm. The following theorem extends Theorem 1 of [4].

Theorem 3 If G has presentation 〈X1, . . . , Xm | R〉 and T = {b1, b2, . . . , bn} is a transversal

for Θ in ∆, then Υ
∆
(H) = 〈Rb1 , . . . , Rbn〉

G
.

Proof: It is a consequence of Lemma 2 and von Dyck’s theorem.

By Theorem 20 of [5] each b-image of HΘ ∼= Q is isomorphic to the regular Θ-marked
hypermap

Qb = (Θ/H ; HX1
b−1

, . . . , HXm
b−1

) = (G; x1
b−1

, . . . , xm
b−1

) ,

where xi
b−1

is the image of Xi
b−1

by the epimorphism ρ extending the assignment Xi 7→ xi,
i = 1, ..., m. Hence, the set of flags of H can be regarded as n distinct copies of G, that is,
we can set F = G × T , where FΘ

b = G × {b}. Identifying the n-tuple (xi
b−1
1 , . . . , xi

b−1
n ) ∈ Gn

with the permutation

σxi
: G × T → G × T, (g, b) 7→ (gxi

b−1

, b) ,

we see that Θ/H∆ acts on F as 〈σx1 , . . . , σxn〉 acts on G×T , that is, the function H∆Xi 7→ σxi
,

i = 1, . . . , m, extends to an isomorphism from Θ/H∆ to Σ = 〈σx1, . . . , σxm〉 ≤ Gn. The group
Σ ≤ Gn is called the monodromy product [1], or the parallel product [14] of the groups
〈xb−1

1 , . . . , xb−1

m 〉 = G with b ∈ T .

Theorem 4 If G has presentation 〈X1, . . . , Xm | R〉 and T = {b1, b2, . . . , bn} is a transversal

for Θ in ∆, then Υ
∆
(H) = 〈Rσ〉

Σ
, where Rσ = R(σx1 , . . . , σxm) ⊆ Σ.

Proof: The canonical epimorphism Θ/H∆ → Θ/H has kernel Υ
∆
(H) = H/H∆. Hence, from

G ∼= Θ/H we have that Υ
∆
(H) = 〈R〉

Θ/H∆ . The statement now follows from the fact that the
function H∆Xi 7→ σxi

, i = 1, . . . , m, extends to an isomorphism from Θ/H∆ to Σ.

We now extend a result established in [8] for the even word subgroup ∆+ to all normal
subgroups of ∆ of index 2.

Theorem 5 Let Θ be a normal subgroup of ∆ of index 2. The irregularity index of a Θ-

regular hypermap can be any positive integer.
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Figure 2: ∆0̂-regular hypermap with irregularity index n

Proof: The triangle group ∆ has 7 normal subgroups of index 2, namely ∆+, ∆0̂, ∆1̂, ∆2̂, ∆0,
∆1 and ∆2 (for more details see [7]). In [8] it was proved that the irregularity index (called
chirality index) of a ∆+-regular hypermap can be any positive integer. It is shown in [6] that

the regular ∆0̂-marked hypermap (Dn; a, b, c, d) on the sphere (Fig. 2), where Dn = 〈a, b〉 is
a dihedral group of order n and c = d = a, has upper irregularity group Cn and irregularity
index n.
By swapping cell labels (that is by “duality”), the same is true for ∆ι̂-regular hypermaps,
where ι̇ = 1, 2. Hence we only need to show the result for ∆i-regular hypermaps. Up to a cell
labelling, let us prove it for Θ = ∆0. Our goal is to find a ∆0-regular hypermap H with upper
irregularity group Υ

∆
(H) isomorphic to a cyclic group of order n, for each n. The subgroup

∆0 of ∆ is generated by A = R0, B = R0
R1 and C = R1R2. By the Reidemeister-Schreirer

Rewriting process, ∆0 is isomorphic to the free product C2 ∗ C2 ∗ C∞ = 〈A, B, C〉.
Let n = 2m be an even positive integer and consider G = C2 × Dn, where C2 = 〈α |

α2 = 1〉 is a cyclic group of order 2 and Dn is a dihedral group of order 2n with presentation
〈β, γ | β2 = γn = (βγ)2 = 1〉. Consider the ∆0-marked hypermap Q = (G; a, b, c), where
G = C2 × Dn and a = (α, 1), b = (1, β) and c = (1, γ). By Theorem 22 of [5], Q is regular.
The group G has presentation

〈A, B, C | A2, B2, Cn, (BC)2, [A, B], [A, C]〉 ,

so R(A, B, C) = {A2, B2, Cn, (BC)2, [A, B], [A, C]}. As T = {1, R1} is a transversal for ∆0 in
∆ and AR1 = B, BR1 = A and CR1 = C−1, by Theorem 3, we have

Υ
∆

= 〈R(AR1 , BR1 , CR1)〉
G

= 〈R(B, A, C−1)〉
G

= 〈B2, A2, C−n, (AC−1)2, [B, A], [B, C−1]〉
G

= 〈C2〉 = Cm .

Since H is fully-balanced (Lemma 1), its irregularity index ι = ι
∆

= ι
∆

is m.

In the proof of Theorem 5 we give an example of a family of orientable ∆0-regular hypermaps
of ∆0-type (n, 4, 4) on a surface of genus g = n − 2 (n = 2m) with irregularity index ι =
n

2
=

g + 2

2
. Another such family of examples, all lying in the torus, can be found in line 7

of Table 3, setting m = 1. One gets a family (T 1
(1,n); x, y, y−1) of ∆0-regular hypermaps of

∆0-type (2, 4, 4) with irregularity group Υ
∆

= Υ
∆

= Cn.

3. ∆012-regular hypermaps of characteristic χ ≥ −2

The classification is done on regular ∆012-marked hypermaps, up to duality (relabelling of
0,1,2 cells) and a b-image (choice of a flag in T

∆012
as root-flag). The advantage of using the



6 A. Breda d’Azevedo et al.: Regular Colour-Preserving Coverings of the Face-Colored Hemicube

∆012-marked form over the ∆-marked form (usual algebraic form of a hypermap) is that the
monodromy group of the former is at least 4 times smaller than that of the later.

Because ∆012 is generated by X = R1R0R2, Y = R2R1R0 and Z = R0R2R1, the trivial
∆012-hypermap is the regular hypermap T

∆012 = (V4; a, b, ab), where V4 = 〈a, b | a2, b2, (ab)2〉 ∼=
C2×C2 is the vierergruppe, i.e., T

∆012 is the Walsh representation of the face-labelled hemicube
(see Fig. 1, page 2). As seen earlier, T

∆012
is a hypermap on the projective plane, of type

(2, 2, 2), with 1 hypervertex, 1 hyperedge and 1 hyperface. According to the definition of
Θ-type given in [5], the ∆012-type of a ∆012-regular hypermap is (k, ℓ, m), with k, ℓ and m
even.

Let H = (F ; r0, r1, r2) be a ∆012-regular hypermap with fundamental subgroup H . Then
Q = (G; x, y, z), where G = ∆012/H , x = r1r0r2, y = r2r1r0 and z = r0r2r1, is a ∆012-marked
hypermap with ∆-form H. The hypermap T

∆012 may be thought as a ∆012-slice of H (see [5]).

Each b-image Qb has also ∆-form H. The characteristic of Q is the characteristic of H which
is given by the formula

χ(Q) = |G|
(

2

k
+

2

ℓ
+

2

m
− 2

)

,

where (k, ℓ, m) is the ∆012-type of H. Since (k, ℓ, m) = (|r2r1|, |r0r2|, |r1r0|), yz = (r2r1)
2,

zx = (r0r2)
2 and xy = (r1r0)

2, we have that |yz| = k/2, |zx| = ℓ/2, |xy| = m/2 and hence

χ(Q) = |G|

(

1

|yz|
+

1

|zx|
+

1

|xy|
− 2

)

.

Positive characteristic

Up to duality, the ∆012-type of a ∆012-regular hypermap of positive characteristic is (2, 2, 2n),
for some n ∈ N. Thus z−1 = y = x and G is a cyclic group generated by x. From |xy| =
|x2| = n, we get |G| = 2n and χ = 2, if n is even, and |G| = n and χ = 1, if n is odd.
Hence the ∆012-regular hypermaps on the sphere are given by the ∆012-marked hypermaps
(C4n; x, x, x−1) and the ∆012-regular hypermaps on the projective plane are given by the ∆012-
marked hypermaps (C2n+1; x, x, x−1), where Cm is the cyclic group of order m generated by
x.

Zero characteristic

Up to duality, the ∆012-type of a ∆012-regular hypermap of zero characteristic is (2, 4, 4).
Thus z = y−1, (y−1x)2 = 1 and (xy)2 = 1. From these equalities we get (using induction
twice) the following commuting rule:

yβxα = x(−1)βαy(−1)αβ , α , β ∈ N . (1)

This shows that Q = 〈x, y | xp, yq, (y−1x)2, (xy)2〉 is finite. If one of p or q is odd, then Q = C2

or Q is dihedral (see case below). If both p and q are even, because H = 〈x2, y2〉 is an abelian
normal subgroup of size pq

4
and factor Q into V4, then Q has size pq. Since G is a factor of Q,

G has presentation 〈x, y | xp, yq, (y−1x)2, (xy)2, R 〉 for some (possibly empty) set R of relators
in x, y. Without loss of generality, we may assume that p and q are the orders of x and y.
Note that y−1x and xy are involutions of G.

Case p or q odd: If p is odd, then y2 = 1 and so xy = x−1. Thus 〈x〉�G. If y = 1, then Q =
C2 = 〈x〉 for otherwise y /∈ 〈x〉, because x has odd order, and G = 〈x〉 ⋊ 〈y〉 = Dm = 〈x, y |
xm, y2, (xy)2〉. Similarly, if n is odd, then Q = C2 = 〈y〉 or G = Dn = 〈x, y | x2, yn, (xy)2〉.
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Case p and q even: Let p = 2m and q = 2n. By (1) we may assume that every relator in R
is of the form xayb where 0 < a < p and 0 < b < q, if R 6= ∅. If a is odd, then xayb = 1 implies
yb = (x−a)y = y−b+2 and yb = (x−a)y2

= yb+4. Thus (b, q) = (1, 2) or (3, 4) giving yb = y±1.
Then xa = (y∓1)x = x−a−2 and xa = (y∓1)x2

= xa−4. Therefore we also have (a, p) = (1, 2) or
(3, 4) giving xa = x±1. We conclude that xayb = 1 implies xy = 1 or y−1x = 1, contradicting
the assumption that both y−1x and xy have order 2. Similarly, assuming that b is odd we
get the same contradiction. Hence a and b must be even. From 1 = (xayb)y = x−ayb we get
x2a = y2b = 1. Hence a = m and b = n, that is, R = {xmyn}, if R 6= ∅.

We conclude that the ∆012-regular hypermaps with zero characteristic are given by the
∆012-marked hypermaps (C2; a, 1, 1), (C2; 1, a, a), (D2n+1; a, b, b), (D2n+1; b, a, a−1), (T 1

(m,n);

x, y, y−1) and (T 2
(m,n); x, y, y−1), where C2 = 〈a〉, D2n+1 = 〈a, b | a2n+1, b2, (ab)2〉 is the dihedral

group of order 2(2n + 1), T 1
(m,n) = 〈x, y | x2m, y2n, (y−1x)2, (xy)2〉 is a group of size 4mn and

T 2
(m,n) = 〈x, y | x4m, y4n, (y−1x)2, (xy)2, x2my2n〉 is a group of size 8mn. The last two families

are hypermaps on the torus while the other four are on the Klein bottle.

Negative characteristic

As

|G| =
−χ(Q)

2 −

(

1

|yz|
+

1

|zx|
+

1

|xy|

) ,

if χ(Q) < 0 then |G| ≤
−χ(Q)

2 − M
, where M is the maximum value in

{

1

a
+

1

b
+

1

c
| a, b, c ∈ N

}

∩ ]0, 2[ . One can easily see that M = 11
6

and therefore |G| ≤ −6 χ(Q), or equivalently, if we
denote the genus of Q by g,

|G| ≤

{

12(g − 1) if Q is orientable and χ(Q) < 0,
6(g − 2) if Q is non-orientable and χ(Q) < 0.

• Characteristic −1

From χ(Q) = −1 we have that

1

2 −

(

1

|yz|
+

1

|zx|
+

1

|xy|

) = |G| ≤ 6 ,

where |yz|, |zx| and |xy| divide |G|. The following Table 1 lists the possible solutions k = 2|yz|,
ℓ = 2|zx|, m = 2|xy| and |G| of this equality with k ≤ ℓ ≤ m. It also displays the numbers

Table 1: ∆012-type of ∆012-regular hypermaps of characteristic -1

k ℓ m V E F |G| G #

1 4 4 4 1 1 1 2 C2 0

2 2 6 6 3 1 1 3 C3 2

3 2 4 6 6 3 2 6 C6 or D3 0
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V = 2|G|/k, E = 2|G|/ℓ, F = 2|G|/m, of hypervertices, hyperedges and hyperfaces of the
regular ∆012-marked hypermap Q of ∆012-type (k, ℓ, m), and the possible groups G. The last
column shows the number of non-isomorphic ∆012-marked hypermaps for each solution.

line 1: G = C2 is clearly not possible.

line 2: G = 〈zx〉 = 〈xy〉 = C3. As yz = 1, we have y−1x = zx = (xy)ǫ, where ǫ = ±1. If
ǫ = 1, then y2 = 1, so y = z = 1, since G is abelian, and 〈x〉 = C3. Else, if ǫ = −1, then x = 1
and 〈y〉 = C3. This gives two regular ∆012-marked hypermaps (C3; x, 1, 1) and (C3; 1, y, y−1),
both non-orientable of genus 3.

line 3: G = 〈x, y〉 since yz = 1, and G = 〈y−1x, xy〉 since |y−1x| = |zx| = 2 and |xy| = 3.
Yet |G| cannot be 6, because x2 = (xy)(y−1x) cannot have order 2 nor 6 in such a group.

• Characteristic −2

χ(Q) = −2 gives
2

2 −

(

1

|yz|
+

1

|zx|
+

1

|xy|

) = |G| ≤ 12

and, as above, the possibilities are listed in the following table.

Table 2: ∆012-type of ∆012-regular hypermaps of characteristic -2

k ℓ m V E F |G| G #

1 2 8 8 4 1 1 4 C4 4

2 4 4 4 2 2 2 4 C4 or V4 1 + 2

3 2 4 12 6 3 1 6 C6 2

4 2 6 6 6 2 2 6 C6 or D3 2 + 1

5 2 4 8 8 4 2 8 C8, C4 × C2 , D4 , Q4 1 + 0 + 0 + 0

6 2 4 6 12 6 4 12 C3 ⋊ C4, C12 , C6 × C2, D6, A4 0 + 1 + 0 + 0 + 1

Since k = 2 is equivalent to z = y−1, for all items not on line 2 we have G = 〈x, y〉
= 〈x, z〉. A detailed description of the entries in the last two columns of Table 2 now follows.

line 1: Clearly a = xy generates G. Thus (x, y) = (ai, aj), for some i, j ∈ {0, 1, 2, 3}. In
addition, a = ai+j , so i + j ≡ 1 mod 4. Since 4 = |zx| = |y−1x|, we get i − j ≡ ±1
mod 4, and hence (i, j) = (0, 1), (1, 0), (2, 3) or (3, 2). Consequently, the regular ∆012-
marked hypermaps of ∆012-type (2, 8, 8) are (C4; 1, a, a−1), (C4; a, 1, 1), (C4; a

2, a3, a) and
(C4; a

3, a2, a2) ∼= (C4; a, a2, a2).

line 2: If G = C4 = 〈a〉, then (x, y, z) = (ai, aj, ah), for some i, j, h ∈ {0, 1, 2, 3} satisfying
j + h ≡ h + i ≡ i + j ≡ 2 mod 4. It follows that i = j = h = ±1. This gives the two
isomorphic ∆012-marked hypermaps (C4; a, a, a) and (C4; a

−1, a−1, a−1). If G = V4, one of the
following conditions holds: (1) 1 ∈ {x, y, z}, (2) V4 = {1, x, y, z}, or (3) |{x, y, z}| = 2. All
are possible except item (3) that does not have the right ∆012-type. So this case produces the
two ∆012-marked hypermaps (V4; x, y, 1) and (V4; x, y, xy).

line 3: G = 〈xy〉 = C6 = 〈a〉. Then (x, y) = (ai, aj), for some i, j ∈ {0, 1, 2, 3, 4, 5} such that
i+ j ≡ 1 mod 6 and i− j ≡ 3 mod 6. This system of congruencies has two solutions mod 6:



A. Breda d’Azevedo et al.: Regular Colour-Preserving Coverings of the Face-Colored Hemicube 9

(i, j) = (2, 5) and (i, j) = (5, 2), giving the two regular ∆012-marked hypermaps (C6; a
2, a5, a)

and (C6; a
5, a2, a4) ∼= (C6; a, a4, a2).

line 4: (i) G = C6 = 〈a〉. By a similar argument as used before, this case produces
the two regular ∆012-marked hypermaps (C6; a

5, a3, a3) ∼= (C6; a, a3, a3) and (C6; a
3, a, a5) ∼=

(C6; a
3, a5, a).

(ii) G = D3 = 〈a, b | a3, b2, (ab)2〉. According to the ∆012-type, we have y−1x = zx, xy ∈
{a, a2}. Since there is an automorphism of D3 mapping a to a2 and b to b, we just need to
consider two cases: (1) (y−1x, xy) = (a, a). This contradicts 〈x, y〉 = D3. (2) (y−1x, xy) =
(a, a2). This gives one regular ∆012-marked hypermap (D3; b, a

2b, a2b) ∼= (D3; ab, b, b) ∼=
(D3; a

2b, ab, ab).

line 5: Since xy has order 4, G can only be C8, C4 × C2, D4 or Q4.
(i) G = C8 = 〈a〉. Similarly to the cyclic cases, this gives one ∆012-marked hypermap
(C8; a

3, a7, a) ∼= (C8; a
7, a3, a5).

(ii) G = C4 × C2 = 〈a, b | a4, b2, [a, b]〉. Then {x, y} = {a, b} or {a−1, b}, but both cases give
a ∆012-type contradiction.
(iii) G = D4 = 〈a, b | a4, b2, (ab)2〉. One of x or y must be an involution and the other must
belong to the cyclic subgroup 〈a〉. This prevents xy having order 4.
(iv) G = Q8 = 〈a, b | a2 = b2, ab = a−1〉. Since a2 is the unique element of order 2,
y−1x = zx = a2. Then Q8 = 〈x, y〉 = 〈y−1x, x〉 = 〈a2, x〉 which is not possible because a2 is a
non-generating element. Hence G 6= Q8.

line 6: Since G is generated by a pair of elements one of which has order 2, G cannot be
C3 ⋊ C4 = 〈a, b | a3, b4, aba〉, because b2 is the only element of order 2 and it belongs to the
Frattini subgroup. Then G is C12, C6 × C2, D6 or A4.
(i) G = C12 = 〈a〉. In this case we get a regular ∆012-marked hypermap: (C12; a

11, a5, a7) ∼=
(C12; a

5, a11, a) ∼= (C12; a, a7, a5) ∼= (C12; a
7, a, a11).

(ii) G = C6 × C2 = 〈a, b | a6, b2, [a, b]〉. Here we must have x = aib and y = ajb, for some
i, j ∈ {0, . . . , 5} satisfying i − j ≡ 3 mod 6 and i + j ≡ ±2 mod 6, which is impossible.
(iii) G = D6 = 〈a, b | a6, b2, (ab)2〉. The argument of (ii) applies to this case as well.
(iv) G = A4. The elements of order 2 generate V4 and since y−1x has order 2 this implies that
both x and y must have order 3. Since x3 = y3 = (y−1x)2 = 1 determines A4, there is only
one regular ∆012-marked hypermap (up to isomorphism), namely (A4; x, y, y−1).

4. The upper and lower irregularity group

To compute the irregularity groups of the ∆012-regular hypermaps obtained in previous
chapter we use Theorems 3 and 4. The set T = {1, R0, R2, R2R0} is a transversal of
∆012 = 〈X, Y, Z〉, where X = R1R0R2, Y = R2R1R0 and Z = R0R2R1. In order to use
Theorems 3 and 4, we need to determine the conjugates Xb, Y b, Zb and Xb−1

, Y b−1
, Zb−1

, for
each b ∈ T , b 6= 1. These are listed in the following table.

A AR0 AR2 AR2R0 AR0R2

X (ZXY )−1 Y Z ZX

Y Z X (ZXY )−1 (Y ZX)−1

Z Y (Y ZX)−1 XZ−1
X

If G = 〈X, Y, Z | R〉, where R is a set of words in X, Y , Z and x = 〈R〉ΘX, y = 〈R〉ΘY and
z = 〈R〉ΘZ, then, by Theorem 3, Υ

∆
= 〈S〉G, where S = R((zxy)−1, z, y)∪R(y, x, (yzx)−1)∪
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R(z, (zxy)−1, zxz−1) and, by Theorem 4, Υ
∆

= 〈Rσ〉
Σ
, where Σ is the group generated by the

permutations σx = (x, (zxy)−1, y, zx), σy = (y, z, x, (yzx)−1), σz = (z, y, (yzx)−1, x) and

Rσ = R(σx, σy, σz) =
(

R(x, y, z), R
(

(zxy)−1, z, y
)

, R
(

y, x, (yzx)−1
)

, R
(

zx, (yzx)−1, x
))

.

The upper and lower irregularity groups of the ∆012-regular hypermaps determined in Chap-
ter 3 can be seen in Table 3, where the symbols “+” and “−” in the fourth column mean
“orientable” and “non-orientable”, respectively.

Table 3: Upper and lower irregularity groups. Here k =
mn

(m, n)2
.

χ Q R ± Υ
∆

Υ
∆

just-Π-reg.

2 (C4n; x, x, x−1) X4n, Y −1X, Y Z + 1 1 Π = ∆

1 (C2n+1; x, x, x−1) X2n+1, Y −1X, Y Z − 1 1 Π = ∆

0 (C2; x, 1, 1) X2, Y, Z − C2 C2 Π = ∆0

0 (C2; 1, y, y) X, Y 2, Y Z − C2 C2 Π = ∆0

0 (D2n+1; x, y, y) X2n+1, Y 2, (XY )2, Y Z − D2n+1 D2n+1 Π = ∆0

0 (D2n+1; x, y, y−1) X2, Y 2n+1, (XY )2, Y Z − D2n+1 D2n+1 Π = ∆0

0 (T 1
(m,n); x, y, y−1) X2m, Y 2n, (Y −1X)2, (XY )2, Y Z + Ck Ck Π = ∆0

0 (T 2
(m,n); x, y, y−1) X4m, Y 4n, (Y −1X)2, (XY )2, + C(2,k)k C(2,k)k Π = ∆0

X2mY 2n, Y Z

−1 (C3; x, 1, 1) X3, Y, Z − C3 C3 Π = ∆0

−1 (C3; 1, y, y−1) X, Y 3, Y Z − C3 C3 Π = ∆0

−2 (C4; 1, y, y−1) X, Y 4, Y Z − C4 C4 Π = ∆0

−2 (C4; x, 1, 1) X4, Y, Z − C4 C4 Π = ∆0

−2 (C4; y
2, y, y−1) XZ2, Y 4, Y Z − C4 C4 Π = ∆0

−2 (C4; x, x2, x2) X4, X2Y, Y Z − C4 C4 Π = ∆0

−2 (C4; x, x, x) X4, Y −1X, ZX−1 + 1 1 Π = ∆

−2 (V4; x, y, 1) X2, Y 2, (XY )2, Z − V4 C2 Π = ∆012

−2 (V4; x, y, xy) X2, Y 2, (XY )2, XY Z − V4 C2 Π = ∆012

−2 (C6; y
4, y, y−1) XY 2, Y 6, Y Z − C2 C2 Π = ∆0

−2 (C6; x, x4, x2) X6, X2Y, Y Z − C2 C2 Π = ∆0

−2 (C6; x, x3, x3) X6, X3Y, Y Z + C3 C3 Π = ∆0

−2 (C6; y
3, y, y−1) XY 3, Y 6, Y Z + C3 C3 Π = ∆0

−2 (D3; x, y, y) X2, Y 2, (XY )3, Y Z + 1 1 Π = ∆

−2 (C8; y
5, y, y−1) XY 3, Y 8, Y Z + 1 1 Π = ∆

−2 (C12; x, x−5, x5) X12, X5Y, Y Z + 1 1 Π = ∆

−2 (A4; x, y, y−1) X3, Y 3, (Y −1X)2, Y Z − 1 1 Π = ∆

Since ∆012-regular hypermaps are uniform and uniform hypermaps on the sphere and
on the projective plane are regular, every ∆012-regular hypermap of positive characteristic
is regular (first two lines of Table 3). For negative characteristic the calculations are rather
trivial. For illustrative purposes, we compute the upper irregularity group of 3 hypermaps of
characteristic zero (I, II, III) and the lower irregularity group of an unbalanced hypermap (IV).
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The just-Π-regularity appearing in last column (see Introduction for definition) is inspected
while computing the upper irregularity group. When Π has index 2 the hypermaps are
necessarily fully-balanced (by Lemma 1) and henceforth one needs only to compute the upper
(or lower) irregularity group.

(I) For G = D2n+1 = 〈X, Y, Z | X2n+1, Y 2, (XY )2, Y Z〉 we have R(XR2 , Y R2 , ZR2)|G =

R(y, x, x−1) = {y, x2, 1}. Hence G = 〈y, x2〉G ⊂ Υ
∆
, so Υ

∆
= D2n+1. As

R(XR0 , Y R0, ZR0)|G = R((zxy)−1, z, y) = {1} the hypermap is just ∆0-regular. Hence

Υ
∆

= Υ
∆
.

(II) For G = T 1
(n,m) we have Υ

∆
= 〈S〉G = 〈x2n, y2m〉G = 〈x2n, y2m〉 = 〈x2n〉 × 〈y2m〉 =

C n
(n,m)

× C m
(n,m)

= C nm
(n,m)2

, since (x2)y = x−2, (y2)x = y−2 and
(

2n
(2n,2m)

, 2m
(2n,2m)

)

=
(

n
(n,m)

, m
(n,m)

)

= 1.

(III) For G = T 2
(n,m) we have Υ

∆
= 〈x4n, y4m, x2ny2m〉G = 〈x4n, y4m, x2ny2m〉. Since

(

|x4n|, |y4m|
)

=

(

4m

(4n, 4m)
,

4n

(4n, 4m)

)

=

(

m

(n, m)
,

n

(n, m)

)

= 1 ,

Υ
∆

= 〈x4ny4m, x2ny2m〉 and since x4ny4m = (x2ny2m)2, then Υ
∆

= 〈x2ny2m〉 is a cyclic
group of order t = |x2ny2m|. Set a = x2n and b = y2m. Then (ab)t = 1 ⇔ atbt = 1, i.e.,
at = bt = 1 or {at, bt} = {x2m, y2n}. In the first case, the least positive integer t for
which at = bt = 1 is

t = lcm (|a|, |b|) = lcm

(

4m

(4m, 2n)
,

4n

(4n, 2m)

)

= 2
mn

(m, n)2
.

In the second case, at = x2m , bt = y2n or at = y2n , bt = x2m, but both imply nt ≡ m
mod 2m and mt ≡ n mod 2n. Dividing by (m, n) we get

vt ≡ u mod 2u and ut ≡ v mod 2v , (2)

where u =
m

(m, n)
and v =

n

(m, n)
. The first congruence implies that vt = (2α + 1)u,

for some positive integer α. Therefore u divides vt. Since (u, v) = 1, then u divides
t, i.e.. t ≡ 0 mod u. So the first congruence has no solution if v is even and has the
minimal solution t = u if v is odd. Similarly, the second congruence has no solution
if u is even and has the minimal solution t = v if u is odd. Hence (2) has solutions if
and only if u and v are both odd (i.e., uv odd), in which case the minimal solution is

t = uv =
mn

(m, n)2
= k . Thus |ab| = k if k is odd and |ab| = lcm

( 2n

(2n, m)
,

2m

(2m, n)

)

= 2k if

k is even. Hence |ab| = (2, k)k.

(IV) For G = V4 = 〈X, Y, Z | X2, Y 2, (XY )2, Z〉 we have Rσ = {σ2
x, σ

2
y, (σxσy)

2, σz}, where
σx = (x, (zxy)−1, y, zx) = (x, xy, y, 1), σy = (y, z, x, (yzx)−1) = (y, 1, x, xy) and σz =
(z, y, (yzx)−1, x) = (1, y, xy, x). Hence Υ

∆
= 〈Rσ〉

Σ = 〈σ2
x, σ

2
y , (σxσy)

2, σz〉 = 〈σz〉 = C2.

Every hypermap of Table 3 which contains one of Y Z, ZX or XY in the set R of relators
is a map or a dual of a map. Since, as remarked in [5], just-∆012-regular maps correspond to
edge-transitive maps of type 5P (see [11, 13]), and since there is no just-∆012-regular map in
Table 3, we get the following consequence of the classification given in Table 3.

Proposition 6 There is no edge-transitive map of type 5P and characteristic χ ≥ −2.
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Comments and remarks

In Table 3 one notices that if Q is a ∆012-regular hypermap of characteristic χ ≥ −2, then
(1) ι∆ ≤ ι∆;

(2) whenever Q is balanced, Q is also fully-balanced;

(3) whenever Q is fully-balanced, Q is not just-∆012-regular;

(4) all maps are fully-balanced;
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Figure 3: (a) A (just) ∆012-regular hypermap with ι∆ > ι∆ > 1;
(b) A balanced (just) ∆012-regular hypermap which is not fully-balanced;
(c) A just ∆012-regular hypermap which is fully-balanced.

None of the above generalizes. The regular ∆012-marked hypermap (D4; x, y, xy) of char-
acteristic −6, where D4 = 〈x, y | x2, y2, (xy)4〉 has ι∆ > ι∆ > 1 (Fig. 3(a)); the regular
∆012-marked hypermap (M ; x, y, 1) of characteristic −24, where M is the metacyclic group
〈x, y | x4 = 1, y4 = x2, xy = x3〉, is balanced but not fully-balanced (Fig. 3(b)); the regu-
lar ∆012-marked hypermap (C4; x, x2, 1) of characteristic −4 is just-∆012-regular and fully-
balanced (Fig. 3(c)); and finally, the regular ∆012-marked map (M ; x, y, x−1) of characteristic
-10, where M is the metacyclic group 〈x, y | x5 = y4 = 1, xy = x2〉 is unbalanced (Fig. 4).
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Figure 4: An example of an unbalanced ∆012-regular map
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