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Abstract. Precise measurements in photogrammetry require the use of metric
cameras. But they are too expensive and are not always available. Non-metric
cameras are always at hand and have flexibility in focusing range. However, a
non-metric camera needs to be calibrated. The determination of its orientation
parameters (camera position, image plane, principle point in photo and camera
focal length) allows the use of the camera in many fields of photogrammetry.
Previous methods used to determine the orientation parameters require at least
five control points, and the solution is complicated unless the equations are lin-
earized. Moreover, the reconstruction of the space model is determined through a
stereo-pair, i.e., two photos of the object from different positions.

In some cases a reflecting surface such as water, mirror, etc. can be detected
in a photo. In the present paper it will be shown that if only four known coplanar
points with their images appear in a photo, then the above problem of a non-
metric camera can be solved, together with the reconstruction of the space object
using only one photo. Here we use a mirror plane (in general position) to reflect
the control points and the object and all appear in the photo. The new method
is simple and direct and needs no linearization of equations.

Key Words: Close range photogrammetry, projective geometry, affine and collinear
transformation, orientation parameters
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1. Introduction

One of the most important items in photogrammetry is the orientation problem of photographs
taken with non-metric cameras. The accuracy of orientation parameters is very important
in estimating the accuracy of the photogrammetric measurements. It is well known that we
need five control points to determine the orientation parameters of a non-metric camera (see,
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e.g., [2] or [1]). Also the three-dimensional measurements in close range photogrammetry
need at least two photos (stereo pairs) or in some cases multi-image of the object ([4, 3, 5]).
Therefore, the main objective of this paper is to determine the orientation parameters of
a non-metric camera using a minimum number of control points, i.e., four coplanar control
points. Furthermore, we can reconstruct the three coordinates from a single photo. To do
so, an additional condition must be fulfilled: A mirror plane γ in general position is used to
reflect the control points and the depicted object, and all is visible in the photo.
The work is divided into two main parts:

1. Determination of the position of the image plane π by finding its lines of intersection
with both object plane α and its reflected plane α. The technique of the solution
depends on using homogeneous coordinates in both planes α and α of the four coplanar
points. The rest of the parameters can easily be found; they depend on finding π.

2. The second part deals with the reconstruction of a space model subject to the above
conditions, using one image only.

2. Determining the space position of the image plane π

It is required to find the space position of π relative to a Cartesian frame Õ(X̃, Ỹ , Z̃). This
will be done by finding the lines of intersection t and t of π with α and α, respectively.

The lines t and t are determined directly by using homogeneous coordinates in both planes
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α and α as will be discussed in the following sections. To determine the trace t of plane α in
π, the following steps are carried out:

1. The correspondence
Pi ∈ α 7→ P ′

i ∈ π, i = 1, 2, 3, 4,

induced by the projection, will be determined first.

2. The vanishing lines v ∈ α and u′ ∈ π are computed.

3. A pair of congruent corresponding lines t ∈ α and t′ ∈ π is determined. t should be the
trace of α in π.

2.1. Three-dimensional coordinate transformations

It is required to transform the coordinates of a point Pi from the frame Õ(X̃, Ỹ , Z̃) to the
Cartesian frame O(X, Y, Z), where O coincides with P1 and the X-axis passes through P2

(see Fig. 2). This transformation can be expressed in terms of six independent transformation
parameters: three rotation angles and three components of the translation vector. It reads
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Figure 2: Coordinates (x0 : x1 : x2) in α

K ′

L′

U ′

1

U ′

2 P ′

1

P ′

2

P ′

3

P ′

4

O

t′

u′

X

Y

η

ξ=x′
1

x′
2

V ′

1

V ′

2

b′

c ′
1d

′

c
′

2

Figure 3: Coordinates (x′
0

: x′
1

: x′
2
) in π

x = t +R x̃ (1)

where t is a translation vector and R an orthogonal 3 × 3 rotation matrix. In homogeneous
coordinates the above equation can be rewritten as
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or x = A x̃ . (2)

The inverse transformation reads

x̃ = A−1x, A−1 =

(

1 0
−RT t RT

)

. (3)

To determine the entries of A, it is necessary to know the coordinates of at least three pairs
of corresponding points in both coordinate systems, and these can be calculated.
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2.2. Homogeneous coordinate systems

In the object plane α a homogeneous coordinate system is chosen with origin at P1, the x1-
and x2-axis passing through P1 and P4, respectively (Fig. 2); the x0-axis lies at infinity. The
homogeneous coordinates of a given point are three ratios (x0 : x1 : x2), not all zeros, which
can be arbitrarily multiplied by any non-zero factor. From Fig. 2 we extract the homogeneous
coordinates of our control points:

P1(1 : 0 : 0), P2(1 : b : 0), P3(1 : c1 : c2). P4(1 : 0 : d)

Because of x0 = 1 the entries b, d, c1, and c2 are metric lengths, which can be calculated from
the space coordinates or measured directly.

A similar homogeneous coordinate system is chosen in the image plane π as shown in
Fig. 3. The coordinates (x′

0
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1
: x′

2
) of the image points are

P ′
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4
(1 : 0 : d′),

where like before b′, d′, c′
1
, and c′

2
are metric lengths.

2.3. Transformation equations between π and α

Figures 2 and 3 show the four pairs of corresponding points

Pi(x0 : x1 : x2) 7→ P ′

i (x
′

0
: x′

1
: x′

2
), i = 1, . . . 4,

with their homogeneous coordinates as given before. The equations of this linear transforma-
tion can be expressed in the form

x′
0

= a00x0 + a01x1 + a02x2

x′
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= a10x0 + a11x1 + a12x2

x′
2
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(4)

where aij are constant coefficients.
Substituting the coordinates of an object point in the right hand side of eq. (4) and those

of the corresponding image point multiplied by an unknown factor in the left hand side, we
get three equations. In total, we get 12 equations in 9 coefficients aij and the 4 unknown
factors. Since only the ratios between the factors are of interest, one of them can be arbitrarily
chosen. The solution of these equations is simple and yields
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Similar formulas are found for the inverse transformation
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2.4. The vanishing lines

The vanishing line v in α corresponds to the line at infinity in π. It can be determined using
the points at infinity of both x′

1
and x′

2
axes, whose coordinates are (0 : 1 : 0) and (0 : 0 : 1),

respectively. Substituting in eq. (6), we get the vanishing points

V1(a
′

01
: a′

11
: 0), V2(a

′

02
: 0 : a′

22
). (7)

The vanishing line v joins both V1 and V2. Similarly, the vanishing line u′ in π is spanned by
the two vanishing points

U ′

1
(a01 : a11 : 0), U ′

2
(a02 : 0 : a22) (8)

2.5. The trace t

As shown in Fig. 1, the trace t can be considered as belonging to both α and π. Let t′ denote
it in π when separated from α. The restriction of our correspondance to t and t′ must be a
congruence. It is well known that they are parallel to the vanishing lines in space (e.g., [7]).

Let K(1 : k : 0) and L(1 : 0 : l) be the points of intersection of t with the x1- and
x2-axis, and let their corresponding points be K ′(1 : k′ : 0) and L′(1 : 0 : l′), respectively. The
distances KL and K ′L′ must be equal. Since KL is parallel to v (Fig. 2), then P1L/P1K =
P1V2/P1V1, hence
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Similarly, for the corresponding points K ′(1 : k′ : 0) and L′(1 : 0 : l′) we obtain
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.

Substituting the coordinates of L and K into (4) (taking (5) into account) we get the coor-
dinates of K ′ and L′as follows:

K ′(a00 + a01k : a11k : 0), L′(a00 + a02l : 0 : a22l) (10)

hence
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. (11)
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where θ and θ′ are the angles subtended by the axes pairs. Dividing (12) by k2 and substituting
from (9), (10) and (11), we get after several reductions

(a00 + a01k)
2 =

a2

11
a2

02

a′
02

·
a′

01

2 − 2a′
01
a′

02
cos θ′ + a′

02

2

a2

01
− 2a01a02 cos θ + a2

02

= δ2. (13)

It can be shown that the right hand side of (13) is positive and hence it is set to δ2.
Solving eq. (13) yields two values for k. The practical value of k is chosen such that for

a positive photo, t has a position similar to that shown in Fig. 3, in which
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since from (11) k =
−a00 ± δ

a01

.

Determining k, we can calculate the values of l, k′ and l′ from (9) and (11). The homo-
geneous coordinates of K,L,K ′ and L′ are therefore known.

2.6. Relation between homogeneous and Cartesian coordinates

Now, after determining the homogeneous coordinates of points K and L, it is required to
determine the space coordinates of these points relative to the frame Õ(X̃, Ỹ , Z̃).

1. In plane α let x0 = 1 for any finite point. Then the transformation from the homoge-
neous coordinates (1 : x1 : x2) to Cartesian coordinates (X, Y ) are as follows:

X = x1 + Y cot θ, Y = x2 sin θ, (14)

and conversely
x1 = X − Y cot θ, x2 = Y/ sin θ. (15)

From eq. (14) the space coordinates of points K(1 : k : 0) and L(1 : 0 : l) are found as

XK = k, YK = 0,
XL = l sin θ cot θ = l cos θ, YL = l sin θ.

(16)

The space coordinates of points K and L relative to Õ(X̃, Ỹ , Z̃) can be determined from
eq. (3).

2. In the image plane π similar formulas can be deduced. Relations between the homoge-
neous coordinates (1 : x′

1
: x′

2
) and the Cartesian coordinates (ξ, η) are as follows (see

Fig. 3)
η = x′

2
sin θ′, ξ = x′

1
+ η cot θ′ (17)

and the relation between (ξ, η) and (x, y) are as follows

y = η cosψ + ξ sinψ + y1

x = −η sinψ + ξ cosψ + x1

(18)

where ψ is the angle between the x-axis and the line P ′

1
P ′

2
.

And conversely

ξ = (y − y1) sinψ + (x− x1) cosψ, x′
1

= ξ − η cot θ,
η = (y − y1) cosψ − (x− x1) sinψ, x′

2
= η/ sin θ′.

(19)

In a similar manner the intersection line t of α and π can be determined, if the mirror
plane γ is known in space. This can be found as follows:

2.7. Determination of the mirror plane

The position of the mirror plane γ in space can be determined according to the following
procedures (note Fig. 1):

• Determination of the line c of intersection between α and the mirror plane γ :

1. In the image plane π, find the intersection point A′ between the line connecting
the image point P ′

1
and P ′

2
and the line connecting their corresponding reflected

images P
′

1
and P

′

2
.
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2. The homogeneous coordinates of point A′ can be calculated from (19). Then, for
the corresponding point A in plane α (trace point of line P1P2 in the mirror plane
γ) the space coordinates can be calculated by virtue of (6).

3. In the similar manner, the trace point B of line P1P4 in γ can be determined.

4. The line c connecting A and B is the collineation axis between α and α, the
common line of planes α, α and γ.

• To determine the mirror plane γ, we need only to know the space coordinates of any
further point C (which does not necessarily appear in the image plane). Let the equation
of γ in vector form be

n · x = d, ‖n‖ = 1, (20)

where x is the position vector of any point X ∈ γ; n is the unit vector perpendicular
to γ and d the signed distance γ from the origin. They can be expressed as

n =
(a × b) + (b × c) + (c × a)

‖(a × b) + (b × c) + (c × a)‖
, d = a · n (21)

where a, b, c denote the position vectors of the points A,B,C, respectively.

2.8. Determination of the reflected plane α

After determining the mirror plane in space, the space coordinates of the reflected point P i

of Pi can be determined. Let the vector equation of line g passing through Pi perpendicular
to γ be g : x = pi +λin, λi ∈ R. At the point of intersection between g and γ the parameter
λi fulfills

λi = d− n · pi .

Hence the position vector of P i is

pi = pi + 2(d− n · pi)n . (22)

2.9. Equation of image plane π

Lines t and t should intersect at one point Q, the trace point of c in the image plane π. Then,
the plane containing them is the image plane π. Let the equation of plane π be in the form

π : m · x = d1, ‖m‖ = 1. (23)

Here m is the normal vector of π and m = t × t where t amd t are unit vectors along the
lines t and t, resp., and d1 gives the oriented distance of π from the origin and is equal to

d1 = q · m .

q is the position vector of point Q.

Due to measurement errors the two lines t, t might be skew. In this case, we determined
the oriented line m, which intersects both t and t perpendicularly and find the points of
intersection M,M of m with t and t, respectively. Then the corrected position of π passes
through the mid point between M and M , the corrected position of Q.
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3. Determination of the rest of orientation parameters

The other orientation parameters depend on knowing the position of the image plane π in
space.

1. Position of the center S: The center can be determined as the point of intersection
between the rays connecting any two control points Pi with their respective images P ′

i .
The space coordinates of P ′

i can be easily calculated using its relative position to the
trace t′ in the image plane π.

2. The angle ω between π and α is found as the angle between their respective normal
vectors m and m by

cosω =
m · m

‖m‖ ‖m‖
.

3. The focal length is
f = s · m − d1,

where s is the position vector of the center S.

4. Reconstruction of space models

The space coordinates of any point P , which is depicted together with its reflected point P
in the image plane π, can be determined as follows (see Fig. 4):

P
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P
′ P ′

h h

h

n

π

α

α

γ

Figure 4: Reconstructing the space coordinates of any point P from P ′ and P
′

1. The image of point P is P ′. The reflection in γ maps P onto P ; its image is denoted by
P

′

. After determining the position of π, the space coordinates of P ′ can be calculated.
The vector equation of the line h joining S and P ′ is given by

h : x = s + λh, λ ∈ R,

where h is a unit vector along h.

2. In the similar manner the space coordinates of P
′

can be determined. Let the vector
equation of line h joining S and P

′

be h : x = s + λh.
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3. The position vector of the point R of intersection between h and γ is

r = s +

(

d− n · s

n · h

)

h. (24)

4. The angle between the two vectors n and h can be determined, then the reflected line

h can be found. The space point P lies at the point of intersection between h and h.

5. Conclusion

In this paper, a new mathematical method is derived to determine the orientation parameters
of a non-metric camera using only four control points. The main advantage of this method
is that the orientation parameters are determined directly without linearizing the equations,
and no complicated techniques are needed. Also, three dimensions measuring from a single
photo has been developed. Here, a mirror plane is used to reflect the control points and the
object and all appear in the same photo.

A practical use of this method is when a reflecting surface such as water, mirror, etc. can
be detected in a photo.
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