Journal for Geometry and Graphics Volume 13 (2009), No. 1, 41–57.

Generalized Arbelos in Aliquot Parts: Non-Intersecting Case

Hiroshi Okumura¹, Masayuki Watanabe²

¹Dept. of Life Science and Information, Maebashi Institute of Technology ²Dept. of Integrated Design Engineering, Maebashi Institute of Technology 460-1 Kamisadori Maebashi, Gunma 371-0816, Japan emails: okumura@maebashi-it.ac.jp, mwatanabe@maebashi-it.ac.jp

Abstract. We will extend the results on arbelos in [3] and [4] to the coaxial system of non-intersecting type. We get almost the same results except the ones about the embedded patterns that are limited in this case.

Key Words: Arbelos, Archimedean circles *MSC2007:* 51M04

1. Introduction and preliminaries

Let α , β and γ be three circles such that the centers of these circles are collinear and α and β are inside and touching γ at different points. If α and β are tangent, the area bounded by these three circles is the usual arbelos. When α and β intersects at two points, we called the configuration of these three circles a *generalized arbelos of intersecting type* in [4]. In these two cases we studied an arbelos in *n*-aliquot parts, that is, an arbelos with n-1 members of the coaxial system generated by α and β such that the inscribed circles in the area divided by two of these circles and γ are congruent (see [3] and [4]). In this paper we study the case that the circles α and β are not intersecting. We call such configuration of α , β and γ a generalized arbelos of *non-intersecting type* (see Fig. 1). We do not avoid the case when α or β is a point. When α (resp. β) is a point, "a circle touches α (resp. β)" means "it passes through α (resp. β)".

Let Γ be a coaxial system of non-intersecting type with limiting points L and L', and Ebe a point on the line passing through the centers of circles in Γ . As in [4] we call the pair (Γ, E) a *coaxial system* with a *fixed point*. Throughout this paper except the final section, we take the line passing through the centers as the x-axis and the radical axis as the y-axis whenever a coaxial system with a fixed point (Γ, E) is given. Then the x-coordinate of L and L' are ℓ and $-\ell$ for some $\ell \in \mathbb{R}$. We choose L and L' such that ℓ is positive and denote by Ithe closed interval $\{x \in \mathbb{R} \mid -\ell \leq x \leq \ell\}$.

ISSN 1433-8157/\$ 2.50 © 2009 Heldermann Verlag

Figure 1: A generalized arbelos of non-intersecting type for n = 3

Let e be the x-coordinate of E. Any member $\alpha \in \Gamma$ meets the segment I in a single point. We denote the x-coordinate of this point by a and define the value $\mu(\alpha)$ as

$$\mu(\alpha) = \begin{cases} \frac{1}{a-e} & \text{if } |e| = \ell, \\ \frac{a-e+\sqrt{e^2-\ell^2}}{a-e-\sqrt{e^2-\ell^2}} & \text{if } |e| \neq \ell. \end{cases}$$

Let f denote the absolute value $|\sqrt{e^2 - \ell^2}|$. When $|e| < \ell$, we consider that $\sqrt{e^2 - \ell^2} = fi$ where i is the imaginary unit. Note that the value $\mu(\alpha)$ depends on the choice of the point E, but not on the choice of the coordinate system.

Since the radical axis is the y-axis, a member $\alpha \in \Gamma$ is the radical axis if and only if

$$\mu(\alpha) = \begin{cases} -\frac{1}{e} & \text{if } |e| = \ell, \\ \frac{e - \sqrt{e^2 - \ell^2}}{e + \sqrt{e^2 - \ell^2}} & \text{if } |e| \neq \ell. \end{cases}$$

In the case $|e| > \ell$, the value $\mu(\alpha)$ has the geometric meaning as follows:

Let ε be the circle with center E and radius f. Note that the circle ε is the member of Γ . It intersects the x-axis at two points which we denote by E^+ and E^- . We assume that the x-coordinate of E^+ is larger than that of E^- . Then $E^- \in I$ and $E^+ \notin I$ if e > 0, $E^- \notin I$ and $E^+ \notin I$ if e < 0 and we have $\mu(\alpha) = \frac{AE^-}{AE^+}$, where A is the intersection point of α and the x-axis in I and we consider AE^+ (resp. AE^-) positive if A is left to E^+ (resp. E^-), and negative if A is right to E^+ (resp. E^-). If $\alpha = \varepsilon$ and e > 0, we have $A = E^-$ and then $\mu(\alpha) = 0$. If $\alpha = \varepsilon$ and e < 0, we have $A = E^+$ and we regard $\mu(\alpha) = \infty$. If $\alpha \neq \varepsilon$, the value $\mu(\alpha)$ is positive if and only if the member $\alpha \in \Gamma$ is outside the circle ε (see Fig. 2).

If $|e| < \ell$, $\mu(\alpha)$ is a complex number with $|\mu(\alpha)| = 1$. Since f > 0, we can assume that $0 < \arg(a - e + fi) < \pi$. Let $\omega(\alpha) = \arg(a - e + fi)$. Then $\mu(\alpha) = \exp(2\omega(\alpha)i)$ and $0 < \omega(\alpha) < \pi$.

In the following sections, we use the above notations.

2. Incircles

Let (Γ, E) be a coaxial system with a fixed point and let γ be a circle with the center E. Let g be the radius of γ and assume that $g \ge |e| + \ell$. Then L and L' are either inside or on the circle γ respectively.

Let α and β be members in Γ intersecting or touching γ . They can degenerate when $g = |e| + \ell$. There exists a circle which is inside γ and touching α , β and γ at different points. We call such a circle an incircle of α and β in γ . If neither α nor β is a point, there are two incircles which are symmetric with respect to the *x*-axis and have the same radii. If α or β is a point, there is one incircle whose center is on the *x*-axis. If both α and β are points, the incircle coincides with γ .

Lemma 1 Let a (resp. b) be the x-coordinate of the intersection point of α (reps. β) and the x-axis in I. Let s and t be the x-coordinates of intersection points of γ and the x-axis with t < s. If b < a, the radius of the incircle of α and β in γ is

$$\frac{(\ell^2 - st)(a - b)}{2(\ell^2 + ab - at - bs)}$$

Proof: If α is a point, then $s = a = \ell$. If β is a point, then $t = b = -\ell$. In these cases the radius of the incircle is (a - b)/2, so the result follows.

Suppose neither α nor β is a point. Then t < b < a < s, and if α (resp. β) is a circle the *x*-coordinate of the intersection point of α (resp. β) and the *x*-axis different from (a, 0) (resp. (b, 0)) is ℓ^2/a (resp. ℓ^2/b). The inversion in the virtual circle with center (b, 0) and radius $\sqrt{b^2 - \ell^2} = \sqrt{\ell^2 - b^2} \cdot i$ maps α and γ to circles $\overline{\alpha}$ and $\overline{\gamma}$ with centers on the *x*-axis and maps β to the *y*-axis which we denote by $\overline{\beta}$. Let m, n be the *x*-coordinates of the intersection points of $\overline{\alpha}$ and the *x*-axis with m < n, and p, q be the *x*-coordinates of the intersection points of $\overline{\gamma}$ and the *x*-axis with p < q. Then we have

$$m = \frac{ab - \ell^2}{a - b}, \quad n = \frac{\ell^2(a - b)}{ab - \ell^2}, \quad p = \frac{bs - \ell^2}{s - b}, \quad q = \frac{bt - \ell^2}{t - b}.$$
 (1)

Incircles are mapped to congruent circles tangent to the circles $\overline{\alpha}$ and $\overline{\gamma}$ externally and tangent to the line $\overline{\beta}$ from the left. We denote one of such circles by $\overline{\mathcal{C}}$. We know immediately that m and <math>p < b < q, so the center of the inversion (b, 0) is outside $\overline{\mathcal{C}}$ (Fig. 3).

Figure 3: A configuration of α , β , γ and its inverted image

Let (x, y) be the center of $\overline{\mathcal{C}}$. Then x is a negative number and the radius of $\overline{\mathcal{C}}$ is -x. Since the circle $\overline{\mathcal{C}}$ is tangent to $\overline{\alpha}$ and $\overline{\gamma}$ externally, we have

$$\left(\frac{m+n}{2}-x\right)^2 + y^2 = \left(\frac{n-m}{2}-x\right)^2$$
 and $\left(\frac{p+q}{2}-x\right)^2 + y^2 = \left(\frac{q-p}{2}-x\right)^2$,

and then we have

$$x = \frac{mn - pq}{2(m-p)}$$
 and $y^2 = \frac{mp(n-q)}{m-p}$. (2)

Since the incircle C of α and β in γ is the inverted image of \overline{C} and the center of the inversion is outside \overline{C} , the radius of C is

$$\frac{(b^2 - \ell^2)x}{|(x-b)^2 + y^2 - x^2|} = \frac{(b^2 - \ell^2)x}{b^2 - 2bx + y^2}$$

Then the relations (1) and (2) imply the above formula for the radius of the incircle. \Box

Remark: We use this Lemma under the assumption $g \ge |e| + \ell$. But the result holds without this assumption if α and β intersect or touch γ . In the case that β is a circle and the point $(\ell^2/b, 0)$ is inside γ , the configuration of the inverted image is different from the one in Fig. 3 but the equations with respect to x and y are the same as in the proof.

Let $\{\alpha, \beta, \gamma\}$ be a generalized arbelos of non-intersecting type. Let E be the center of the circle γ and let (Γ, E) denote the coaxial system with a fixed point, where Γ is the coaxial system generated by the circles α and β . Note that the radius of γ is equal to or larger than $|e| + \ell$ since the limiting points L and L' are inside or on the circle γ . Let n be a natural number. We say that the configuration of figures $\{\alpha = \alpha_0, \alpha_1, \dots, \alpha_n = \beta, \gamma\}$ is a generalized arbelos of non-intersecting type in n-aliquot parts if α_j is a member of the coaxial system Γ which intersects the circle γ for each $j = 1, 2, \dots, n-1$ and the incircles of α_{j-1} and α_j in γ are all congruent for $j = 1, 2, \dots, n$. In this paper we shorten this long name to the generalized arbelos in n-aliquot parts. Each congruent incircle from this definition is called the Archimedean circle in n-aliquot parts.

Let g denote the radius of the circle γ . Then γ intersects the x-axis in the points (e+g, 0)and (e-g, 0). We choose the circles α and β such that they touch the circle γ at (e+g, 0) H. Okumura, M. Watanabe: Generalized Arbelos in Aliquot Parts: Non-Intersecting Case 45 and (e - g, 0), respectively. Then if $|e| \neq \ell$, we have

$$\mu(\alpha) = \frac{\frac{\ell^2}{e+g} - e + \sqrt{e^2 - \ell^2}}{\frac{\ell^2}{e+g} - e - \sqrt{e^2 - \ell^2}} = \frac{\left(g - \sqrt{e^2 - \ell^2}\right)\left(e - \sqrt{e^2 - \ell^2}\right)}{\left(g + \sqrt{e^2 - \ell^2}\right)\left(e + \sqrt{e^2 - \ell^2}\right)} \text{ and}$$
$$\mu(\beta) = \frac{\left(\frac{\ell^2}{e-g} - e + \sqrt{e^2 - \ell^2}\right)}{\left(\frac{\ell^2}{e-g} - e - \sqrt{e^2 - \ell^2}\right)} = \frac{\left(g + \sqrt{e^2 - \ell^2}\right)\left(e - \sqrt{e^2 - \ell^2}\right)}{\left(g - \sqrt{e^2 - \ell^2}\right)\left(e + \sqrt{e^2 - \ell^2}\right)}.$$

If $|e| = \ell$, we have

$$\mu(\alpha) = \frac{1}{\frac{\ell^2}{e+g} - e} = -\frac{e+g}{eg} \quad \text{and} \quad \mu(\beta) = \frac{1}{\frac{\ell^2}{e-g} - e} = \frac{e-g}{eg}.$$

Theorem 1 Let $\alpha_1, \alpha_2, \dots, \alpha_{n-1}$ be members in Γ intersecting γ . Then $\{\alpha = \alpha_0, \alpha_1, \dots, \alpha_n = \beta, \gamma\}$ is a generalized arbedos in *n*-aliquot parts if and only if

$$\mu(\alpha_0), \mu(\alpha_1), \cdots, \mu(\alpha_n)$$
 is
 $\begin{cases} \text{ an arithmetic sequence} & \text{ if } |e| = \ell, \\ \text{ a geometric sequence} & \text{ if } |e| \neq \ell. \end{cases}$

Proof: Let a_j be the x-coordinate of the intersection point of α_j and the x-axis in I. By Lemma 1 the radius of the incircle of α_{j-1} and α_j in γ is

$$\frac{(\ell^2 - (e+g)(e-g))(a_{j-1} - a_j)}{2(\ell^2 + a_{j-1}a_j - a_{j-1}(e-g) - a_j(e+g))} = \frac{(\ell^2 - e^2 + g^2)(a_{j-1} - a_j)}{2(\ell^2 - e^2 + (a_{j-1} - e)(a_j - e) + g(a_{j-1} - a_j))}$$

First assume $|e| = \ell$. Then the radius of the incircle is

$$\frac{g^2(a_{j-1}-a_j)}{2\left((a_{j-1}-e)(a_j-e)+g(a_{j-1}-a_j)\right)} = \frac{g^2\left(\frac{1}{a_j-e}-\frac{1}{a_{j-1}-e}\right)}{2\left(1+g\left(\frac{1}{a_j-e}-\frac{1}{a_{j-1}-e}\right)\right)}$$
$$= \frac{g^2\left(\mu(\alpha_j)-\mu(\alpha_{j-1})\right)}{2\left(1+g\left(\mu(\alpha_j)-\mu(\alpha_{j-1})\right)\right)}.$$

So the incircles are all congruent if and only if the values $\mu(\alpha_j) - \mu(\alpha_{j-1})$ are constant for all $j = 1, 2, \dots, n$, since the map $x \mapsto \frac{g^2 x}{2(1+gx)}$ is injective.

Assume $|e| \neq \ell$. Since

$$\frac{(\ell^2 - e^2 + g^2) \left(1 - \frac{\mu(\alpha_j)}{\mu(\alpha_{j-1})}\right)}{2 \left(\left(g - \sqrt{e^2 - \ell^2}\right) - \left(g + \sqrt{e^2 - \ell^2}\right) \frac{\mu(\alpha_j)}{\mu(\alpha_{j-1})}\right)}$$

$$= \frac{(\ell^2 - e^2 + g^2) \left(\frac{a_{j-1} - e + \sqrt{e^2 - \ell^2}}{a_{j-1} - e - \sqrt{e^2 - \ell^2}} - \frac{a_j - e + \sqrt{e^2 - \ell^2}}{a_j - e - \sqrt{e^2 - \ell^2}}\right)}{2 \left(\left(g - \sqrt{e^2 - \ell^2}\right) \frac{a_{j-1} - e + \sqrt{e^2 - \ell^2}}{a_{j-1} - e - \sqrt{e^2 - \ell^2}} - \left(g + \sqrt{e^2 - \ell^2}\right) \frac{a_j - e + \sqrt{e^2 - \ell^2}}{a_j - e - \sqrt{e^2 - \ell^2}}\right)}{2 \left(\ell^2 - e^2 + (a_{j-1} - e)(a_j - e) + g(a_{j-1} - a_j)\right)}$$

and the map

$$x \mapsto \frac{(\ell^2 - e^2 + g^2)(1 - x)}{2\left(\left(g - \sqrt{e^2 - \ell^2}\right) - \left(g + \sqrt{e^2 - \ell^2}\right)x\right)}$$

is injective, the incircles are all congruent if and only if the values $\frac{\mu(\alpha_j)}{\mu(\alpha_{j-1})}$ are constant for all $j = 1, 2, \dots, n$. Then the result follows.

Corollary 1 If n, m and l are positive integers with n = ml and $\{\alpha = \alpha_0, \alpha_1, \dots, \alpha_n = \beta, \gamma\}$ is a generalized arbelos in *n*-aliquot parts. Then $\{\alpha = \alpha_0, \alpha_l, \alpha_{2l}, \dots, \alpha_{ml} = \beta, \gamma\}$ is a generalized arbelos in *m*-aliquot parts.

The further arguments differ a little whether $|e| = \ell$, $|e| > \ell$ or $|e| < \ell$, that is, if the point E is one of the limiting points, is outside the segment I or is in its interior. In the following sections we consider these three cases separately.

In any case, let $2u = g + \sqrt{e^2 - \ell^2}$ and $2v = g - \sqrt{e^2 - \ell^2}$. Note that $u = v = \frac{1}{2}g$ when $|e| = \ell$ and that v is the conjugate of the complex number u when $|e| < \ell$.

3. The case $|e| = \ell$

Theorem 2 Let $\{\alpha = \alpha_0, \alpha_1, \cdots, \alpha_n = \beta, \gamma\}$ be a generalized arbelos in *n*-aliquot parts. Then the radius of the Archimedean circle in *n*-aliquot parts is $\frac{2u}{n+2}$.

Proof: Since $\mu(\alpha) = -\frac{e+g}{eg}$ and $\mu(\beta) = \frac{e-g}{eg}$, the common difference of the arithmetic sequence $\mu(\alpha_0), \mu(\alpha_1), \dots, \mu(\alpha_n)$ is $\frac{2}{ng}$. By the proof of Theorem 1 the radius is

$$\frac{\frac{2}{ng}g^2}{2\left(1+\frac{2}{ng}g\right)} = \frac{g}{n+2} = \frac{2u}{n+2}.$$

Remark: The above result also holds when $\ell = 0$ (see [3]).

Corollary 2 The member α_j in the generalized arbelos in n-aliquot parts is the radical axis of Γ if and only if 2j = n.

Proof: Since $\mu(\alpha_j) = \mu(\alpha) + \frac{2j}{ng} = -\frac{e+g}{eg} + \frac{2j}{ng}$, α_j is the radical axis of Γ if and only if $-\frac{e+g}{eg} + \frac{2j}{ng} = -\frac{1}{e}$. This is equivalent to n = 2j.

Theorem 3 Let $\{\alpha = \alpha_0, \alpha_1, \dots, \alpha_n = \beta, \gamma\}$ be a generalized arbelos in *n*-aliquot parts. Then there exists a circle γ' concentric to γ and tangent to all Archimedean circles in *n*-aliquot parts externally.

The radius g' of γ' satisfies (n+2)g' = ng.

There exist two members α' and β' of the coaxial system Γ such that $\{\alpha', \alpha_0, \cdots, \alpha_n, \beta', \gamma'\}$ is a generalized arbelos in (n+2)-aliquot parts if and only if $g' \geq 2\ell$.

Remark: The circles α' and β' can be degenerate.

Proof: Let r be the radius of Archimedean circles in n-aliquot parts in $\{\alpha_0, \alpha_1, \dots, \alpha_n, \gamma\}$. Since we have $g - 2r = \frac{ng}{n+2} > 0$, no Archimedean circles in n-aliquot parts contain the center of γ and we can draw a circle γ' with center E and radius $g' = \frac{ng}{n+2}$ which touches all Archimedean circles in n-aliquot parts externally.

If $g' \ge 2\ell$, the points L and L' are inside or on the circle γ' and there exist two circles α' and β' in the coaxial system Γ that touch from inside the circle γ' . We choose α' and β' such that α' touches γ' at (e + g', 0) and β' touches γ' at (e - g', 0). Since $\frac{2}{ng} = \frac{2}{(n+2)g'}$, we have

$$\mu(\alpha') = \frac{1}{\frac{\ell^2}{e+g'} - e} = -\frac{e+g}{eg} - \frac{2}{ng} = \mu(\alpha_0) - \frac{2}{(n+2)g'} + \mu(\beta') = \frac{1}{\frac{\ell^2}{e-g'} - e} = \frac{e-g}{eg} + \frac{2}{ng} = \mu(\alpha_n) + \frac{2}{(n+2)g'},$$

so that the sequence $\mu(\alpha'), \mu(\alpha_0), \mu(\alpha_1), \cdots, \mu(\alpha_n), \mu(\beta')$ is arithmetic and $\{\alpha', \alpha_0, \cdots, \alpha_n, \beta', \gamma'\}$ is a generalized arbelos in (n + 2)-aliquot parts by Theorem 1.

If $g' < 2\ell$, one of the limiting points is outside γ' and there is only one circle in the coaxial system Γ that touches from inside the circle γ' .

Let $\{\alpha, \beta, \gamma\}$ be a generalized arbelos of non-intersecting type, let α_j $(j \in \mathbb{Z})$ be a member of the coaxial system Γ generated by the circles α and β and let γ_j $(j \in \mathbb{Z})$ be a circle congruent to the circle γ . We call the configuration of figures

$$\{\cdots, \alpha_{-n}, \alpha_{-(n-1)}, \cdots, \alpha_{-1} = \alpha, \beta = \alpha_1, \cdots, \alpha_n, \cdots, \gamma_1 = \gamma, \gamma_3, \cdots, \gamma_{2n-1}, \cdots\}$$

the embedded pattern of generalized arbelos of *odd type* if the configuration $\{\alpha_{-n}, \alpha_{-(n-1)}, \cdots, \alpha_{-1}, \alpha_1, \cdots, \alpha_n, \gamma_{2n-1}\}$ is a generalized arbelos in (2n-1)-aliquot parts for any positive integer n. Also we call the configuration of figures

$$\{\cdots, \alpha_{-n}, \alpha_{-(n-1)}, \cdots, \alpha_{-1} = \alpha, \alpha_0, \beta = \alpha_1, \cdots, \alpha_n, \cdots, \gamma_2 = \gamma, \gamma_4, \cdots, \gamma_{2n}, \cdots\}$$

the embedded pattern of generalized arbelos of *even type* if the configuration $\{\alpha_{-n}, \alpha_{-(n-1)}, \cdots, \alpha_{-1}, \alpha_0, \alpha_1, \cdots, \alpha_n, \gamma_{2n}\}$ is a generalized arbelos in 2*n*-aliquot parts for any positive integer *n*.

As in [3] and [4], we can make two types of embedded patterns of arbelos. However, in the present situation we do not get infinite families of circles.

Theorem 4 There exists an embedded pattern of odd type

$$\{\alpha_{-n}, \alpha_{-(n-1)}, \cdots, \alpha_{-1} = \alpha, \alpha_1 = \beta, \cdots, \alpha_n, \gamma_1 = \gamma, \gamma_3, \cdots, \gamma_{2n-1}\}$$

if and only if $2n - 1 \leq \frac{g}{2\ell}$. There exists an embedded pattern of even type

$$\{\beta_{-n}, \beta_{-(n-1)}, \cdots, \beta_{-1} = \alpha, \beta_0, \beta_1 = \beta, \cdots, \beta_n, \gamma_2 = \gamma, \gamma_4, \cdots, \gamma_{2n}\}$$

if and only if $2n \leq \frac{g}{\ell}$.

Proof: By Theorem 3 the circle γ_n exists provided there exists a generalized arbelos in (n-2)-aliquot parts. Moreover, there exists a generalized arbelos in *n*-aliquot parts with γ_n as an outer circle if and only if its radius g_n satisfies $g_n \geq 2\ell$. Also we have

$$ng_n = (n-2)g_{n-2} = \dots = \begin{cases} g_1 = g & \text{if } n \text{ is odd,} \\ 2g_2 = 2g & \text{if } n \text{ is even.} \end{cases}$$

Then the result follows.

Corollary 3 The following relations hold $\gamma_{2(2n-1)} = \gamma_{2n-1}$, $\alpha_{-n} = \beta_{-(2n-1)}$, $\alpha_n = \beta_{(2n-1)}$.

Proof: By the above relations we have $g_{2(2n-1)} = g_{2n-1} = \frac{g}{2n-1}$. The second and the third assertions follow from the first assertion since $\alpha_{\pm n}$ (resp. $\beta_{\pm(2n-1)}$) is the unique member in Γ passing through $(\mp g_{(2n-1)}, 0)$ (resp. $(\mp g_{2(2n-1)}, 0)$).

Figure 4 shows examples of both types with g = 20, e = -4 and $\ell = 4$. The part (a) is of the odd type and the part (b) is of the even type. Observe that in (a) there exists the circle γ_3 which is the same as the circle γ_6 in (b). But, there does not exist the circle α_{-2} in (a) nor there exist the circle β_{-3} in (b) since $\frac{g}{\ell} = 5$. So in this case the embedded pattern of the odd type is $\{\alpha = \alpha_{-1}, \beta = \alpha_1, \gamma = \gamma_1\}$ and the embedded pattern of the even type is $\{\beta_{-2}, \alpha = \beta_{-1}, \beta_0, \beta_1 = \beta, \beta_2, \gamma = \gamma_2, \gamma_4\}$.

Figure 4: The embedded patterns of both types with $g = 20, e = -4, \ell = 4$

4. The case $|e| > \ell$

In this case, we have $f = \sqrt{e^2 - \ell^2}$, 2u = g + f and 2v = g - f.

Theorem 5 Let $\{\alpha = \alpha_0, \alpha_1, \dots, \alpha_n = \beta, \gamma\}$ be a generalized arbelos in *n*-aliquot parts. Then the radius of the Archimedean circle in *n*-aliquot parts is

$$\frac{uv\left(u^{\frac{2}{n}}-v^{\frac{2}{n}}\right)}{u^{\frac{n+2}{n}}-v^{\frac{n+2}{n}}}.$$

Proof: The common ratio of the geometric sequence
$$\mu(\alpha_0), \mu(\alpha_1), \dots, \mu(\alpha_n)$$
 is $\left(\frac{u}{v}\right)^{\frac{2}{n}}$ since $\mu(\alpha) = \frac{v(e-f)}{u(e+f)}$ and $\mu(\beta) = \frac{u(e-f)}{v(e+f)}$. By the proof of Theorem 1 the radius is

$$\frac{(g^2 - f^2)\left(1 - \left(\frac{u}{v}\right)^{\frac{2}{n}}\right)}{2\left((g - f) - (g + f)\left(\frac{u}{v}\right)^{\frac{2}{n}}\right)} = \frac{2u \cdot 2v\left(1 - \left(\frac{u}{v}\right)^{\frac{2}{n}}\right)}{2\left(2v - 2u\left(\frac{u}{v}\right)^{\frac{2}{n}}\right)} = \frac{uv\left(u^{\frac{2}{n}} - v^{\frac{2}{n}}\right)}{u^{\frac{n+2}{n}} - v^{\frac{n+2}{n}}}.$$

Remark: The above result also holds when $\ell = 0$ ([3]). In this case the radii of the circles α and β are u and v, or v and u.

Corollary 4 The member α_j in the generalized arbelos is the radical axis of the coaxial system Γ if and only if 2j = n.

Proof: Since

$$\mu(\alpha_j) = \mu(\alpha) \cdot \left(\frac{u}{v}\right)^{\frac{2j}{n}} = \left(\frac{u}{v}\right)^{\frac{2j}{n}-1} \cdot \frac{e - \sqrt{e^2 - \ell^2}}{e + \sqrt{e^2 - \ell^2}},$$

the member $\alpha_j \in \Gamma$ is the radical axis if and only if $\left(\frac{u}{v}\right)^{\frac{2j}{n}-1} = 1$. The result follows from this.

Theorem 6 Let $\{\alpha = \alpha_0, \alpha_1, \dots, \alpha_n = \beta, \gamma\}$ be a generalized arbelos in *n*-aliquot parts. Then there exists a circle γ' concentric to γ and tangent to all Archimedean circles in *n*-aliquot parts externally.

The radius g' of γ' satisfies $\left(\frac{g'+f}{g'-f}\right)^{\frac{1}{n+2}} = \left(\frac{g+f}{g-f}\right)^{\frac{1}{n}}$.

There exist two members α' and β' of the coaxial system Γ such that $\{\alpha', \alpha_0, \cdots, \alpha_n, \beta', \gamma'\}$ is a generalized arbelos in (n+2)-aliquot parts if and only if $g' \ge |e| + \ell$.

Proof: Let r be the radius of Archimedean circles in n-aliquot parts in $\{\alpha_0, \alpha_1, \cdots, \alpha_n, \gamma\}$. Since

$$g - 2r = \frac{(u - v)\left(u^{\frac{n+2}{n}} + v^{\frac{n+2}{n}}\right)}{u^{\frac{n+2}{n}} - v^{\frac{n+2}{n}}} > 0,$$

we can draw a circle γ' with center E and radius g' = g - 2r which touches all Archimedean circles in *n*-aliquot parts externally. Since

$$g' + f = \frac{(u - v)\left(u^{\frac{n+2}{n}} + v^{\frac{n+2}{n}}\right)}{u^{\frac{n+2}{n}} - v^{\frac{n+2}{n}}} + (u - v) = \frac{2u^{\frac{n+2}{n}}(u - v)}{u^{\frac{n+2}{n}} - v^{\frac{n+2}{n}}} \text{ and}$$
$$g' - f = \frac{(u - v)\left(u^{\frac{n+2}{n}} + v^{\frac{n+2}{n}}\right)}{u^{\frac{n+2}{n}} - v^{\frac{n+2}{n}}} - (u - v) = \frac{2v^{\frac{n+2}{n}}(u - v)}{u^{\frac{n+2}{n}} - v^{\frac{n+2}{n}}},$$

we have

$$\frac{g'+f}{g'-f} = \left(\frac{u}{v}\right)^{\frac{n+2}{n}} = \left(\frac{g+f}{g-f}\right)^{\frac{n+2}{n}}.$$

If $g' \ge |e| + \ell$, there exist two circles α' and β' in the coaxial system Γ such that α' touches from inside the circle γ' at (e+g', 0) and β' touches from inside it at (e-g', 0). Then we have

$$\mu(\alpha') = \frac{(g'-f)(e-f)}{(g'+f)(e+f)} = \left(\frac{v}{u}\right)^{\frac{n+2}{n}} \frac{e-f}{e+f} = \mu(\alpha) \left/ \left(\frac{u}{v}\right)^{\frac{2}{n}},$$
$$\mu(\beta') = \frac{(g'+f)(e-f)}{(g'-f)(e+f)} = \left(\frac{u}{v}\right)^{\frac{n+2}{n}} \frac{e-f}{e+f} = \mu(\beta) \left(\frac{u}{v}\right)^{\frac{2}{n}}.$$

So the sequence $\mu(\alpha'), \mu(\alpha_0), \mu(\alpha_1), \dots, \mu(\alpha_n), \mu(\beta')$ is geometric and $\{\alpha', \alpha_0, \dots, \alpha_n, \beta', \gamma'\}$ is a generalized arbelos in (n+2)-aliquot parts by Theorem 1.

If $g' < |e| + \ell$, then either L or L' is outside the circle γ' so that there is at most one circle of the coaxal system Γ that touches from inside the circle γ' .

Theorem 7 Let $\{\alpha, \beta, \gamma\}$ be a generalized arbelos of non-intersecting type. There exists an embedded pattern of odd type

$$\{\alpha_{-n}, \alpha_{-(n-1)}, \cdots, \alpha_{-1} = \alpha, \alpha_1 = \beta, \cdots, \alpha_n, \gamma_1 = \gamma, \gamma_3, \cdots, \gamma_{2n-1}\}$$

if and only if

$$2n - 1 \le \frac{\log(|e| + f) - \log(|e| - f)}{2\left(\log(g + f) - \log(g - f)\right)}.$$
(3)

There exists an embedded pattern of even type

$$\{\beta_{-n},\beta_{-(n-1)},\cdots,\beta_{-1}=\alpha,\ \beta_0,\ \beta_1=\beta,\cdots,\beta_n,\gamma_2=\gamma,\gamma_4,\cdots,\gamma_{2n}\}$$

if and only if

$$2n \le \frac{\log(|e|+f) - \log(|e|-f)}{\log(g+f) - \log(g-f)}.$$
(4)

Proof: By Theorem 6 the circle γ_n exists provided there exists a generalized arbelos in (n-2)-aliquot parts. Moreover, there exists a generalized arbelos in *n*-aliquot parts with γ_n as an outer circle if and only if its radius g_n satisfies $g_n \ge |e| + \ell$. Since

$$\left(\frac{g_n+f}{g_n-f}\right)^{\frac{1}{n}} = \left(\frac{g_{n-2}+f}{g_{n-2}-f}\right)^{\frac{1}{n-2}} = \dots = \begin{cases} \frac{g_1+f}{g_1-f} = \frac{g+f}{g-f} & \text{if } n \text{ is odd,} \\ \left(\frac{g_2+f}{g_2-f}\right)^{\frac{1}{2}} = \left(\frac{g+f}{g-f}\right)^{\frac{1}{2}} & \text{if } n \text{ is even,} \end{cases}$$

we have

$$g_{2n-1} = \frac{f\left(\left(\frac{g+f}{g-f}\right)^{2n-1} + 1\right)}{\left(\frac{g+f}{g-f}\right)^{2n-1} - 1}, \qquad g_{2n} = \frac{f\left(\left(\frac{g+f}{g-f}\right)^n + 1\right)}{\left(\frac{g+f}{g-f}\right)^n - 1}.$$

Then the inequality $g_{2n-1} \ge |e| + \ell$ holds if and only if

$$2n - 1 \le \frac{\log(|e| + \ell + f) - \log(|e| + \ell - f)}{\log(g + f) - \log(g - f)},$$
(5)

and the inequality $g_{2n} \ge |e| + \ell$ holds if and only if

$$2n \le \frac{2\left(\log\left(|e| + \ell + f\right) - \log\left(|e| + \ell - f\right)\right)}{\log\left(g + f\right) - \log\left(g - f\right)} \,. \tag{6}$$

$$\left(\frac{|e| + \ell + f}{|e| + \ell - f}\right)^2 = \frac{|e| + f}{|e| - f},$$

the inequality (5) is equivalent to (3) and the inequality (6) is equivalent to (4).

In analogy with Corollary 3, we have the following

Corollary 5 The following relations hold $\gamma_{2(2n-1)} = \gamma_{2n-1}$, $\alpha_{-n} = \beta_{-(2n-1)}$, $\alpha_n = \beta_{(2n-1)}$.

Figure 5 shows examples of both types with g = 21, e = -5, $\ell = 4$. The part (a) is of the odd type and the part (b) is of the even type. Observe that in (a) there exists the circle γ_3 which is the same as the circle γ_6 in (b). But there does not exist the circle α_{-2} in (a) nor there exist the circle β_{-3} in (b) since

So in this case the embedded pattern of the odd type is $\{\alpha = \alpha_{-1}, \beta = \alpha_1, \gamma = \gamma_1\}$ and the embedded pattern of the even type is $\{\beta_{-2}, \alpha = \beta_{-1}, \beta_0, \beta_1 = \beta, \beta_2, \gamma = \gamma_2, \gamma_4\}$.

Figure 5: The embedded patterns of both types with $g = 21, e = -5, \ell = 4$

5. Case $|e| < \ell$

In this case, we have $f = \sqrt{\ell^2 - e^2}$, 2u = g + fi, 2v = g - fi,

$$\mu(\alpha) = \frac{(g - fi)(e - fi)}{(g + fi)(e + fi)} = \frac{v(e - fi)}{u(e + fi)} \text{ and } \mu(\beta) = \frac{(g + fi)(e - fi)}{(g - fi)(e + fi)} = \frac{u(e - fi)}{v(e + fi)}.$$

Let $\eta = \arg(g + fi) = \arg(u)$ and $zeta = \arg(e + fi)$. We can assume that $0 < \eta \le \frac{\pi}{4}$ and $0 < \zeta < \pi$ since $g \ge \ell \ge f > 0$. Then we have $\omega(\alpha) = \pi - \eta - \zeta$ and $\omega(\beta) = \pi + \eta - \zeta$.

Theorem 8 Let $\{\alpha = \alpha_0, \alpha_1, \dots, \alpha_n = \beta, \gamma\}$ be a generalized arbelos in *n*-aliquot parts. Then the radius of the Archimedean circle in *n*-aliquot parts is

$$\frac{uv\left(\exp\left(\frac{2\eta}{n}i\right)\right) - \exp\left(-\frac{2\eta}{n}i\right)}{u\exp\left(\frac{2\eta}{n}i\right) - v\exp\left(-\frac{2\eta}{n}i\right)}$$

Proof. Let a_j be the x-coordinate of the intersection point of α_j and the x-axis in I. We can assume that $a_0 > a_1 > \cdots > a_n$. Then the following chain of inequalities holds

$$0 < \pi - \eta - \zeta = \omega(\alpha_0) < \omega(\alpha_1) < \dots < \omega(\alpha_n) = \pi + \eta - \zeta < \pi$$

Since $\mu(\alpha_0) = \exp(2\omega(\alpha_0)i)$, $\mu(\alpha_1) = \exp(2\omega(\alpha_1)i)$, \cdots , $\mu(\alpha_n) = \exp(2\omega(\alpha_n)i)$ is a geometric sequence, the sequence $2\omega(\alpha_0)$, $2\omega(\alpha_1)$, \cdots , $2\omega(\alpha_n)$ is arithmetic with $\frac{4\eta}{n}$ as its common difference, so the common ratio of the geometric sequence is $\exp(\frac{4\eta}{n}i)$. By the proof of Theorem 1, the radius of the Archimedean circle in *n*-aliquot parts is

$$\frac{\left(\ell^2 - e^2 + g^2\right)\left(1 - \exp\left(\frac{4\eta}{n}i\right)\right)}{2\left(\left(g - \sqrt{e^2 - \ell^2}\right) - \left(g + \sqrt{e^2 - \ell^2}\right)\exp\left(\frac{4\eta}{n}i\right)\right)} = \frac{\left(g^2 + f^2\right)\left(1 - \exp\left(\frac{4\eta}{n}i\right)\right)}{2\left(\left(g - fi\right) - \left(g + fi\right)\exp\left(\frac{4\eta}{n}i\right)\right)} = \frac{uv\left(\exp\left(-\frac{2\eta}{n}i\right)\right) - \exp\left(\frac{2\eta}{n}i\right)}{v\exp\left(-\frac{2\eta}{n}i\right) - u\exp\left(\frac{2\eta}{n}i\right)}.$$

Remark: If we denote the complex number $|u|^{\frac{q}{p}} \exp(\frac{q}{p}\eta i)$ by $u^{\frac{q}{p}}$ and $|v|^{\frac{q}{p}} \exp(-\frac{q}{p}\eta i)$ by $v^{\frac{q}{p}}$, the above expression for the radius is the same as the one in Theorem 5.

$$\frac{uv\left(|u|^{\frac{2}{n}}\exp\left(\frac{2}{n}\eta i\right) - |v|^{\frac{2}{n}}\exp\left(-\frac{2}{n}\eta i\right)\right)}{|u|^{\frac{n+2}{n}}\exp\left(\frac{n+2}{n}\eta i\right) - |v|^{\frac{n+2}{n}}\exp\left(-\frac{n+2}{n}\eta i\right)} = \frac{uv\left(u^{\frac{2}{n}} - v^{\frac{2}{n}}\right)}{u^{\frac{n+2}{n}} - v^{\frac{n+2}{n}}}$$

Corollary 6 The member α_j in the generalized arbelos is the radical axis of the coaxial system Γ if and only if 2j = n.

Proof: Since

$$\mu(\alpha_j) = \mu(\alpha) \cdot \exp\left(\frac{4j\eta}{n}i\right) = \exp\left(\left(\frac{4j\eta}{n} - 2\eta\right)i\right) \cdot \frac{e - fi}{e + fi},$$

the member $\alpha_j \in \Gamma$ is the radical axis if and only if $\exp\left(\left(\frac{4j\eta}{n} - 2\eta\right)i\right) = 1$. This is equivalent to 2j = n since $-\pi < \frac{4j\eta}{n} - 2\eta < \pi$.

Theorem 9 Let $\{\alpha = \alpha_0, \alpha_1, \dots, \alpha_n = \beta, \gamma\}$ be a generalized arbelos in *n*-aliquot parts. Then there exists a circle γ' concentric to γ and tangent to all Archimedean circles in *n*-aliquot parts externally if and only if either $n \ge 3$, n = 2 and g > f, or n = 1 and $g > \sqrt{3}f$. If such a circle γ' with the radius g' exists and η' with $0 < \eta' < \frac{\pi}{2}$ is the argument of g' + fi, then $\frac{\eta'}{n+2} = \frac{\eta}{n}$.

Proof: Let r be the radius of Archimedean circles in n-aliquot parts in $\{\alpha_0, \alpha_1, \dots, \alpha_n, \gamma\}$. The existence of γ' is equivalent to g - 2r > 0 and we have

$$g - 2r = u + v - \frac{2uv\left(\exp\left(\frac{2\eta}{n}i\right)\right) - \exp\left(-\frac{2\eta}{n}i\right)}{u\exp\left(\frac{2\eta}{n}i\right) - v\exp\left(-\frac{2\eta}{n}i\right)} = \frac{(u - v)\left(u\exp\left(\frac{2}{n}\eta i\right) + v\exp\left(-\frac{2}{n}\eta i\right)\right)}{u\exp\left(\frac{2}{n}\eta i\right) - v\exp\left(-\frac{2}{n}\eta i\right)}$$
$$= \frac{(u - v)\left(\exp\left(\frac{n+2}{n}\eta i\right) + \exp\left(-\frac{n+2}{n}\eta i\right)\right)}{\exp\left(\frac{n+2}{n}\eta i\right) - \exp\left(-\frac{n+2}{n}\eta i\right)} = \frac{f \cdot \cos\left(\frac{n+2}{n}\eta\right)}{\sin\left(\frac{n+2}{n}\eta\right)}.$$

Note that $\sin\left(\frac{n+2}{n}\eta\right) > 0$ since $0 < \frac{n+2}{n}\eta \leq \frac{3\pi}{4}$, so the inequality g - 2r > 0 holds if and only if $\cos\left(\frac{n+2}{n}\eta\right) > 0$ and this is equivalent to $\frac{n+2}{n}\eta < \frac{\pi}{2}$. This holds for any $n \geq 3$, is equivalent to $\eta < \frac{\pi}{4}$ if n = 2 and is equivalent to $\eta < \frac{\pi}{6}$ if n = 1. The condition $\eta < \frac{\pi}{4}$ is equivalent to g > f and the condition $\eta < \frac{\pi}{6}$ is equivalent to $g > \sqrt{3}f$.

When the circle γ' exists, we have

$$g' + fi = g - 2r + fi = \frac{f \cos\left(\frac{n+2}{n}\eta\right)}{\sin\left(\frac{n+2}{n}\eta\right)} + fi = \frac{f}{\sin\left(\frac{n+2}{n}\eta\right)} \exp\left(\frac{n+2}{n}\eta\right).$$

Since $f / \sin\left(\frac{n+2}{n}\eta\right)$ is a positive real number and $0 < \frac{n+2}{n}\eta < \frac{\pi}{2}$, we have $\eta' = \frac{n+2}{n}\eta$.

Remark: There exists a generalized arbelos in 2-aliquot parts with g = f. In this case, both circles α and β degenerate to points and the Archimedean circles in 2-aliquot parts pass through the center of the circle γ , so the circle γ does not exist.

Theorem 10 Let $\{\alpha = \alpha_0, \alpha_1, \cdots, \alpha_n = \beta, \gamma\}$ be a generalized arbelos in *n*-aliquot parts, and assume that the circle γ' in Theorem 9 exists. Then there exist two circles α' and β' of the coaxial system Γ such that $\{\alpha', \alpha_0, \cdots, \alpha_n, \beta', \gamma'\}$ is a generalized arbelos in (n + 2)-aliquot parts if and only if $g' \ge |e| + \ell$.

Proof: There exist two circles α and β in the coaxial system Γ which are inside and touching the circle γ' if and only if $g' \ge |e| + \ell$. If α' and β' are such circles with α touching γ' at (e + g', 0) and β' touching γ' at (e - g', 0), we have

$$\mu(\alpha') = \frac{(g'-fi)(e-fi)}{(g'+fi)(e+fi)} = \frac{\exp\left(-\frac{n+2}{n}\eta i\right)(e-fi)}{\exp\left(\frac{n+2}{n}\eta i\right)(e+fi)}$$

by Theorem 9. Hence,

$$\frac{\mu(\alpha)}{\mu(\alpha')} = \frac{v}{u} \frac{\exp\left(\frac{n+2}{n}\eta i\right)}{\exp\left(-\frac{n+2}{n}\eta i\right)} = \exp\left(\frac{4}{n}\eta i\right).$$

Similarly, $\frac{\mu(\beta')}{\mu(\beta)} = \exp\left(\frac{4}{n}\eta i\right)$. Then the sequence $\mu(\alpha'), \mu(\alpha), \mu(\alpha_1), \cdots, \mu(\alpha_{n-1}), \mu(\beta), \mu(\beta')$ is geometric and $\{\alpha', \alpha_0, \cdots, \alpha_n, \beta', \gamma'\}$ is a generalized arbelos in (n+2)-aliquot parts by Theorem 1.

Theorem 11 Let $\{\alpha, \beta, \gamma\}$ be a generalized arbelos of non-intersecting type. There exists an embedded pattern of odd type

$$\{\alpha_{-n}, \alpha_{-(n-1)}, \cdots, \alpha_{-1} = \alpha, \alpha_1 = \beta, \cdots, \alpha_n, \gamma_1 = \gamma, \gamma_3, \cdots, \gamma_{2n-1}\}$$

if and only if

$$2n - 1 \le \frac{\log(|e| + fi) - \log(|e| - fi)}{2\left(\log(g + fi) - \log(g - fi)\right)}.$$
(7)

Similarly, there exists an embedded pattern of even type

 $\{\beta_{-n},\beta_{-(n-1)},\cdots,\beta_{-1}=\alpha,\ \beta_0,\ \beta_1=\beta,\cdots,\beta_n,\gamma_2=\gamma,\gamma_4,\cdots,\gamma_{2n}\}$

$$2n \le \frac{\log(|e| + fi) - \log(|e| - fi)}{\log(g + fi) - \log(g - fi)},$$
(8)

where $\log z$ denote the complex number $\log |z| + \arg(z)i$ with $-\pi < \arg(z) \le \pi$.

Proof: Let $\xi = \arg(|e| + \ell + fi)$ with $0 < \xi < \frac{\pi}{2}$. Since

$$\tan 2\xi = \frac{2f}{|e|+\ell} / \left(1 - \left(\frac{f}{|e|+\ell}\right)^2\right) = f/|e|,$$

we have $2(\log(|e| + \ell + fi) - \log(|e| + \ell - fi)) = \log(|e| + fi) - \log(|e| - fi)$, and then

$$\frac{\log(|e|+fi) - \log(|e|-fi)}{2\left(\log(g+fi) - \log(g-fi)\right)} = \frac{\log(|e|+\ell+fi) - \log(|e|+\ell-fi)}{\log(g+fi) - \log(g-fi)}.$$
(9)

So the inequalities (7) and (8) hold for n = 1 since $g \ge |e| + \ell$ and

$$\frac{\log(|e| + \ell + fi) - \log(|e| + \ell - fi)}{\log(g + fi) - \log(g - fi)} \ge 1.$$

If $g \leq \sqrt{3}f$, then $\tan^{-1}\frac{f}{g} \geq \frac{\pi}{6}$ and the inequality

$$\frac{\log{(|e| + fi)} - \log{(|e| - fi)}}{2\left(\log{(g + fi)} - \log{(g - fi)}\right)} < \frac{3}{2}$$

holds, so the inequality (7) holds only for n = 1.

The case g = f occurs only when e = 0 and we have

$$\frac{\log(|e| + fi) - \log(|e| - fi)}{\log(g + fi) - \log(g - fi)} = 2$$

So, the inequality (8) holds only for n = 1 if g = f.

On the other hand by Theorem 9, the embedded pattern of odd type is $\{\alpha = \alpha_{-1}, \beta = \alpha_1, \gamma = \gamma_1\}$ if $g \leq \sqrt{3}f$, and the embedded pattern of even type is $\{\alpha = \beta_{-1}, \beta_0, \beta_1 = \beta, \gamma = \gamma_2\}$ if g = f. In this case β_0 is the radical axis of the coaxial system Γ .

Let us assume that the circle γ_n with the radius g_n exists. By Theorems 9 and 10 and the above argument, there exists a generalized arbelos in *n*-aliquot parts with γ_n as an outer circle if and only if $g_n \geq |e| + \ell$. If we denote $\eta_n = \arg(g_n + fi)$ with $0 < \eta_n < \frac{\pi}{2}$, the inequality $g_n \geq |e| + \ell$ is equivalent to $\eta_n \leq \xi$. By Theorem 9 we have

$$\frac{\eta_n}{n} = \frac{\eta_{n-2}}{n-2} = \dots = \begin{cases} \eta_1 = \eta & \text{if } n \text{ is odd,} \\ \frac{\eta_2}{2} = \frac{\eta}{2} & \text{if } n \text{ is even,} \end{cases}$$

and then $\eta_{2n-1} = (2n-1)\eta$ and $\eta_{2n} = n\eta$.

So $\eta_{2n-1} \leq \xi$ holds if and only if $2n-1 \leq \frac{\xi}{\eta}$ holds and this is equivalent to

$$2n - 1 \le \frac{\log(|e| + \ell + fi) - \log(|e| + \ell - fi)}{\log(g + fi) - \log(g - fi)} .$$
(10)

H. Okumura, M. Watanabe: Generalized Arbelos in Aliquot Parts: Non-Intersecting Case 55 Similarly, the inequality $\eta_{2n} \leq \xi$ is equivalent to

$$2n \le \frac{2\left(\log\left(|e| + \ell + fi\right) - \log\left(|e| + \ell - fi\right)\right)}{\log\left(g + fi\right) - \log\left(g - fi\right)} \,. \tag{11}$$

Clearly, the inequality (10) is equivalent to the inequality (7) while the inequality (8) and (11) are equivalent because of the relation (9).

Corollary 7 The following relations hold:

$$\gamma_{2(2n-1)} = \gamma_{2n-1}, \quad \alpha_{-n} = \beta_{-(2n-1)}, \quad \alpha_n = \beta_{(2n-1)}.$$

Figure 6 shows an example of the odd type with g = 9, e = -1, $\ell = 6$. The incircle of α and β in γ contains the center of γ so that we can not draw the circle γ' and the embedded pattern is $\{\alpha = \alpha_{-1}, \beta = \alpha_1, \gamma = \gamma_1\}$. In this case $g^2 = 81 < 105 = 3f^2$.

Figure 6: The embedded pattern of odd type with $g = 9, e = -1, \ell = 6$

Figure 7 shows examples of both types with g = 21, e = -4, $\ell = 5$. The part (a) is of the odd type and the part (b) is of the even type. In the part (a), we can draw the circle γ_3 since $g^2 - 3f^2 > 0$. But, we can not draw the circle α_{-2} since

$$\frac{\log\left(|e|+fi\right) - \log\left(|e|-fi\right)}{2\left(\log\left(g+fi\right) - \log\left(g-fi\right)\right)} = \frac{\tan^{-1}\left(3/4\right)}{2\tan^{-1}\left(3/21\right)} < 2 \cdot 2 - 1$$

and the circle γ_3 does not contain the point *L*. So the embedded pattern is just { $\alpha = \alpha_{-1}, \beta = \alpha_1, \gamma = \gamma_1$ }.

In the part (b), we have

$$2 \cdot 2 \le \frac{\log\left(|e| + fi\right) - \log\left(|e| - fi\right)}{\log\left(g + fi\right) - \log\left(g - fi\right)} = \frac{\tan^{-1}\left(3/4\right)}{\tan^{-1}\left(3/21\right)} < 2 \cdot 3,$$

so the embedded pattern is $\{\beta_{-2}, \alpha = \beta_{-1}, \beta_0, \beta_1 = \beta, \beta_2, \gamma = \gamma_2, \gamma_4\}$. The circle γ_3 in the part (a) is the same as the circle γ_6 in the part (b).

56 H. Okumura, M. Watanabe: Generalized Arbelos in Aliquot Parts: Non-Intersecting Case

Figure 7: The embedded patterns of both types with $g = 21, e = -4, \ell = 5$

6. A new family of Archimedean circles

Let $\{\alpha, \beta, \gamma\}$ be an usual arbelos and ρ be the line passing through the centers of α and β . In this section we construct a family of circles having the same radii as the Archimedean twin circles in $\{\alpha, \beta, \gamma\}$ which we call Archimedean circles (see [1] and [2]).

First assume α and β are not congruent. Then there exists a circle ε concentric to γ and passing through the tangent point of α and β . Let L be a point on the line ρ between γ and ε , let L' be the inverted image of L by the circle ε and let Γ be the coaxial system having two points L and L' as its limiting points. Note that Γ is also the coaxial system generated by ε and the line λ perpendicular to ρ and passing through the midpoint of L and L'. So ε is always the member of Γ for any L. Since the points L and L' are in the circle γ there exist two circles α' and β' of the coaxial system Γ such that $\{\alpha', \beta', \gamma\}$ is a generalized arbelos of non-intersecting type. By Theorem 5 the radii of the incircles in the generalized arbelos in two aliquot parts $\{\alpha', \lambda, \beta', \gamma\}$ are determined only by the radii of ε and γ . When the point L goes to the tangent point of α and β , the point L' also goes to the same point, the circle α' goes to the circle α and the circle β' goes to the circle β . Then the radii of the Archimedean circles in two-aliquot parts in $\{\alpha', \beta', \gamma\}$ are the same as the radii of the Archimedean twin circles in $\{\alpha, \beta, \gamma\}$ by the Remark below Theorem 5. Then we get infinitely many Archimedean circles, according as the point L moves on the line ρ between γ and ε (see Fig. 8(a)).

Now assume α and β are congruent. Then the center of γ and the tangent point of α and β are coincide. We denote this point by E. Let L be any point on the line ρ and inside γ and let Γ be the coaxial system having two points E and L as its limiting points. There exist two circles α' and β' of the coaxial system Γ such that $\{\alpha', \beta', \gamma\}$ is a generalized arbelos. Since any Archimedean circle in two aliquot parts in the generalized arbelos $\{\alpha', \lambda, \beta', \gamma\}$ where λ is the radical axis of Γ , is an Archimedean circle in $\{\alpha, \beta, \gamma\}$ by Theorem 2 and the Remark below it, we get infinitely many Archimedean circles according as the point L moves on the line ρ in γ (see Fig. 8(b)).

Above arguments hold for any arbelos in n-aliquot parts. So we can construct a family of Archimedean circles in n-aliquot parts similarly.

Figure 8: A family of Archimedean circles

Acknowledgment

The authors want to express their thanks to the anomynous reviewer for many improvements and useful comments.

References

- C.W. DODGE, T. SCHOCH, P.Y. WOO, P. YIU: Those ubiquitous Archimedean circles. Math. Mag. 72, 202–213 (1999).
- [2] H. OKUMURA, M. WATANABE: The Archimedean Circles of Schoch and Woo. Forum Geom. 4, 27–34 (2004).
- [3] H. OKUMURA, M. WATANABE: *The Arbelos in n-Aliquot Parts*. Forum Geom. 5, 37–45 (2005).
- [4] H. OKUMURA, M. WATANABE: Generalized Arbelos in Aliquot Parts: Intersecting case.
 J. Geometry Graphics 12, 53–62 (2008).

Received July 8, 2008; final form February 13, 2009