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Abstract. Each saddle sphere Γ ⊂ S3 is known to generate a spanning ar-
rangement of at least four non-crossing oriented great semicircles on S2. Each
semicircle arises as the projection of an inflexion arch of the surface Γ. In the
paper we prove the converse: each spanning arrangement of non-crossing oriented
great semicircles is generated by some smooth saddle sphere.
In particular, this means the diversity of saddle spheres on S3. Recall that each
C2-smooth saddle sphere leads directly to a counterexample to the following A.D.
Alexandrov’s conjecture:
Let K ⊂ R

3 be a smooth convex body. If, for a constant C, at every point of
∂K, we have R1 ≤ C ≤ R2, then K is a ball (R1 and R2 stand for the principal
curvature radii of ∂K).
In the framework of the conjecture, the main result of the paper means that all
counterexamples can be classified by non-crossing arrangements of oriented great
semicircles.

Key Words: A.D. Alexandrov’s conjecture, inflexion point, inflexion arch, saddle
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1. Introduction

By Sk ⊂ R
k+1 (k = 2, 3) we mean the unit sphere centered at the origin O. By a plane (or

spherical plane) on Sk we mean a plane in the sense of spherical geometry, i.e., the intersection
of Sk with some (Euclidean) hyperplane e ⊂ R

k+1 passing through the origin O.

OSC-arrangements and saddle spheres

A great semicircle on Sk is a geodesic arch joining two antipodal points. By an OSC-
arrangement we mean a finite set of disjoint oriented great semicircles {sci} on the sphere S2.
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60 G. Panina: On the Combinatorics of Inflexion Arches

An oriented semicircle sci yields its extension, i.e., a great circle ci and an open hemisphere
S+(sci) bounded by ci (see Fig. 1). The hemisphere is chosen consistent with the orientation
of sci.

Figure 1: An oriented semicircle yields a circle and a hemisphere

An OSC-arrangement A = {sci} is called spanning if

⋃

i

S+(sci) = S2.

Clearly, a spanning arrangement contains at least four semicircles.
Two OSC-arrangements A0 and A1 are called isotopic if there exists a continuous family

of OSC-arrangements At (0 ≤ t ≤ 1) joining A0 and A1. The isotopy class of an OSC-
arrangement is not determined by the number of its elements.

Definition 1.1 [9] A closed 2-dimensional surface Γ ⊂ S3 is called saddle if no plane inter-
sects Γ locally at just one point.
A closed surface Γ ⊂ S3 is called a saddle sphere if

• Γ is saddle;

• Γ admits a bijective projection onto some (spherical) plane S2 ⊂ S3 (from now on we
assume that S2 is fixed). By the projection we mean the central projection (in the sense
of spherical geometry) with the pole of S2 as center.

In particular, the last item means that a saddle sphere is homeomorphic to S2.

Figure 10 depicts a saddle sphere (red) and the projection (blue arrows). However, the
dimension is higher than is depicted.

Definition 1.2 [9] An inflexion arch of a smooth saddle sphere Γ is a great semicircle S ⊂ S3

such that:
• S ⊂ Γ;

• for each (spherical) plane e ⊂ S3 that intersects S transversely, the point e
⋂

S is an
inflexion point of the curve e

⋂
Γ.

Note that an inflexion arch carries a natural orientation (see Fig. 2).

Each smooth saddle sphere on S3 generates a spanning OSC-arrangement:

Theorem 1.3 [9] Let Γ ⊂ S3 be a C2-smooth saddle sphere. Assume that Γ is non-
degenerate, i.e., it does not coincide with a (spherical) plane. Then

• Γ contains at least four disjoint inflexion arches;

• The projections of all inflexion arches onto S2 taken with inherited orientations form a
spanning OSC-arrangement.
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Figure 2: An inflexion arch

In the present paper we prove the converse:

Theorem 1.4 Given a spanning arrangement A ⊂ S2 of disjoint oriented great semicircles,
there exists a C∞-smooth saddle sphere that generates (in the sense of Theorem 1.3) the
arrangement A up to an isotopy.

Smooth saddle spheres are in one-to-one correspondence with the counterexam-
ples to A.D. Alexandrov’s conjecture

Saddle spheres arose originally in a relationship to the following uniqueness conjecture, proven
by A.D. Alexandrov in [1] for analytic surfaces:

Let K ⊂ R
3 be a smooth convex body. If, for a constant C, at every point of ∂K, we have

R1 ≤ C ≤ R2, then K is a ball. (R1 and R2 stand for the principal curvature radii of ∂K).

Quite surprisingly, there exist diverse C∞-smooth counterexamples to the conjecture. One
of the key points is a relationship of the conjecture to saddle surfaces (its early idea can be
traced in [1]). The saddle objects which arose here are called hyperbolic hèrissons (see [5] and
[7]). Attempting to study the counterexamples to the conjecture, the author of the paper has
developed the theory of hyperbolic virtual polytopes. The latter are objects dual to piecewise
linear saddle spheres which appear in Section 3. Although hyperbolic virtual polytopes are
very closely related to the subject of the paper, we make the paper self-contained and do not
use this technique here, referring the reader to [7], [8], and [10]. However, here is a brief
translation of the relationship into the language of support functions and their graphs:

Let K be a counterexample to the conjecture. Denote by hK : R
3 → R its support

function. (Remind that hK is defined by the formula hK(x) = maxy∈K(x,y), where (x,y)
stands for the scalar product. The support function is positively homogeneous.) Further,
denote by hC the support function of the ball of radius C and consider the difference h =
hK − hC . Its graph γ is a conical surface in R

4 with the apex at the origin O. It is crucial
for us that the intersection γ ∩ S3 is a saddle sphere Γ (see Fig. 10).

Vice versa, given a C2-smooth saddle sphere Γ ⊂ S3, it spans a cone in R
4 which can be

interpreted as the graph of some positively homogeneous function h. For a sufficiently large
C, the sum h+hC is a convex function. Then it is the support function of some convex body
K which is a counterexample to the conjecture.

Structure of the paper and brief description of the proof

The main result of the paper is Theorem 1.4. Before we prove it, we first study OSC-
arrangements. The main result we need (Theorem 2.9) asserts that any spanning OSC-
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Figure 3: Two non-isotopic arrangements

arrangement can be constructed inductively via semicircle splittings starting from one of the
basic arrangements of four semicircles depicted in Fig. 3. Next, we discretize the problem. We
focus on piecewise linear saddle spheres (PLS-spheres). For PLS-spheres, the role of inflexion
arches is played by inflexion faces.

In Section 4 we prove Theorem 1.4 for PLS-spheres by induction. We already know from
[3], [8], and [9] that the discrete version of Theorem 1.4 is valid for arrangements of four
semicircles. This plays the role of the induction base.

Thus we get in a position to show that semicircle splitting can be extended to inflexion
arch splitting. For the sake of the induction transmission, we develop a deformation technique
for a saddle sphere which can add any prescribed inflexion arch. Theorem 1.4 for C∞-spheres
follows from its discrete version immediately, since [7] provides a smoothing technique.

It should be mentioned that the interplay between piecewise linear saddle spheres and
smooth saddle spheres is not well understood yet. The only proven result [7] asserts the
existence of a C∞-smooth saddle approximation for a very restricted class of piecewise linear
saddle spheres. However, all the piecewise linear saddle spheres constructed in the paper fit
this class: they have trivalent vertex-edge graphs and short edges (shorter than π).

A convention about spherical drawings

In the paper, we depict spherical objects (embedded graphs, arrangements, tilings). This can
be done in three ways.

• We sometimes depict the sphere with an object as it is (as in Fig. 5 and Fig. 1).

• Alternatively, we sometimes depict the projection of a hemisphere from the origin O

onto some plane e ⊂ R
3 (as is done in Fig. 4 and Fig. 6).

• If a drawing does not fit a hemisphere, it makes sense to depict it schematically (as in
Fig. 7 and Fig. 23).

2. Combinatorics of spanning arrangements

A SC-arrangement is a finite set of disjoint great semicircles on the sphere S2. Each OSC-
arrangement A generates a SC-arrangement A by forgetting the orientations.

Lemma 2.1 [8]
1. An OSC-arrangement is spanning if and only if it contains at least one of the arrange-

ments BA1 and BA2 presented in Fig. 3 (up to an isotopy and a symmetry).
By this reason, the arrangements BA1 and BA2 are called the basic arrangements.
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Figure 4: Arrangements of five semicircles

2. Each SC-arrangement of four semicircles equals (up to an isotopy and a symmetry) one
of the arrangements BA1 and BA2. The arrangements BA1 and BA2 are non-isotopic.

Consider either a SC- or an OSC-arrangement A = {sci}. Denote by T (A) the tiling of
the sphere S2 generated by all the circles ci spanned by sci. A crossing point of A is the
intersection point of some two circles ci and cj.

Lemma 2.2 For a SC-arrangement A = {sci}, we have
1. Each crossing point belongs to exactly one of the semicircles sci.

2. The circles ci lie in generic position, i.e., no three of them pass through one point.

3. If a SC-arrangement A contains more than four semicircles, then there exists a tile of
T (A) with more than four vertices.

Proof: 1. The point A = c1

⋂
c2 cannot belong to both of the semicircles c1 and c2 since

they are non-crossing. If it belongs to none of them, then the antipodal point −A belongs to
both of c1 and c2. A contradiction.
2. This follows directly from 1.
3. It is easy to observe that just 5 circles give a pentagonal tile (see Fig. 5). Now start adding
the other circles one by one. A new circle either hits the pentagon or not. If it does not, the
pentagon (or more than pentagon) remains as it is. If not, the new circle splits the pentagon
into two tiles. One of them necessarily has more than four vertices.

Lemma 2.3 Each SC-arrangement A of five semicircles is isotopic either to one of the ar-
rangements presented in Fig. 4, or to the mirror image of one of them.

Proof: We can assume that the great circles lie as is depicted in Fig. 5. Case analysis shows
that the only possible positions of the semicircles are those in Fig. 4. The proving technique

Figure 5: Five circles necessarily give a pentagon
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Figure 6: This way one gets stuck

comes from Lemma 2.2. We demonstrate through one particular example how this works.
Namely, we prove that no semicircle lies in position 1 (see Fig. 6). The other cases are treated
similarly.

Suppose the contrary: there is an arrangement of five semicircles containing a semicircle
lying in position 1 (see Fig. 6). Consider the crossing point A. It belongs to one of the
semicircles, therefore we have either the case 2 or the case 3 (see Fig. 6). The case 2 is
impossible since the crossing point B cannot belong to a semicircle which does not intersect
the fixed semicircles. For the position 3, the semicircle containing the point C is determined
uniquely as depicted in Fig. 6, 4 . Finally, we get the crossing point B locked: each semicircle
containing B intersects one of the three already fixed ones. A contradiction.

Definition 2.4 Let A be an OSC-arrangement. Two oriented semicircles sc1, sc2 ∈ A are
called twins if there exists a continuous motion of sc1 which brings sc1 to sc2. During the
motion, sc1 must not cross the other semicircles except for sc2. Here we do not take the
orientation into account, it may be either preserved or not.

Figure 7: Twins

Lemma 2.5 (Twins Detection Lemma) Let sc1 and sc2 be two semicircles of an OSC-
arrangement A. Denote by ±A and ±B their endpoints. Denote also ±C = c1

⋂
c2.

1. If the segments (A, C) and (C, B) are crossing points free (that is, they intersect none
of the circles ci for i > 2), then sc1 and sc2 are twins in A (see Fig. 7).

2. Conversely, if these semicircles are twins in A, then for an appropriate choice of ±A

and ±B, the segments (A, C) and (C, B) are crossing points free.

Proof: 1. Consider the open domain D formed by the circles c1 and c2 (it is marked grey in
Fig. 7). We claim that there are no crossing points inside the domain. Indeed, the segments
(A, C) and (−C,−B) are crossing points free. If there is a crossing point ci

⋂
cj inside D,

then it belongs either to sci or to scj. This means that one of these semicircles intersects the
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boundary of D, which is impossible.
Besides, the triangles △ABC and △(−A)(−B)(−C) intersect none of ci (except for sc1 and
sc2). Therefore the motion depicted in Fig. 11 is collision free. (The semicircles sc1 and sc2

are marked red. The black semicircles show the intermediate positions of sc1.)
2. For a fixed semicircle sc, the set of crossing points lying on c has a natural cyclic ordering.
Lemma 2.2 implies that this ordering is maintained during any non-colliding motion of the
semicircles.

Lemma 2.6 Let A be a SC-arrangement. Assume that a tile t of T (A) has at least 5 vertices.
Let t be formed by the circles c1, . . . , ck. Denote by ei the edges of t. For each of the semicircles
sc1, . . . , sck, only three cases are possible (see Fig. 8):

1. The segment ei contains an endpoint of sci. We call this end a normal end.

2. The segment ei does not intersect sci. Then the endpoint of sci lies in the next to ei

segment of ci. We call this end a short end.

3. The segment ei is contained in sci. Then the endpoint of sci lies in the next segment.
We call this end a long end.

Figure 8: Possible types of ends

Proof: This follows directly from Lemma 2.3.

Lemma 2.7 Each SC-arrangement of more than three semicircles contains at least two dis-
joint pairs of twins.

Proof: Let A = {sci}
n
i=1. We will prove the theorem by induction. If the number of

semicircles is four, we are done. Indeed, for the configuration BA1, the pairs (1, 2), (2, 3), (3, 4)
and (4, 1) are twins, whereas for the configuration BA2, the pairs (1, 2) and (3, 4) are twins.

If the number of semicircles is greater than 4, consider a tile t of T (A) which has at least
5 vertices. It always exists by Lemma 2.2. Let t be formed by T = {c1, . . . , ck}. We assume
that the circles are ordered consistent to the natural ordering of the edges of t. One should
keep in mind that none of the circles ci intersects the interior of t.
1. If among c1, . . . , ck there are two consecutive normal ends, then they are twins by the
Twins Detection Lemma.
2. Suppose that sci ∈ T has a long end. Then the consecutive semicircle sci+1 has a short
end (see Fig. 12). Consider the subarrangement A′ ⊂ A of all semicircles with slopes lying
between the slopes of sci and sci+1, including the semicircles sci and sci+1. We mark the
subarrangement red. We say that these semicircles lie between sci and sci+1. Case analysis
based on Lemma 2.2 proves that their endpoints lie in the domain which is marked grey in
Fig. 12.

Thus, each semicircle from A \ T lies between some semicircle from T with a long end and



66 G. Panina: On the Combinatorics of Inflexion Arches

Figure 9: Points on the sphere yield black and white points in the plane

its consecutive semicircle from T with a short end.

If A′ contains just two semicircles sci and sci+1, then they are twins. If not, then by inductive
assumption, the arrangement A′ has a twin which differs from the pair (sci, sci+1). This twin
remains a twin in the whole arrangement A.

Let us summarize the above. On the one hand, a pair of consecutive normal ends is a twin.
On the other hand, a pair of type (a long end, the consecutive short end) yields a twin as
well. Since the arrangement T has at least two pairs of these types, they give two disjoint
pairs of twins.

Lemma 2.8 Let the pairs (sc1, sc2) and (sc3, sc4) be twins in a spanning OSC-arrangement
A. Assume that A contains more than four semicircles. Then for some i = 1, 2, 3, or 4, the
arrangement A \ {sci} is spanning.

Proof: Assume without loss of generality that A consists of five semicircles. Make first some
reformulations. Denote by 1, 2, 3, 4, 5 ∈ S2 the poles of the hemispheres S+(sc1), . . . , S

+(sc5).
Choose a plane e ⊂ R

3 not passing through the origin O. Each point i gives a point e
⋂

(O, i)
where (O, i) stands for the line passing through O and i. We denote the generated points
with the same numbers and mark each of the points either black or white, according to the
directions of the rays (see Fig. 9).

We say that a collection of black and white points in the plane is a B
⋂

W -collection if the
convex hull of the white points has a non-empty intersection with the convex hull of the black
points.

The three conditions are equivalent:
• An arrangement sc1, . . . , sck is spanning.

• The radius-vectors of 1, 2, . . . ,k span positively R
3.

• The generated collection of black and white points is a B
⋂

W -collection.
We may assume that the points generated by sc1, . . . , sc4 lie in the convex position. Since we
have a B

⋂
W -collection, a point can be deleted such that the rest is a B

⋂
W -collection.

Theorem 2.9 Each spanning OSC-arrangement A can be obtained inductively in some steps
from a 4-element spanning OSC-arrangement by adding a twin to an already existing semi-
circle.
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Figure 10: A saddle sphere and the spanned cone

Figure 11: This motion brings one of the twins to another

Figure 12: A hexagonal tile t, the subarrangement T (black)
and the semicircles lying between sci and sci+1 (red)
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Figure 13: An inflexion face, its projection on S2, and an oriented semicircle
inside the projection. The projection is depicted schematically.

Figure 14: A simple PLS-sphere
looks locally like this

Figure 15: Two possible
local colorings

Figure 16: This fan yields
the arrangement BA1

Figure 17: This fan yields
the arrangement BA2
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Proof: If the arrangement A contains just four semicircles, we are done. If it has more than
four elements, then by Lemma 2.2, it contains at least two disjoint pairs of twins. Finally,
by Lemma 2.8, we can remove one of the twins maintaining the spanning property of the
arrangement.

3. Piecewise linear saddle spheres

A spherical polygon is a subset of a (spherical) plane bounded by a piecewise geodesic line.
A piecewise linear saddle sphere in S3 (a PLS-sphere) is a saddle sphere (in the sense of
Definition 1.1) patched of spherical polygons. A PLS-sphere is called simple if each its vertex
is trivalent, i.e., has exactly 3 incident edges (see Fig. 14). A PLS-sphere has short edges if
the projections of its edges on S2 are shorter than π. This property is necessary for further
smoothing technique developed in [7].

It is difficult to visualize a PLS-sphere. But since we are interested in the generated
OSC-arrangement, we will depict the projections of all its edges onto S2. Convex edges we
will mark red, and concave edges we will mark blue. The projection yields a spherical tiling
ΣΓ which we call the fan of the surface. The tiles of the fan are projections of the faces of Γ.
For example, Fig. 13 depicts a part of a PLS-sphere Γ and the corresponding part of its fan.

Definition 3.1 and Theorem 3.2 below are discrete versions of Definition 1.2 and Theo-
rem 1.3. In particular, they explain that a PLS-sphere with short edges generates a spanning
OSC-arrangement.

Definition 3.1 [9] A face f of a PLS-sphere Γ is called an inflexion face if the following
conditions hold:

1. f is bounded by two piecewise geodesic convex lines (say, by L1 and L2) such that the
convexity directions look like in Fig. 13;

2. the surface Γ is convex along the edges of L1 and concave along the edges of L2.

Theorem 3.2 [9]
1. Each PLS-sphere with short edges has at least four inflexion faces.

2. Each inflexion face contains a great semicircle. It carries a natural orientation (see
Fig. 13). If we fix one semicircle for each inflexion face, then the projections of all
semicircles give a spanning OSC-arrangement.

In other words, inflexion faces play the role of inflexion arches. The fan of a simple PLS-sphere
encodes the complete information about its inflexion faces:

Lemma 3.3 [7] For a simple PLS-sphere Γ, we have:
1. each vertex of ΣΓ is incident to an angle larger than π;

2. at each vertex of ΣΓ, only two types of local coloring are possible (see Fig. 15);

3. a tile of ΣΓ corresponds to an inflexion face if and only is the edge color changes exactly
twice when going around the boundary of the tile.

Sketch of the proof. The surface Γ is saddle and simple. Therefore, at each of its vertex it
looks like the one depicted in Fig. 14 (up to an affine transform). This implies (1) and (2).

The color changes twice when going around the boundary of a tile t if and only if t is bounded
by two convex lines (that is, the red part of the boundary and the blue part of the boundary)
such that their convexity directions look like in Fig. 13. In particular, this implies that the
tile t contains a great semicircle. (3) is proven.
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Example 3.4

• Paper [8] presents a simple PLS-sphere Γ1 which generates the basic arrangement BA1.
Its fan is depicted in Fig. 16. The black arrow points at one of four tiles corresponding
to inflexion faces.
It should be mentioned that chronologically, the very first PLS-sphere (generating the
same arrangement) was presented in [6].

• Papers [3] and [2] present a simple PLS-sphere Γ2 which generates the basic arrangement
BA2. Its fan is depicted in Fig. 17 (see also [10] for its 3D image). There are four tiles
(marked grey) corresponding to inflexion faces.

Our next aim is to develop some deformation tricks for PLS-spheres. The general idea
looks as follows. Assume that a simple PSL-sphere Γ is fixed. The hull of its face f is
the (spherical) plane hull(f) spanned by f . We deform a bit hull(f), replacing it by some
piecewise linear surface. The other hulls are maintained, but some vertices and edges get
changed. New vertices and edges appear as the intersections of the new hulls. If one takes
some special care of consistent patching (described below), this procedure yields another
simple PLS-sphere.

H-operation

Suppose two inner points of some red (respectively, blue) edges of ΣΓ can be connected by a
geodesic segment avoiding intersections with other edges. Let the new segment s belong to
a tile t, which corresponds to a face f . We break somewhat the hull(f) along the segment s

to make it concave (respectively, convex) (see Fig. 18). Next, we replace the hull(f) by the
broken plane, maintaining the hulls of the other faces. Thus we get two new vertices and one
new edge. The fan changes as is shown in Fig. 19.

We shall apply H-operations in Section 4 for shortening the edges of hyperbolic fans,
which is necessary for further smoothing.

C-operation

Suppose that the described below C-configuration of four geodesic segments 1, 2, 3, and 4 can
be placed on S2 (see Fig. 20) such that:

• the endpoints of 1 and 4 lie on edges of ΣΓ of the same color;

• intersections of the configuration with the edges of ΣK are avoided (except for the
endpoints of 1 and 4);

• segments 2 and 3 are great semicircles;

• each vertex of the configuration has an incident angle larger than π;

• segments 1 and 4 lie on one and the same great circle.

Suppose that the C-configuration lies in a tile t of the fan ΣΓ. Let f be a face of Γ corresponding
to the tile t. We replace the hull(f) by a piecewise linear surface consisting of three linear
parts as is shown in Fig. 21. The hulls of other faces remain unchanged.

A C-operation is useful because it can add a new inflexion face to a PLS-sphere. An
H-operation can alter inflexion faces, but it never changes the isotopy type of the induced
OSC-arrangement.
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Figure 18: H-operation breaks a face along a segment

Figure 19: H-operation alters the fan this way

Figure 20: C-operation

Figure 21: H- and C-operations alter the surface according to the drawing on the sphere
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Figure 22: First type of splitting Figure 23: Second type of splitting

4. Proof of Theorem 1.4

We first prove the discrete version of the main theorem:

Theorem 4.1 Given a spanning arrangement A ⊂ S2 of oriented great semicircles, there
exists a simple PLS-sphere Γ with short edges which generates the arrangement A (up to an
isotopy).

Proof: We prove the theorem inductively by the number of semicircles in A.

Base of induction is already proven due to Example 3.4. Namely, a minimal spanning OSC-
arrangement consists of four semicircles. Up to isotopy and symmetry, it is either BA1 or
BA2 (Lemma 2.1).
Note that the PLS-sphere generating BA2 has some edges of length π, i.e., not all its edges
are short. However, the long edges can easily be shortened by a series of H-operations, as is
done in [2]. We present here the fan with long edges just because it is less complicated.

Induction transmission. Suppose that the number of semicircles is greater than four. Using
Theorem 2.9, we delete a twin sc′ of some semicircle sc ∈ A such that the rest A′ is a spanning
OSC-arrangement. By inductive assumption, A′ is generated by some simple PLS-sphere Γ′

with short edges. Using the C- and H-operations, we deform the surface Γ′ in 3 steps. This
deformation adds an extra inflexion face and splits the semicircle sc.

Step 1. Let the inflexion face f of Γ′ correspond to the semicircle sc. Denote by t the
projection of f onto S2. We now add a C-configuration inside t and apply the corresponding
C-operation to the surface Γ′. We get a new PLS-sphere, but the isotopy type of the generated
OSC-arrangement is maintained (this can be checked using Lemma 3.3).

Step 2. Next, we add one more C-configuration inside t and apply one more C-operation.
On this step one should take into account the position and the orientation of sc′ with respect
to sc. Therefore we have different (but similar) cases depicted in Fig. 22 and Fig. 23. This
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gives us one more inflexion face which yields sc′. Now we have a simple saddle sphere with
the required OSC-arrangement, but some of its edges are of length π.

Step 3. It remains to shorten the long edges. This can be easily done by H-operations. This
yields a required simple PLS-sphere Γ.

Theorem 1.4 for C∞-smooth saddle spheres follows immediately due to the smoothing
technique. Indeed, paper [7] asserts that each simple saddle sphere Γ with short edges can
be approximated by a C∞-smooth saddle sphere Γ. The way of approximation (which is
presented explicitly) yields that the inflexion faces of Γ and inflexion arches of Γ are in one-
to-one correspondence.
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