
Journal for Geometry and Graphics
Volume 13 (2009), No. 1, 75–90.

A Practical Approach for Planar
Visibility Maintenance∗

Alireza Zarei, Mohammad Ghodsi

Computer Engineering Department, Sharif University of Technology

IPM School of Computer Science, Tehran, Iran

email: zarei@mehr.sharif.edu, ghodsi@sharif.edu

Abstract. In this paper, we propose a method for maintaining the region visible
from a moving point observer inside a planar scene. In this method, we check the
observer position in discrete time-stamps to detect and apply changes to the visible
or illuminated region of a moving point observer q, or VP(q). We efficiently main-
tain a list C(q) of edges in VP(q) which are subject to change during the motion.
In each time-stamp that VP(q) is to be updated, we only refine and redraw the
view against the edges of C(q) that indicate the positions of the visibility changes.
We build an enriched representation of the visibility graph in a preprocessing step
to apply the required updates on C(q) efficiently and ready to be used in the
next time-stamp. Using these structures, the exact visible regions are updated
in each time-stamp in O(|C(q)|) for sufficiently small values of time-stamp inter-
vals. This is the best possible and superior to the current solutions. Although the
time-stamp intervals are small enough in real applications, our method will still
remain superior even if the intervals were relatively long in cases with high-speed
observer or in dense scenes. The results of our implementation prove efficiency of
our method in practice.

Key Words: Computational geometry, exact visibility maintenance, moving ob-
server, planar polygonal scene, visibility polygon

MSC 2000: 68U05, 65D18

1. Introduction

In many application areas like computer graphics, computer games, machine vision, robotics,
and motion planning, we are asked to draw the illuminated region from a light source. Equiv-
alently, we need to determine the view of an observer inside a two or three dimensional scene.
There are many variants of this problem and different solutions have been proposed. In this

∗ This research was in part supported by a grant from IPM (No. CS1386-2-01).

ISSN 1433-8157/$ 2.50 c© 2009 Heldermann Verlag

76 A. Zarei, M. Ghodsi: Exact Visibility Maintenance

paper, we only consider the problem of maintaining the view from a moving point observer
inside a 2D scene.

A 2D scene, also known as a polygonal domain or a polygon with holes, is defined by a set
of nonintersecting planar objects inside a simple polygon. For simplicity, we assume that the
objects are represented by some simple polygons. These objects, called holes, act as occluders
that our observer can not see through. The complexity of the scene, n, is the number of the
vertices of its border and holes.

A point observer q in such an environment sees a point p if pq does not intersect the
boundary and the scene objects. The set of these visible points, composed as a star-shaped
polygon, is the visibility polygon of q and is denoted by VP(q). The observer moves in any
direction with different speeds. We assume that the observer does not intersect the outer
boundary of the scene or edges of the holes during its motion. Our problem is to maintain
and update VP(q) of such an observer while it moves inside the scene. We assume that there
is a sequence of discrete time-stamps at which (when it arrives) we get a new position of the
observer and our algorithm must draw or compute the exact view of the observer for that
pair of location and time.

This problem has been considered thoroughly before in two separate theoretical and prac-
tical approaches. The main theoretical solutions are based on notions including visibility de-
composition, visibility complex, tangent visibility graph, kinetic data structures, topological
map and radial subdivision [1, 9, 14, 19, 23, 18, 10, 5, 22]. These methods usually have a
preprocessing phase to prepare useful information about the visibility coherence of the scene.
Cost of this phase varies in different solutions from O(n3 log n) time and O(n3) space to
O(n logn) time and O(n) space. The prepared information of this phase is then used to effi-
ciently find the initial VP(q) and to update it as the observer q moves along. In the efficient
methods, the initial VP(q) is computed in Ω(|VP(q)| log n) time. During the motion, a queue
of O(n) events is built by which each visibility change is handled in time O(log n) in order
to update and maintain VP(q). However, in about all these methods, some of the processed
events are unnecessary and do not affect VP(q).

The main deficiency of these results is that only the combinatorial structure of VP(q) is
maintained. That is, only the changes to this structure are handled. What is maintained
for VP(q) is a sequence of vertices and edges of the scene which are (partially) visible to q.
Therefore, if we have to draw the exact visible portion of each edge of this sequence, as needed
in all real applications, we must do a linear trace over this sequence and compute and draw
the exact visibility polygon. This extra process should be done in each time-stamp that we
want to draw the view.

This along with the implementation complexity prevent application developers to use
these methods in practice. Therefore, several simple but inefficient methods are usually used
in real and practical implementations in which the view is re-computed and re-drawn from
scratch at each time-stamp and some hardware or cache mechanisms are used to improve the
efficiency.

In this paper, we propose a theoretical method that computes the exact data of VP(q)
instead of its combinatorial structure. Despite current theoretical solutions, this method, like
the practical approaches, produces the exact visibility polygon at each time-stamp and it is
theoretically efficient as well.

To achieve this goal, we maintain a list C(q) of the edges of VP(q) that are not completely
visible from q. This list defines the edges from the exact view of q that face changes as q
moves. For example, for observer q in Fig. 1, C(q) = 〈e1, e2〉. At the next time-stamp that

A. Zarei, M. Ghodsi: Exact Visibility Maintenance 77

q′

q

e1

e2

Figure 1: When the observer moves from point q to point q′, its visibility polygon
is changed only near edges e1 and e2

observer lies at point q′, the exact view are drawn by just determining the new visible portions
of the edges e1 and e2. Such updates that do not alter the combinatorial structure of VP(q),
occur most often in real applications. Hence, the application developers can simply use our
method to have the exact VP(q) at each time-stamp.

As q moves further, some edges may be eliminated from C(q) and new edges must be
inserted into this list. To do these updates efficiently, we build an enriched version of the
visibility graph data structure of the scene. This data structure is built in the preprocessing
phase of our algorithm containing the required data in order to detect and handle the updates
in constant time. The size of this structure is equal to the size of the original visibility graph
which is something between O(n) and O(n2). Using this method, updates of VP(q), as the
observer q moves to a new location, is done in linear time in terms of the number of the
required changes of the exact visibility. Trivially, this is equal to |C(q)| whenever the time
interval between the consecutive time-stamps is small. Therefore, the update time is normally
low for small observer movement.

Comparing to current theoretical methods, the best current algorithm maintains VP(q)
as a sequence of polygon edges visible from q, and updates on VP(q) are done in O(log(n)).
But, in these methods, the computation of the exact visibility region, needed by the practical
applications, requires another trace of VP(q) which is done in O(|VP(q)|). While C(q) is a
subset of VP(q), the efficiency of our method is always superior. Specifically, assume that
q moves along a given line segment st and during this movement, there are k time-stamp
intervals, and VP(q) changes combinatorially l times. The time complexity of the best current
methods is O(k|VP(q)| + l log n) where |VP(q)| is assumed to be the average size of VP(q)
along st. In contrast, after the first initialization of VP(q), the total processing time of our
method, when q moves along st, is O(k|C(q)| + l) where |C(q)| is the average size of C(q)
along st. Also, the processing time of our method is completely output-sensitive and does not
depend on the size of the scene. Moreover, if the observer changes its movement direction,
the current methods require O(n log n) processing time to rebuild their event queue, while
our method does not require such extra processing times.

Our method is simple for implementation and our experimental results verify its efficiency
and applicability for scenes containing many objects inside.

The rest of this paper is organized as follows: we describe the preprocessing phase of the
algorithm and our representation of the visibility graph in Section 2. The new method is
described and analyzed in Sections 3 and 4. Our experimental results are shown in Section 5
and the materials are summarized and concluded in Section 6.

78 A. Zarei, M. Ghodsi: Exact Visibility Maintenance

2. The preprocessing phase

Our algorithm is composed of two main phases: preprocessing and running. In the prepro-
cessing phase, a set of useful information is gathered to facilitate the next phase. In this
section, we describe the structures prepared in the preprocessing phase of the algorithm and
we analyze the time and space complexity of this phase.

Our method, uses an existing algorithm to compute the initial VP(q). Any one of the
methods in [22, 8, 17, 20, 2] can be used here. We use the method of [2] which efficiently
computes VP(q) for a single point observer q. This method does not require a preprocessing
and computes VP(q) in O(n log n) time.

Data structures are needed to predict and determine the visibility events during the
motion of the observer. We use the visibility graph for this purpose. The visibility graph of
a scene S, denoted by VG(S), is a graph that contains a vertex for each vertex of the scene
and an edge between two vertices if their corresponding vertices see each other. For a scene
S of total n vertices, size of VG(S) is something between O(n) and O(n2) depending on the
number of the edges in this graph.

A

x

u

v α
e

B

v

α1

α3

α4 α5

α6
α2

α′

Figure 2: Special representation of the visibility graph

This definition of the visibility graph does not answer all requirements of our algorithm.
We need a special representation for this graph by which a visibility event can be handled
in constant time. For this purpose, the incident edges of each vertex are assumed to be
sorted counter-clockwise such that these radial edges subdivide the unit circle around each
vertex into several ranges. Having these sorted ranges, we can navigate from one range to
an adjacent one in constant time. This sorted list of ranges for a vertex v is denoted by Rv

and the range containing a ray −→vx is denoted by Rv(
−→vx). For example, Rv and Rv(

−→vx) of the
vertex v shown in Fig. 2A are respectively equal to 〈α1, α2, α3, α4, α5, α6〉 and α4.

Another requirement in our representation of the visibility graph is to determine the
ranges from Rv and Ru through which the supporting line of the edge uv of the visibility
graph passes from its both end points. We refer to these ranges by Rv(

−→uv) and Ru(
−→vu). For

example, Rv(
−→uv) and Ru(

−→vu) in Fig. 2B are respectively equal to α and α′. Using the ordered
lists of Ru and Rv, these ranges can be computed in logarithmic time. We must determine
these ranges in constant time during the motion. We thus compute Rv(

−→uv) and Ru(
−→vu) for

each edge uv of the visibility graph in the preprocessing phase and maintain them in our
representation of the visibility graph.

Moreover, for any edge of the visibility graph, we must be able to determine in constant
time the first edges of the scene intersected by the supporting line of this segment from its
both endpoints. We denote these intersected edges by e−→uv and e−→vu . For example, e−→uv in
Fig. 2B is equal to e and while −→vu passes through the outside of the scene after vertex u,

A. Zarei, M. Ghodsi: Exact Visibility Maintenance 79

e−→vu is set to empty. We compute e−→uv and e−→vu for each edge uv of the visibility graph in the
preprocessing phase and maintain them in our representation of the visibility graph to be
accessed in constant time during the motion.

Finally, to facilitate navigation between these structures, we create direct links between
edges and vertices of the visibility graph and their corresponding vertices and edges of the
scene and their adjacent ranges defined above.

We call this version of the visibility graph as enriched visibility graph and denote it by
EVG(S) for a scene S. As described above, we add constant data items to each edge of the
visibility graph. Hence,

Lemma 1 EVG(S) and VG(S) data structures have equivalent space complexity.

Therefore, the size of the required space of the preprocessing phase of our method for a
scene of total n vertices is something between O(n) and O(n2).

We must compute and embed our extra data into the known visibility graph data struc-
ture. Before describing these details, we introduce the current algorithms of computing the
visibility graph of a planar scene. The visibility graph problem itself has long been studied
and has been applied to a variety of areas and problems like motion planning, shortest path
and art gallery problems. D.T. Lee proposed the first nontrivial solution to this problem run-
ning in O(n2 log n) time [13]. Then, a series of O(n2) time algorithms proposed by E. Welzl

[21], Asano et. al. [3], Edelsbrunner and Guibas [4] and Overmars and Welzl [15]
which require O(n2) [21, 3], or O(n) [4, 15] working space. Finally, several output-sensitive
algorithms proposed by Overmars and Welzl [15], Ghosh and Mount [6, 7], Kapoor

and Maheshwari [11, 12], Pocchiola and Vegter [16] and Riviére [19] which run in
O(e log n) [15] or O(e + n log n) [6, 7, 11, 12, 16, 19] where e is the number of the edges in
the visibility graph.

We can pick one of the simple algorithms from the above-mentioned to build the visibility
graph. For example, if we use the method by D.T. Lee [13], we can sort the adjacent edges
of each vertex in total O(|e| logn) time. Having the sorted list Rv for all vertices v, we can
build the other Rv(

−→uv) and e−→uv data for all vertices and edges in O(e+n) time to be described
later. Therefore, the total time complexity of the preprocessing phase will be O(n2 log n) and
it can simply be implemented for practical usage.

To be efficient, we use the algorithm proposed by Kapoor and Maheshwari [12] to
build and prepare our extension of the visibility graph. In this method, the adjacent edges
of a vertex v are computed and reported sorted by their angular order around v (Lemma 4.2
in [12]). Having this sorted list, we propose a method to compute Rv(

−→vu) data items for all
edges vu of the visibility graph adjacent to a vertex v by a linear trace on this list.

Assume that Ev = 〈vu1, vu2, . . . , vuk〉 is the list of adjacent edges for vertex v in VG(S)
computed by the algorithm proposed in [12]. The order of edges of Ev corresponds to their
counter-clockwise order around v. We define a list Rv = 〈α1, α2, . . . , αk〉 where αi, (1 ≤ i < k)
is the counter-clockwise angle defined by edges vui and vui+1 and αk is this angle for vuk and
vu1. Having these two lists, we can compute Rv(

−→uiv), 1 ≥ i ≤ k, as follows. We first find
αi = Rv(

−→u1v) by a naive linear trace or an efficient binary search on Rv. Assume that we
have a new list R′

v
= 〈αi, αi−1, . . . , α1, αk, αk−1, . . . , αi+1〉. Then, we can simultaneously trace

R′

v
and Ev lists to find Rv(

−→uiv) of all vui edges of Ev.
The e−→uv data can be computed by applying small changes to the base algorithm in [12].

We change this algorithm to maintain the segment ei which is visible from each vertex v
through any two neighboring edges vui and vui+1 of its edges in VG, i.e., for any two edges

80 A. Zarei, M. Ghodsi: Exact Visibility Maintenance

vu and vu′ of the visibility graph which are neighbors in counter-clockwise ordered list of
the adjacent edges of v, we maintain the segment e which is visible to v through the wedge
defined by vu and vu′. These information can be computed without increasing the time or
space complexities of the base algorithm. We omit the details here since it needs the details
of [12]. Having this information, e−→uv is exactly the segment e which is visible from v through
the edges of the range Rv(

−→uv).
In this method, we process each edge of the visibility graph a constant number of times

and therefore,

Lemma 2 We can build the enriched visibility graph in O(e + n log n) preprocessing time.

Summarizing the discussion of this section we have the following theorem:

Theorem 1 The size of EVG(S) data structure of a scene S of total n vertices is O(e + n)
and it can be constructed in O(e+n log n) time where e is the number of the edges of VG(S)
which is at most n2.

Therefore, the space and time complexity of our preprocessing phase is O(e + n) and
O(e + n log n), respectively.

3. Maintaining exact visibility

In existing theoretical solutions, the combinatorial structure of VP(q) is maintained during the
motion of the observer. This structure, which is the sequence of the visible edges and vertices
from the observer q, is changed in discrete time-stamps. These changes occur whenever a new
edge or vertex is added to this sequence or an edge or vertex is removed from it. For example,
when the observer in Fig. 1 moves from point q to point q′, the combinatorial structure of
its visibility polygon does not change. However, when we are considering the exact border of
the visibility polygon, we must determine the exact visible portion of edges e1 and e2 in this
figure. Therefore, if we are asked to maintain or draw the exact visibility polygon at each
time-stamp, it is sufficient to identify such edges and compute their visible portions. Then,
online drawing or illumination of VP(q) can be done by only updating the changed areas
around these edges.

It is easy to show that these changing areas always belong to some reflex vertices visible
from q. The vertex v in Fig. 3 is an example of such vertices. In this figure, only the upper
portion of edge e which is determined by the supporting line of qv, is visible from q. When
q moves, this visible portion, based on the motion direction, is increased or decreased. The

region A in Fig. 3 is called a cave and v,
−→
l and e are its vertex, window, and edge, respectively.

A cave c is specified by its vertex, window and edge which are respectively denoted by vc, wc

and ec.
The idea of our algorithm for online maintenance of the exact VP(q) is to efficiently

determine and maintain the visible portion of the cave edges during the observer motion. In
each time-stamp, the actual visibility polygon is computed by finding the visible portion of
each cave edge which depends on the position of the observer in that time. The initial value of
VP(q) for the initial location of the observer q is computed using one of the current methods.
For this initial view, the list of its caves is determined and maintained in a sorted list denoted
by C(q) in which the caves are stored according to their appearance order in VP(q). This
list specifies the parts of VP(q) which must be updated as q moves around. In the following
subsections, we first describe how to initialize C(q) and then, describe the possible changes

A. Zarei, M. Ghodsi: Exact Visibility Maintenance 81

A
q

l

e

v

Figure 3: When q moves, only the visible portion of e in VP(q) is changed.
A is a cave and v, l and e are respectively its vertex, window and edge.

(events) of this list during the motion. In the next section, we describe the event handling
methods for these changes.

3.1. Initialization step of the algorithm

Before starting the motion, VP(q), the initial view of the observer q, is computed for the
initial placement according to the method described in Section 2. According to this method,
VP(q) is the ordered sequence of edges and vertices which are visible from q. We prepare C(q)
as follows. For any one of the reflex vertices in VP(q) there is a cave entry in C(q). These
caves are determined by a linear trace of VP(q) and identifying its reflex vertices. For each
reflex vertex vi, its corresponding cave ci is specified by its vertex, edge and window which are

respectively equal to vi, ei and
−→
viv

′

i
. Here, ei is the edge next to or prior to vi in the ordered

list of VP(q) that is intersected by the supporting line of qvi, and, v′

i
is this intersection point.

Having VP(q), the associated values of each cave can be computed in constant time.
Moreover, for each cave window wc, we compute and maintain Rvc

(wc) which is the range
of vc containing wc. This can be done in log(|Rvc

|) time by a binary search on Rvc
.

Lemma 3 The time complexity of the initialization step of our algorithm is O(|VP(q)| log n).

Proof: We can compute VP(q) in O(|VP(q)| log n) time using the solution described in Sec-
tion 2. According to the above discussions, C(q) is obtained in O(|VP(q)|) and the containing
ranges of their windows are computed in O(|C(q)| logn) running time.

3.2. Continuous update of the view

The initial view must be updated during the motion. We do not have any information about
the direction and velocity of the motion and in discrete time-stamps we must redraw the
view according to the position of the observer in that moment. This is done by continuously
updating caves while the observer moves. At each time-stamp, we first update the cave list
and then the view is updated according to the new list of caves and the position of the
observer. For each cave c in C(q), the intersection point of ec and the supporting line of qvc is
computed. This point is an end point of the visible segment of the edge ec in that time-stamp.
Therefore, in each time-stamp at which we need to compute the exact view, this intersection
computation must be done for all caves in C(q).

This type of updates is valid while the list C(q) is valid. After its initialization, C(q) is
valid only for a while and depending on the movement of q, some new caves must be added
to it or some caves must be removed from. Hence, the correctness of this method depends on
maintaining the cave list correctly. We call the events which change C(q) cave events. There
are three types of cave events which are shown in Figs. 4 and 5.

82 A. Zarei, M. Ghodsi: Exact Visibility Maintenance

A

q

p

r

v

e1

e2

u

α

α′

α
q

p

r

v

α′

u

e

B

Figure 4: Cave events: in part A(B), when the observer moves from p to r
or from r to p, a transform (add-remove) event occurs at point q

The first type of these events, called transform, is shown in Fig. 4A. In this figure, when
the observer moves from point p to r, before arriving to point q, e2 is the edge of a cave and
after passing q, the edge e1 will be the edge of that cave. When the observer moves from r
to p a similar event happens. In a transform event, a new edge appears in VP(q) and will be
the edge of a cave, or, a cave edge disappears from VP(q) and its adjacent edge will be the
cave edge.

The second type of cave events, which is shown in Fig. 4B, is called add-remove event
type. According to this figure, when the observer moves from point p to r, before arriving to
the point q, there is no effective cave assigned to the reflex vertex v. A cave is effective if its
window lies inside the scene. After passing the point q and in point r, there is an effective
cave on this vertex. Therefore, on point q the new cave must be added to C(q) as an effective
cave. This scenario happens in reverse when the observer moves from point r to point p for
which on point q, the cave with vertex v must be specified as an ineffective cave.

The third type of cave events is called split-merge. In these events, two caves are merged
into a single one or a cave is split into two distinct caves. Figure 5 shows these situations.
When the observer lies on point p, it has two caves with vertices v and u. As it moves, on
point q, these caves will be merged and, then, on point r only the cave with vertex v remains
and the other one is eliminated. On the other hand, when the observer moves from r to p
this scenario happens in reverse order. The observer first has a single cave in point r, and in
point q, this cave is split into two distinct caves.

Therefore, in a split-merge event, depending on the direction of the observer motion, a

u

A B

p q r

v

u

p q r

v

Figure 5: Cave events: when the observer moves from p to r or from r to p,
a split-merge event occurs at point q

A. Zarei, M. Ghodsi: Exact Visibility Maintenance 83

cave deletion or insertion occurs and its related changes must be handled.
In order to prove the correctness of this method, we must prove that it is enough to

identify and handle the cave events.

Theorem 2 Assuming that we can correctly identify and handle the three types of cave

events, the combinatorial structure of VP(q) remains valid during the motion.

Proof: We prove this by showing that any single combinatorial change of VP(q) corresponds
to a single cave event. The combinatorial structure of VP(q) is changed whenever q passes
over an edge e of the extended visibility graph. Then, a new vertex and edge will be added to
VP(q), or an edge and a vertex must be removed from. Assume that e belongs to vertices u
and v, and u is the newly added or removed vertex. Also, assume that just before passing over
e, we have the correct list for C(q). Trivially, v is a reflex vertex and just before passing over
e, we have an effective of ineffective cave associated to v in C(q), and after passing over e, the
edge of this cave is changed. Simple arguments show that these changes belong to a single
cave event. Therefore, while q moves, if we detect and handle these cave events according to
their happening order, VP(q) will be updated correctly.

In the next section we describe how to detect and handle the cave events.

4. Handling visibility events

Despite current algorithms, we do not have an event queue in our algorithm. Instead, we
identify and handle the occurred events in discrete time-stamps. At each time-stamp, we
process the current cave list against the new position of the observer. Tracing this list, we
detect the happened changes (events) during this time slice (from previous time-stamp to
the current one). For any cave, it is possible to detect several events which must be handled
according to their happening order. Therefore, during this linear trace on the cave list, each
cave is checked and its associated cave event(if there is any) is handled, and this is repeated
until there was no such event on this cave.

For any one of these events, we apply the required changes to VP(q) and C(q) according
to the following subsections. Doing this linear trace, we have the correct VP(q) and C(q) for
the current time-stamp and we can draw the correct view.

Assume that t is the current time-stamp and c is a cave in this time-stamp and t′ is the
previous time-stamp. In the following subsections we refer to the edge and window of this
cave in time-stamp t′ by e′

c
and w′

c
, respectively.

4.1. Handling transform events

A transform event happens on a cave c whenever wc passes over one of the edges of Rvc
(w′

c
),

named vu, and e−→vu is empty. In any time-stamp, such an event on cave c is detected by
comparing the new direction of wc, based on the current position of the observer, and edges
of Rvc

(w′

c
) for the previous direction of w′

c
in prior time-stamp. At the new time-stamp, we

have Rvc
(w′

c
) for windows of all caves in prior time-stamp. Therefore, this comparison is done

in constant time.
After detecting such an event we must apply the required changes to VP(q) and C(q)

lists. As shown in Fig. 4A, assume that the observer has started its motion from point p and
it is now on point q. At the first time-stamp after this moment we will detect this transform
event and must update VP(q) and C(q) accordingly. At that time-stamp, we handle this

84 A. Zarei, M. Ghodsi: Exact Visibility Maintenance

event as follows. Form the result of the prior time-stamp, we have e′
c

= e2 and assume that
α′ = Rvc

(w′

c
). Then, Rvc

(wc) is equal to α where α is a range in Rvc
next to α′ in counter-

clockwise order. Also, ec must be set to e1 which is the other edge of the scene adjacent to
vertex u. Having the enriched visibility graph, these updates can be done in constant time.
Updating VP(q) is also equivalent to removing e2 from it which is done in constant time using
the direct links between the cave vertex v and its position in VP(q).

For motion in the opposite direction (starting from r in Fig. 4A), the event is handled in
a bit different way. VP(q) is updated by adding e2 to its correct position and Rvc

(wc) is set
to α′ which is a range in Rvc

prior to Rvc
(w′

c
) in counter-clockwise order.

4.2. Handling add-remove events

An add-remove event happens on a cave c whenever wc passes over one of the edges of Rvc
(w′

c
),

named vu, and vu is an edge of the scene. Therefore, it can be detected in the same way as
transform events. These events can also be handled similarly. As shown in Fig. 4B, assume
that the observer has started its motion from point p and it is now on point q. Here, an add
event is happened. It is handled by removing edge vu from VP(q). The cave c associated
to vertex v is specified as an effective cave and ec and Rvc

(wc) are respectively set to e and
α where e is the other edge adjacent to u and α is a range in Rvc

next to α′ = Rvc
(w′

c
) in

counter-clockwise order.
For motion in the opposite direction (starting from r in Fig. 4B) the event is handled

similarly. VP(q) is updated by adding vu to its correct position, Rvc
(wc) is set to α′ and the

cave c is set as an ineffective cave.
It is simple to show that using the enriched visibility graph, add-remove events can also

be handled in constant time.

4.3. Handling split-merge events

As shown in Fig. 5, a split event happens on a cave c whenever wc passes over one of the edges
of Rvc

(w′

c
), named vu for a reflex vertex u, such that wd, the window of the corresponding

cave of u, lies inside the scene just after this moment. Like transform and add-remove events,
split event on a cave c is detected by comparing the direction of wc and the edges of Rvc

(w′

c
)

and checking the vertex u and the direction of the new window wd which all can be done in
constant time.

To handle a split event, the new cave d on vertex u must be inserted into C(q) before or
after the cave c. Vertices of the caves c and d are known and are respectively equal to v and
u. In order to find their edges and the containing ranges of their windows we use the prepared
data structure of the enriched visibility graph. Without loss of generality, assume that v is
closer to the observer than u. For the case shown in Fig. 5A, ec and ed are equal to e−→vu and
for the case shown in Fig. 5B, ec is equal to one of the edges of the scene which is adjacent
to vertex u and ed is equal to e−→vu. While vu is an edge of the visibility graph, we know the
value of e−→vu from the preprocessing information. Moreover, Ru(wd) is equal to Ru(

−→vu) which
is also known from the preprocessing information and Rv(wc) is equal to one of the adjacent
ranges of Rv(w

′

c
). Therefore, we can compute the parameters of the new and updated caves

in constant time. Consequently, C(q) can be updated in constant time whenever a split event
is detected and processed. VP(q) can also be updated in constant time. This is done by
inserting eu, u and ec into VP(q) after of before the position of e′

c
in VP(q). However, eu or

ev may already exits in these positions. If so, they are not inserted twice.

A. Zarei, M. Ghodsi: Exact Visibility Maintenance 85

As shown in Fig. 5, a merge event happens on caves c and d whenever both wc and wd

pass simultaneously over the supporting line of vcvd and vc and vd lie in the same side of the
observer. Fortunately, this happens only on adjacent caves in C(q).

Lemma 4 Only adjacent caves of C(q) can be merged.

Proof: We assume that the vertices of the scene are in general position. This implies that a
line can not pass through three vertices of the scene. Then, whenever windows of two caves
overlap no other vertices exist between them.

Therefore, the merge events can be detected by considering the consecutive caves of C(q)
and this takes constant time for each cave c in C(q).

The merge events are handled as follows. Assuming that v is closer to q than u, C(q) is
updated by removing the cave d, which is the corresponding cave on vertex u. For the case
shown in Fig. 5A, ec is set to e′

d
and for the case shown in Fig. 5B, ec is set to the proper

adjacent edge of the vertex u. In both cases, Rv(wc) is set to the proper adjacent range of
Rv(w

′

c
). The view is also updated by removing e′

c
, u and e′

d
from VP(q) and inserting ec

instead. However, e′
c

and e′
d

may be equal or ec may already exists in VP(q) or it may be
equal to e′

d
. These cases must be considered properly when we update VP(q).

4.4. Algorithm efficiency

It is important to note that at each time-stamp we may handle several events on a cave.
The reason is that the time intervals between our time-stamps may be long and several cave
events may happen between two consecutive time-stamps. We process these events according
to their correct happening order, and therefore, the final result at each time-stamp is correct.

From the previous subsections we have,

Lemma 5 At each time stamp where the exact view is drawn, the required time for updating

C(q) and VP(q) is linear in terms of the number of the visibility change events happened

between the previous and the current time-stamp.

This bound is the best possible. The reason is that any one of these changes must be
applied on the exact view of the previous time-stamp to be equal to the view in current
time-stamp.

If the time-stamp intervals are sufficiently small, we can assume that at each time-stamp
we apply at most one cave event on each cave of C(q). Consequently, the required time to
update and draw the exact view at each time stamp is linear in terms of the positions where
the view has changed from the last time-stamp.

We summarize the efficiency of our method in the following theorems:

Theorem 3 A planar polygonal scene can be preprocessed such that the exact VP(q) for

an arbitrarily observer q can be maintained and updated in discrete and sufficiently small

time-stamps in O(|C(q)|) processing time as the observer moves in any direction.

Theorem 4 The total processing time of maintaining the exact visibility polygon of a moving

point observer q on a given path, where VP(q) is required in k time-stamps and VP(q) changes

combinatorially l times along this path, is O(k|C(q)| + l) where |C(q)| is the average size of

C(q) along this path.

86 A. Zarei, M. Ghodsi: Exact Visibility Maintenance

Our method is completely output-sensitive and it is superior over the best current methods
which are event-driven and focus on maintaining the combinatorial structure of the visibility
polygon. As discussed in the introduction, the time complexity of the best known methods
for a situation described in the above theorem is O(k|VP(q)| + l log n) where |VP(q)| is the
average size of VP(q) along the path. Moreover, whenever the observer changes its motion
direction, these methods require extra processes(O(n log n)) to rebuild their event queue,
while, our method does not require such extra processes.

4.5. Rationality problems

In geometric algorithms, rational number computations are always a challenging problem.
This problem occurs because of the limited accuracy in real number computations. The
lost digits in these computations may lead to abnormal effects on the accuracy of the whole
algorithm.

In event driven algorithms where there is a queue of future events, the event times are not
exact because of these lost digits. Therefore, when we are at the predicted time of an event,
the configuration of the input may not correspond to what we expect for that event. For
example, we are to process an event at time t where three points are supposed to be collinear.
Because of the limited accuracy of real numbers, we have stored this event to be happened
at time t′ that is not exactly equal to t. Then, at time t′ the three points are not collinear
and an inconsistency may arise in our algorithm. This issue must be considered whenever we
implement and use a geometric algorithm in real applications which complicates the usage of
such algorithms.

In our method, we avoided to build an event queue. Instead, we check all events happened
during the last interval of the discrete time-stamps. Therefore, all events are detected and
handled correctly in this method and it is still simple to be implemented and used in real
applications.

5. Implementation result

We have examined efficiency of the proposed method in practice by implementing this method.
We used some real data sets as well as virtually generated data to be fed into the algorithm
and approximately obtained similar results. We captured the real test data from some settings
of objects in a room to evaluate the results obtained for virtual scenes. While the results were
closely similar, we only describe the virtual settings here.

The outer boundary of our virtual scene is a square and the obstacles are regular k-gons
and k-stars for different values of k. The observer lies initially at the center of the square.
Figure 6 depicts a sample virtual scene. We define the following parameters for a scene S:

• Density (d): The density of S is the ratio of the area of the bounding square covered
by the obstacles which is formally the area of the obstacles over the area of the outer
boundary square.

• Average obstacle complexity (nh): Average obstacle complexity is the average num-
ber of the vertices of the obstacles which is formally the total number of the vertices of
the obstacles over h, the number of the obstacles.

• Time-stamp granularity (t): Time-stamp granularity is the ratio of the distance
between the positions of the observer in two consecutive time-stamps and the length of
the edges of the bounding square.

A. Zarei, M. Ghodsi: Exact Visibility Maintenance 87

q

Figure 6: A sample virtual scene

• Average time-stamp event complexity (ne): Average time-stamp event complexity
is the average number of visibility change events happened between two consecutive
time-stamps. We have computed this parameter for the initial position of the observer
and its position in the next time-stamp moving along a diagonal of the bounding square.

• Average cave complexity ratio (c): Average cave complexity ratio is defined to be
|C(q)|/|VP(q)| for the initial position of the observer q.

The obstacles are placed uniformly inside the square in such a way that they do not
intersect each other. We show our implementation results in three diagrams shown in Figs.
7, 8 and 9.

We first checked the relation between ne and t. For this purpose we built scenes of 1000
obstacles for d ∈ {0.00001, 0.00002, . . . , 0.0001} and nh ∈ {5, 10}. Figure 7 shows the result.
Then, for a fixed t = 0.0001 we checked the relation between ne and h. We built scenes of
h ∈ {1000, 2000, . . . , 10000} obstacles for d ∈ {0.00001, 0.00002, . . . , 0.0001} and nh ∈ {5, 10}.
Figure 8 shows the result for this relation. Finally, we checked the relation between c and
other parameters of the scene. We understood that the tangible effective parameter is nh and
number of reflex vertices of the obstacles. In our virtual scenes, there are two obstacle types
(k-gon and k-star) for which the average number of reflex vertices is a constant factor of nh.
So, we only checked the relation between c and nh for which the result has been shown in
Fig. 9.

The following interesting observations can be perceived from these diagram:

1. There is a linear relation between ne and t, i.e., for given values of d, h and nh, ne grows
linearly as t increases linearly.

2. There is a linear relation between ne and h, i.e., for given values of d, t and nh, ne grows
linearly as h increases linearly.

3. The relation between ne and d is something greater than linear, i.e., for given values of
t, h and nh, as d increases linearly ne growth ratio is super linear.

4. There is a linear relation between ne and nh, i.e., for given values of d, h and t, ne grows
nearly linearly as nh increases linearly.

88 A. Zarei, M. Ghodsi: Exact Visibility Maintenance

4

d = 0.1

d = 0.2

d = 0.3

d = 0.4

d = 0.5

d = 0.1

d = 0.2

d = 0.3

d = 0.4

d = 0.5

10
00

0
90

00
80

00
70

00
60

00
50

00
40

00
30

00
20

00
10

00

Time-stamp Granularity (t)

2

A
ve

ra
ge

T
im

e-
st

am
p

E
ve

n
t

C
om

p
le

x
it
y

(n
e
)

nh = 10

10
00

0
90

00
80

00
70

00
60

00
50

00
40

00
30

00
20

00
10

00

Time-stamp Granularity (t)

1

5

4

3

2

6

A
ve

ra
ge

T
im

e-
st

am
p

E
ve

n
t

C
om

p
le

x
it
y

(n
e
)

nh = 57 14

12

10

8

6

Figure 7: Relation between ne and t for h = 1000

nh = 5

d = 0.1

d = 0.2

d = 0.3

d = 0.4

d = 0.5

d = 0.1

d = 0.2

d = 0.3

d = 0.4

d = 0.5

10
00

0
90

00
80

00
70

00
60

00
50

00
40

00
30

00
20

00
10

00

Number of Obstacles (h)

10

A
ve

ra
ge

T
im

e-
st

am
p

E
ve

n
t

C
om

p
le

x
it
y

(n
e
)

nh = 10

20

30

40

50

60

70

80

10
00

0
90

00
80

00
70

00
60

00
50

00
40

00
30

00
20

00
10

00

Number of Obstacles (h)

10

50

40

30

20

60

A
ve

ra
ge

T
im

e-
st

am
p

E
ve

n
t

C
om

p
le

x
it
y

(n
e
)

Figure 8: Relation between ne and h for t = 0.0001

5. In a dense scene (d = 0.5), ne is usually constant. Trivially, ne depends on t, but, for

realistic small values of t, (t =
1

10h
), we have ne < 1 for both nh = 5 and nh = 10.

Moreover, in a sparse scene (d = 0.1), ne grows rapidly as nh grows.

6. There is a linear relation between c and nh, i.e., regardless of the values of d, h and t,
c grows linearly as nh increases linearly.

From the above observation we can conclude that reducing the complexity of drawing
VP(q) from |V P (q)| to |C(q)| is an acceptable improvement which is done in this paper. Also,
nonnecessity of handling visibility event separately from the drawing procedure is another
enhancement which is obtained using our method.

Average Obstacle Complexity (nh)

20 30 40 50 60 70 80 90 10010

1

2

3

5

6

7

8

9

10

4

A
ve

ra
ge

C
av

e
C

om
p
le

x
it
y

R
at

io
(c

)

Figure 9: Relation between c and nh

A. Zarei, M. Ghodsi: Exact Visibility Maintenance 89

6. Conclusion

In this paper, we considered the notion of exact visibility in planar polygonal scenes. The
aim is to maintain the exact view of a moving observer in such environments. The non-exact
solutions of this problem has been considered before from which the exact view can be obtained
by doing some more processes. But, such solutions are not efficient and require a queue of
events whose maintenance and usage is complicated and unnecessary in real applications.

We have proposed a method that can be used directly in computer graphics and other
visibility related applications. In this method, we prepare an enriched version of the visibility
graph in the preprocessing phase which contains enough data to be used during the motion.
Then, the changes in the visible areas of a moving observer are detected and handled efficiently
in linear time in terms of the number of the occurred changes. In this algorithm, there is
no restriction on the direction and speed of the observer and they can be changed any time
without requiring adjustment in the current data structures. The algorithm draws or produces
the exact view in discrete time-stamps of arbitrary distance. This algorithm prepares a special
representation of the visibility graph in its preprocessing phase.

The possible and interesting extensions of this work can be applied for dynamic environ-
ments or line segment observers. Using this method on 3D scenes is another extension of this
method. Reducing the preprocessing cost of this method is an interesting problem which will
enhance the efficiency and usability of this method. This goal may be obtained using another
alternative preprocessing data structures instead of the visibility graph.

References

[1] B. Aronov, L. Guibas, M. Teichmann, L. Zhang: Visibility Queries and Main-

tenance in Simple Polygons. Discrete and Computational Geometry 27 (4), 461–483
(2002).

[2] T. Asano: Efficient Algorithms for Finding the Visibility Polygons for a Polygonal

Region with Holes. Manuscript, Dept. of Electrical Engineering and Computer Science,
University of California at Berkeley, 1984.

[3] T. Asano, L. Guibas, J. Hershberger, H. Imai: Visibility of disjoint polygons.
Algorithmica 1, 49–63 (1986).

[4] H. Edelsbrunner, L. Guibas: Topologically sweeping in an arrangement. Proc. 18th
Annual Symposium on Theory of Computing, 1986, pp. 389–403.

[5] S. Ghali, A.J. Stewart: Incremental update of the visibility map as seen by a moving

viewpoint in two dimensions. Seventh Internat. Eurographics Workshop on Computer
Animation and Simulation, August 1996, pp. 1–11.

[6] S.K. Ghosh, D.M. Mount: An output sensitive algorithm for computing visibility

graphs. Proc. 28th Annual IEEE Symposium on Foundations of Computer Science, Los
Angeles/CA 1987, pp. 11–19.59.

[7] S.K. Ghosh, D.M. Mount: An output-sensitive algorithm for computing visibility

graphs. SIAM Journal on Computing 20, no. 5, 888–910 (1991).

[8] P.J. Heffernan, J.S.B. Mitchell: An Optimal Algorithm for Computing Visibility

in the Plane. SIAM Journal of Computing 24 (1), 184–201 (1995).

[9] O.H. Holt: Kinetic Visibility. PhD. Thesis, 2002.

90 A. Zarei, M. Ghodsi: Exact Visibility Maintenance

[10] S. Hornus, C. Puech: A Simple Kinetic Visibility Polygon. Proc. 18th EWCG’02,
2002, pp. 27–30.

[11] S. Kapoor, S.N. Maheshwari: Efficient algorithms for Euclidean shortest path and

visibility problems with polygonal obstacles. Proc. 4th Annual ACM Symposium on Com-
putational Geometry, Urbana/IL 1988, pp. 172–182.

[12] S. Kapoor, S.N. Maheshwari: Efficiently constructing the visibility graph of a simple

polygon with obstacles. SIAM Journal on Computing 30, no. 3, 847–871 (2000).

[13] D.T. Lee: Proximity and reachability in the plane. PhD. Thesis and Tech. Report ACT-
12, Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Ur-
bana/IL 1978.

[14] K. Nechvile, P. Tobola: Local approach to dynamic visibility in the plane. Seventh
Int. Conf. in Central Europe on Computer Graphics and Visualization, WSCG ’99, Feb.
1999.

[15] M.H. Overmars, E. Welzl: New methods for constructing visibility graphs. Proc. 4th
Annual ACM Symposium on Computational Geometry, Urbana/IL 1988, pp. 164–171.

[16] M. Pocchiola, G. Vegter: Computing the visibility graph via pseudo-triangulations.
Proc. 11th Annual ACM Symposium on Computation Geometry, Vancouver, B.C., 1995,
pp. 248–257.

[17] M. Pocchiola, G. Vegter: The visibility complex. Internat. J. Comput. Geom. Appl.
6 (3), 279–308 (1996).

[18] S. Riviére: Walking in the Visibility Complex with Applications to Visibility Polygons

and Dynamic Visibility. Proc. Canadian Conf. on Comp. Geom., 1997.

[19] S. Riviére: Dynamic visibility in polygonal scenes with the visibility complex. Proc. 13th
Annual ACM Symposium onComputational Geometry, Nice/France 1997, pp. 421–423.

[20] S. Suri, J. O’Rourke: Worst-Case Optimal Algorithms for Constructing Visibility

Polygons with Holes. Proc. second annual symposium on Computational geometry 1986,
pp. 14–23.

[21] E. Welzl: Constructing the visibility graph for n line segments in O(n2) time. Infor-
mation Processing Letters 20, 167–171 (1985).

[22] A. Zarei, M. Ghodsi: Efficient Computation of Query Point Visibility in Polygons

with Holes. Proc. 21st Annual Symposium on Computational Geometry, Pisa/Italy, 2005.

[23] A. Zarei, A.A. Khosravi, M. Ghodsi: Maintaining Visibility Polygon of a Moving

Point Observer in Polygons with Holes. 11th CSI Computer Conference (CSICC’2006),
IPM School of Computer Science, Tehran 2006, pp. 32–39.

Received July 15, 2008; final form March 7, 2009

