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Abstract. In general, 4 points define a 3 parameter set of axisymmetric quadrics
while 5 and 6 given points reduce these 3 degrees of freedom to 2 and 1, respec-
tively. Similarly, 7 supporting points confine members of the set to a finite number.
By imposing 2 constraints on the quadric coefficient matrix the 5 points are suffi-
cient to find the axis direction of up to 6 right cylinders. Imposing only 1 constraint
allows 6 points to support up to 12 right cones. Without either constraint, that
implies a singular coefficient matrix or singular conic submatrix, up to 4 quadrics
of revolution, possibly of mixed species, can contain 7 points. Formal arguments
and proofs are presented to substantiate these observations. Algorithms are de-
veloped and applied to exhibit cases with 6 right cylinders, 12 right cones and 4
quadrics of revolution, at least 3 of which are of different type. Spheres, being
uniquely defined on 4 points, are specifically excluded from consideration. The
cases of 12 cones and 4 quadrics of revolution are believed to be original revela-
tions. Methods to fit quadrics of revolution to more than 7 points are suggested.

Key Words: quadric of revolution, right cone, cone of revolution, right cylinder,
cylinder of revolution, special quadric, surface specification, finite given point set,
repeated eigenvalues
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1. Introduction

Real time precision camera aided inspection in industrial production, [3, 9, 10, 11, 18], by
fitting pixels in digital camera images to conic curves is a process that continues to evolve
as users gain confidence in achieving economic benefit. The next challenge is to reliably and
accurately fit quadric surfaces via a similar technique. Previous work in this direction seems
to have been confined to fitting cylinders of revolution. Results to date have established
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that, in general, up to six such cylinders may be disposed on five arbitrarily selected points.
Some relevant references are listed in sequence of their appearance: [13, 14, 2, 1, 5, 19], from
earliest to most recent. Remarkably, there is little backward cross citation, with the exception
of Schaal, Strobel (see below) and Röschel [12] who were aware of early contributions,
of Laguerre [4], Narasinga [7] and Narasinga & Srinivasachari [8], but who were
not trying to find a finite number of quadric surfaces on minimal point set specifications.
Furthermore there is no evidence of a unified approach to this sort of problem. The quadric
of revolution appears to be a good starting point in this regard. Herein the original approach
introduced to define four on seven given points will be extended to include the cylinder
problem, to show how it fits into the general analytical procedure, and to expose for the first
time how twelve cones of revolution may be placed on six points.

The purpose here is to clarify the way attributes of quadrics of revolution can be used
to set up systems of equations whereby these surfaces can be determined on fewer than the
nine given points required to uniquely define a general quadric. In the case of cylinders of
revolution it has been known for some time, [2, 1, 5], and more recently demonstrated, [19],
that in general as many as six such cylinders may be located on five given points. Further-
more it is common knowledge that four arbitrarily located points will support a sphere. By
examining the structure of the conic section of a quadric of revolution, where it intersects the
absolute plane, one sees, via cunning reparametrization, that the equivalent of two conditions
or constraint equations are implied by the specification that a pair of identical eigenvalues be
imposed on a 3 × 3 symmetric matrix that represents the coefficients of this conic section of
a quadric of revolution. Essentially the six unknown coefficients in the matrix are reduced to
four by the parametrization. So a discrete number of axisymmetric quadrics will in general
contain seven given points. Imposing the condition that the overall 4 × 4 coefficient matrix
determinant be zero supplies one additional constraint allowing a number of cones of revolu-
tion to be defined on six points. Adding that the conic section coefficient matrix determinant
vanishes as well obtains the cylinders of revolution on five points, but via a unified method
that begins with the general quadric of revolution, rather than with a special vector construc-
tion [19], used to find the cylinders’ axial directions, that can be traced to early work by
Schaal, [13, 14], and Strobel, [15, 16, 17].

2. Quadrics of revolution

A quadric Q in 3-space always has an equation of the form

x⊤A x + 2c⊤x + c0 = 0 (1)

where A is a real symmetric 3 × 3 matrix, c = [c1, c2, c3]
⊤ ∈ R

3, c0 ∈ R and x = [x, y, z]⊤

denotes the Cartesian position vector of any point on the surface. Eq. 1 can be written
compactly as follows:

[1,x⊤] Q

[

1
x

]

= 0 (2)

where

Q =

[

c0 c⊤

c A

]

. (3)

The following well known facts, drawn from the theory of quadrics will be used:
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Q is a quadric of revolution, but not a sphere1, if and only if the symmetric matrix A

has exactly two distinct eigenvalues λ1 and λ2 where λ1 has multiplicity 1, λ2 has multiplicity
2 and λ2 6= 0. The 1-dimensional2 eigenspace belonging to λ1 represents the (direction of
the) axis of Q whereas the 2-dimensional eigenspace belonging to λ2 represents the planes
perpendicular to this axis — the planes which intersect Q on circles.

Proposition 1. Let A be a symmetric 3×3 matrix with eigenvalues λ1, λ2 = λ3 (two of them
are identical); then A can be written as

A = (λ1 − λ2) a a⊤ + λ2 I3 (4)

where

a =





a1

a2

a3



 , ‖a‖ = 1, I3 =





1 0 0
0 1 0
0 0 1



 . (5)

Proof. Since A is symmetric there exists a matrix3

R = [a,b, c] =





a1 b1 c1

a2 b2 c2

a3 b3 c3





with

A = R





λ1 0 0
0 λ2 0
0 0 λ2



 R⊤,

where R is orthogonal, i.e., R R⊤ = I3. Hence,

A = [a,b, c] ·





λ2 + λ1 − λ2 0 0
0 λ2 0
0 0 λ2



 ·





a⊤

b⊤

c⊤





= [a,b, c] ·





λ1 − λ2 0 0
0 0 0
0 0 0



 ·





a⊤

b⊤

c⊤



 + λ2 R R⊤

= (λ1 − λ2) a a⊤ + λ2 I3.

Proposition 2. Let Q be a quadric of revolution different from a sphere or a pair of parallel
planes, then Q has an equation of the form (2) where

A =





a2
1 + b a1a2 a1a3

a1a2 a2
2 + b a2a3

a1a3 a2a3 a2
3 + b



 (6)

and b 6= 0.

1Spheres are characterized by a single eigenvalue λ 6= 0 whose multiplicity is then 3.
2In case of symmetric matrices the algebraic multiplicity of an eigenvalue is the same as the geometric

multiplicity, i.e., the dimension of its corresponding eigenspace.
3The first, second and third column of R contains an eigenvector of A belonging to λ1, λ2 and λ3 = λ2,

respectively.
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Proof. Because Q is a quadric of revolution matrix A has exactly two different eigenvalues λ1

and λ2 where λ1 has multiplicity 1, λ2 has multiplicity 2 and λ2 6= 0. According to Proposition
1 matrix A can be written in the form (4).

Since λ1 6= λ2 one can divide the quadric equation by λ1 − λ2 which after having put

b =
λ2

λ1 − λ2

yields matrix A according to Eq. 6.

Remark 1. The following items are emphasized:
a) Vector a is a direction vector of the quadric of revolution’s axis. The condition that a

is normalized is optional because the matrix Q can be multiplied by an arbitrary factor
6= 0.

b) If b = 0 parabolic cylinders or pairs of parallel planes are obtained instead of quadrics
of revolution.4 Their intersection with the plane at infinity is the absolute line of the
plane a1x + a2y + a3z = 0.

Due to Proposition 2 every quadric of revolution has an equation of the form (2) where
the 3 × 3 submatrix A of Q can be parameterized according to Eq. 6. Conversely, every
symmetric 4 × 4 matrix with A, Eq. 6 as its 3 × 3 lower right minor represents a quadric of
revolution if b 6= 0.

It is easy to verify that the determinants of the matrices A and Q can be written as
follows:

detA = b2 · δ,

detQ = b · ∆

where

δ = b + a2
1 + a2

2 + a2
3, (7)

∆ = b c0 δ − c2
1(a

2
2 + a2

3 + b) − c2
2(a

2
1 + a2

3 + b) − c2
3(a

2
1 + a2

2 + b)

+ 2(a1a2c1c2 + a1a3c1c3 + a2a3c2c3). (8)

One can classify the quadrics of revolution where b 6= 0 by means of δ and ∆ as shown in
Table 1.

Table 1: Quadrics of revolution; classification

∆ 6= 0, δ 6= 0 : ellipsoids or hyperboloids of revolution

∆ 6= 0, δ = 0 : paraboloids of revolution

∆ = 0, δ 6= 0 : cones of revolution

∆ = 0, δ = 0 : cylinders of revolution

4Of course, pairs of parallel planes can also be considered as special quadrics of revolution.
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3. Problem formulation

The aim is to find quadrics of revolution through n given points Pi, i = 1, . . . , n. This means
to find a solution to the equation system

[1, pix, piy, piz] ·









c0 c1 c2 c3

c1 a2
1 + b a1a2 a1a3

c2 a1a2 a2
2 + b a2a3

c3 a1a3 a2a3 a2
3 + b









·









1
pix

piy

piz









= 0, i = 1, . . . , n (9)

in the 8 variables c0, c1, c2, c3, b, a1, a2, a3, where pix, piy, piz denote the Cartesian coordinates
of any given point Pi. This system can also be written in the form of the fundamental equation
system

Pn,10 ·

































c0

c1

c2

c3

a2
1 + b

a2
2 + b

a2
3 + b

a2a3

a1a3

a1a2

































=







0
...
0






(10)

where

Pn,10 =









1 2p1x 2p1y 2p1z p2
1x p2

1y p2
1z 2p1yp1z 2p1xp1z 2p1xp1y

...
...

1 2pnx 2pny 2pnz p2
nx p2

ny p2
nz 2pnypnz 2pnxpnz 2pnxpny









. (11)

It will be convenient to denote the sub-matrix of Pn,10 composed of the first m lines and the
first k columns, by Mm,k and the one, consisting of the first m lines and the last l columns,
by Nm,l.

There are n constraint equations in 8 homogeneous variables. Hence one may, in general,
expect

a) an infinite number of solutions if n < 7,

b) a finite number of solutions in case of n = 7 and

c) no solution if n > 7.
The case where n = 4 is satisfied by a 3 parameter set is dealt with in Section 4. Section 5
addresses problems pertaining to 5 given points. Section 6 focuses on finding right cylinders
on 5 points. Section 7 treats the case n = 6. An algorithm to determine the right cones on
6 points is presented in Section 8. Finally, how to find the general quadrics of revolution on
n = 7 points is exposed in Section 9.

To avoid digression too far into the maze of special or pathological cases it is assumed
that the n given points are in general position defined as follows.

Definition 1. Let P1, . . . , Pn be points in the Euclidean 3-space then we say that P1, . . . , Pn

are in general position if in case of n = 4 the four points are not coplanar and in case of
n ≥ 5 the n points are mutually distinct and neither coplanar nor cospherical.
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4. Quadrics of revolution on four non coplanar points

Let P1, P2, P3, P4 be non coplanar points then we rewrite Eq. 10 as

M4,4 ·









c0

c1

c2

c3









= −N4,6 ·

















a2
1 + b

a2
2 + b

a2
3 + b

a2a3

a1a3

a1a2

















. (12)

Since P1, P2, P3, P4 are non coplanar the matrix

M4,4 =









1 2p1x 2p1y 2p1z

1 2p2x 2p2y 2p2z

1 2p3x 2p3y 2p3z

1 2p4x 2p4y 2p4z









is regular and thus Eq. 12 is equivalent to









c0

c1

c2

c3









= −M−1
4,4 · N4,6 ·

















a2
1 + b

a2
2 + b

a2
3 + b

a2a3

a1a3

a1a2

















. (13)

So we have the following

Result 1. If P1, P2, P3, P4 are four non coplanar points, then for any choice of an axis direc-
tion [a1, a2, a3]

⊤ and any b 6= 0 one obtains exactly one quadric of revolution on P1, P2, P3, P4.

Remark 2. Note the following two items:
a) Choosing a fixed axis direction [a1, a2, a3]

⊤ and varying b produces a pencil of quadrics of
revolution on P1, P2, P3, P4. This case is described in detail by Strobel [16, pp. 11–16].

b) The unique sphere determined by P1, P2, P3, P4 is obtained by setting a1 = a2 = a3 = 0
and choosing an arbitrary value b 6= 0 in Eq. 13.

5. Quadrics of revolution on five given points in general position

Lemma 1. Let P1, . . . , P5 be five points in general position and let M
(5)
5,5, M

(6)
5,5 and M

(7)
5,5

denote the sub-matrices of P5,10 established by the first four and one of the fifth, sixth and
seventh columns, respectively, then at least one of these matrices is regular.

Proof. Suppose that all three matrices are singular; then there exist vectors

[α0, α1, α2, α3, α4]
⊤ 6= [0, 0, 0, 0, 0]⊤ ,

[β0, β1, β2, β3, β4]
⊤ 6= [0, 0, 0, 0, 0]⊤ ,

[γ0, γ1, γ2, γ3, γ4]
⊤ 6= [0, 0, 0, 0, 0]⊤ ,
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so that

α0 + α1pix + α2piy + α3piz + α4p
2
ix = 0,

β0 + β1pix + β2piy + β3piz + β4p
2
iy = 0,

γ0 + γ1pix + γ2piy + γ3piz + γ4p
2
iz = 0







(14)

for i = 1, 2, 3, 4, 5.
If one of the values α4, β4 or γ4 is zero then the five points lie in a plane contradicting

the assumption of being not coplanar. Hence α4, β4, γ4 6= 0 and we may multiply the three
equations of Eq. 14 by α−1

4 , β−1
4 and γ−1

4 , respectively, and then add them to show that
P1, . . . , P5 belong to a sphere which again contradicts our assumption of the points being in
general position.

Given five points P1, . . . , P5 in general position, then according to the Lemma 1 above,
one of the matrices M

(5)
5,5, M

(6)
5,5 or M

(7)
5,5, say, M5,5 = M

(5)
5,5, is invertible. As a consequence the

fundamental equation system Eq. 10 can be rewritten in the form












c0

c1

c2

c3

a2
1 + b













= −M−1
5,5 · N5,5 ·













a2
2 + b

a2
3 + b

a2a3

a1a3

a1a2













. (15)

The last line of these five equations has the structure

kb + q(a1, a2, a3) = 0 (16)

where k is a real non-zero5 number and q(a1, a2, a3) is a non-trivial6 quadratic homogeneous
polynomial in a1, a2, a3. In conclusion we can determine b uniquely from Eq. 16 for every
prescribed axis direction [a1, a2, a3]

⊤ and then c0, c1, c2, c3 via Eq. 15. So we have the following

Result 2. If P1, . . . , P5 are points in general position then for any choice of an axis direction
[a1, a2, a3]

⊤ one gets exactly one quadric of revolution containing the five points. Only the
directions which null the polynomial q(a1, a2, a3) (Eq. 16) yield parabolic cylinders or pairs of
parallel planes instead of quadrics of revolution.

Remark 3. Since we have assumed that the points are in general position we excluded the
cases where they lie on a common sphere or in a common plane. In case of P1, . . . , P5 lying
in a common plane ε each quadric passing through the five points has to intersect ε along the
second order curve determined by the points. This case was studied in detail by Narasinga

[7] and Röschel [12].

Remark 4. Laguerre [4] proved the following theorem for a generic quintuple P1, P2, P3, P4, P5

of points: The axis of each quadric of revolution passing through the five points is an asymp-
tote of a twisted cubic containing the centers Mk of the five circumspheres of Pi1 , Pi2, Pi3, Pi4 ,
(ij ∈ {1, 2, 3, 4, 5} mutually distinct).

Conversely, any point on the plane of infinity determines an axis direction and together
with the five sphere centers Mk a twisted cubic c, in general. The tangent of c at Mk, i.e.,
asymptote of c, is the axis of a quadric of revolution on the five given points P1, P2, P3, P4, P5.

5The assumption k = 0 leads to a contradiction as follows: If k = 0 then Eq. 16 is fulfilled for a1 = a2 =
a3 = 0 and any choice of b 6= 0. Substitution of these values in Eq. 15 yields unique values of c0, c1, c2 and c3.
Therefore the 5 points lie on a sphere and are not in the required general configuration.

6The polynomial q(a1, a2, a3) is non-trivial because the coefficient of a2

1
is 1.
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6. Right cylinders on five given points in general position

Cylinders of revolution are characterized by the conditions ∆ = δ = 0 where δ and ∆ are
determined according to Eq. 7 and Eq. 8. If δ = 0 we have

b = −a2
1 − a2

2 − a2
3 (17)

and after substitution into the condition ∆ = 0:

a1c1 + a2c2 + a3c3 = 0 (18)

Hence, the right cylinders among all quadrics of revolution can be extracted by requiring that
the two Eqs. 17 and 18 are fulfilled.

Determining the right cylinders on five given points P1, . . . , P5 in general position is ac-
complished as follows. Substituting the condition expressed by Eq. 17 into Eq. 15 yields













c0

c1

c2

c3

−a2
2 − a2

3













= −M−1
5,5 ·N5,5 ·













−a2
1 − a2

3

−a2
1 − a2

2

a2a3

a1a3

a1a2













. (19)

The last of these five equations has the form

−a2
2 − a2

3 + k1(a
2
1 + a2

3) + k2(a
2
1 + a2

2) + k3a2a3 + k4a1a3 + k5a1a2 = 0. (20)

The left hand side of this equation is a quadratic homogeneous polynomial in a1, a2, a3 which
again is non-trivial as one can easily check. Hence, Eq. 20 represents a second order curve
c∞ on the plane at infinity. Real solutions can occur only in the case where c∞ is a pair of
real lines or a real double line or a unipartite conic. In the first two cases one can always find
linear homogeneous parametrizations

ai(s, t) = αi0s + αi1t, i = 1, 2, 3 (21)

and in the case where c∞ being a regular conic with real points a quadratic homogeneous
parametrization

ai(s, t) = αi0s
2 + αi1st + αi2t

2, i = 1, 2, 3 (22)

of c∞. The parameters are s and t while αij are constants.
By substitution of this parametrization into the first four lines of Eq. 19 one either gets

a quadratic parametrization

ci(s, t) = γi0s
2 + γi1st + γi2t

2, i = 0, 1, 2, 3 (23)

or a quartic parametrization

ci(s, t) =
4

∑

j=0

γij s4−j tj , i = 0, 1, 2, 3 (24)

of the unknowns ci.
After substituting the (linear or quadratic) parametrization of ai and the (quadratic or

quartic) parametrization of ci into the condition Eq. 18 one obtains a homogeneous polynomial
in s, t whose degree is ≤ 6. The real zeroes s∗, t∗ of this polynomial yield possible values for
a1, a2, a3, c0, c1, c2, c3 with the help of Eq. 21 or Eq. 22 and Eq. 23 or Eq. 24. This uniquely
determines the equation of the corresponding solution cylinder.
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Result 3. The task of determining the right cylinders on 5 given points in general position
is a sextic problem.

This confirms a result of Zsombor-Murray and El Fashny [19].
Applying this method to finding the right cylinders on the five points

P1 . . . [0.0, 0.0, 0.0]⊤ , P2 . . . [1.0, 0.0, 0.0]⊤ , P3 . . . [0.0, 1.0, 0.0]⊤ ,

P4 . . . [0.0, 0.0, 1.0]⊤ , P5 . . . [0.8, 0.8, 1.0]⊤

produces a solution with the six cylinders shown in Fig. 1.

Figure 1: Six right cylinders on five given points

7. Quadrics of revolution on six given points in general position

Let now six points P1, . . . , P6 in general position be given. In this section we will discuss how
to determine all quadrics of revolution on these points.

Since the six points are in general position (mutually distinct and neither coplanar nor
cospherical) one can re-enumerate them always in a way that the quadruple P1, P2, P3, P4 is
not coplanar and the points of the quintuples {P1, P2, P3, P4, P5} and {P1, P2, P3, P4, P6} are
also in general position. (This can be easily checked by elementary considerations.)

Because P1, P2, P3, P4, P5 are in general position we have

b = q1(a1, a2, a3) (25)

where q1 is a quadratic homogeneous and non-trivial polynomial according to the results of
Section 5. Analogously, we find

b = q2(a1, a2, a3) (26)
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with another quadratic homogeneous and non-trivial polynomial q2 by applying the results of
Section 5 to the quintuple P1, P2, P3, P4, P6.

In conclusion the axis direction numbers a1, a2, a3 have to fulfill the homogeneous quadratic
condition

f(a1, a2, a3) = q2(a1, a2, a3) − q1(a1, a2, a3) = 0

which represents a second order curve c∞ on the plane at infinity. The only exception occurs
if the two polynomials q1(a1, a2, a3) and q2(a1, a2, a3) are identical in which case the condition
on a1, a2, a3 vanishes.

As in the previous section c∞ can be linearly parameterized as shown by Eq. 21 when c∞
is a pair of real lines or a double line or quadratically as shown by Eq. 22 if c∞ is a unipartite
conic.

Substituting this parametrization into Eq. 25 or Eq. 26 yields a quadratic or quartic
homogeneous parametrization of b in s and t:

b = b(s, t) (27)

Finally, since P1, P2, P3, P4 are not coplanar Eq. 13 can be used to obtain quadratic or quartic
parameterizations of c0, . . . , c3 by substituting Eq. 21 or Eq. 22 and Eq. 27:









c0(s, t)
c1(s, t)
c2(s, t)
c3(s, t)









= −M−1
4,4 · N4,6 ·

















a2
1(s, t) + b(s, t)

a2
2(s, t) + b(s, t)

a2
3(s, t) + b(s, t)

a2(s, t) · a3(s, t)
a1(s, t) · a3(s, t)
a1(s, t) · a2(s, t)

















(28)

Thus a homogeneous parametrization of the set of all quadrics of revolution on the given six
points P1, . . . , P6 is available.

Result 4. In general, there is a one-parametric set of quadrics of revolution on six points
P1, . . . , P6 in general position. The points at infinity on the axes of these quadrics lie on a
second order curve c∞.

8. Right cones on six given points in general position

Based on Section 7 the quadrics of revolution on six given points in general position will
usually establish a family determined by the parameterizations Eq. 21 or Eq. 22 of a1, a2, a3,
Eq. 27 of b and Eq. 28 of c0, c1, c2, c3. In order to select the right cones from this one degree
of freedom family one must substitute these parameterizations into the condition

∆ = b c0 (b + a2
1 + a2

2 + a2
3) − c2

1(a
2
2 + a2

3 + b) − c2
2(a

2
1 + a2

3 + b) − c2
3(a

2
1 + a2

2 + b)

+ 2(a1a2c1c2 + a1a3c1c3 + a2a3c2c3) = 0. (29)

This yields a homogeneous bivariate polynomial in s, t of degree ≤ 12. Every real solution
s∗, t∗ of this polynomial yields a solution cone.

Result 5. The problem of finding the right cones on 6 given points in general position can
be reduced to the task of determining the zeroes of a univariate polynomial of degree 12, in
general. Every real solution of this polynomial corresponds to exactly one solution cone.
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Figure 2: Twelve right cones on six given points

Remark 5. E. Müller [6] studied the problem of finding the right cones with prescribed axis
direction on four points.

The algorithm described above was applied to the following six given points:

P1 . . . [0.0, 0.0, 0.0]⊤ , P2 . . . [2.0, 2.0, 1.0]⊤ , P3 . . . [1.0, 3.0, 1.0]⊤ ,

P4 . . . [1.0, 2.0, 2.4]⊤ , P5 . . . [2.5, 0.5, 1.5]⊤ , P6 . . . [1.5, 2.3, 0.3]⊤

In this case the twelve solution cones displayed in Fig. 2 were obtained.

9. Quadrics of revolution on seven given points in general position

If 7 points P1, . . . , P7 in general position are given then it is easy to verify that one can always
find sextuples of this set, say, {P1, P2, P3, P4, P5, P6} and {P1, P2, P3, P4, P5, P7} whose points
are also in general position.

Then, according to Section 7 the axes’ points at infinity of the quadrics of revolution on
P1, P2, P3, P4, P5, P6 are situated on a second order curve

c1,∞ : f1(a1, a2, a3) = 0, (30)
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in general. Analogously, each quadric of revolution on P1, P2, P3, P4, P5, P7 has an axis whose
point at infinity generally lies on another second order curve

c2,∞ : f2(a1, a2, a3) = 0 (31)

Hence, we have

Result 6. The points at infinity of the axes of the quadrics of revolution on seven given points
in general position lie in general on the intersection of two second order curves c1,∞ and c2,∞.

In conclusion there are at most four possible intersection points if c1,∞ and c2,∞ are not
coincident in whole or in part; the latter in the case of distinct line pairs sharing a line.

If a∗

1, a
∗

2, a
∗

3 are the coordinates of an axis’ point at infinity satisfying Eq. 30 and Eq. 31
then the corresponding values for b and c0, c1, c2, c3 can be determined uniquely by applying
the method described in Section 7.

Result 7. In general there are at most four quadrics of revolution on seven given points in
general position.

Figure 3: Four quadrics of revolution on seven given points

With the following seven given points one obtains four solution quadrics of revolution,
namely a one-sheet hyperboloid, a two-sheet hyperboloid, another one-sheet hyperboloid and
an ellipsoid (from left to right in Fig 3; only one sheet of the two-sheet hyperboloid is dis-
played.)

P1 . . . [3.1,−1.2, 2.2]⊤ , P2 . . . [3.5, 1.4, 2.4]⊤ , P3 . . . [3.3,−2.5,−0.5]⊤ ,

P4 . . . [4.2, 3.1,−0.9]⊤ , P5 . . . [−2.2, 4.3, 0.36]⊤ , P6 . . . [−1.9, 3.2, 2.5]⊤ ,

P7 . . . [−2.6,−3.8, 2.8]⊤

10. Conclusions and unresolved problems for future research

The following list describes some relevant topics that remain to be investigated.

• Omitted cases where points lie on a sphere might be considered in the light of Remark 4,
i.e., Laguerre’s work [4].
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• Quadrics of revolution on n = 5, 6 or 7 given coplanar points exist only if these lie on c

a proper conic in that plane. This is generally the case where n = 5. It was treated by
Narasinga [7] and Röschel [12] but the special case where c degenerates to a line
pair or a double line has not received attention.

• In Section 7 (quadrics of revolution on 6 points) the case where the two quadratic
polynomials q1(a1, a2, a3) and q2(a1, a2, a3) are identical was excluded. How can this
case be geometrically characterized?

• An infinite number of quadrics might contain 7 given points (Section 9) if the two
second order curves c1,∞ and c2,∞ have a common component. What are the geometric
characteristics of this case?

• Moreover methods to discriminate among the types of quadrics of revolution, i.e., ellip-
soids, paraboloids and hyperboloids of one and two sheets, have yet to be formulated.

• Another task, pertinent to application in camera aided inspection, is to find the most
suitable quadric of revolution through an overdetermined set of points {P1, . . . , Pn},
n > 7. Using a setup with the parametrization Eq. 6 it can be shown that this problem
can be reduced to a pair of homogeneous quartic equations in the axis direction numbers
a1, a2, a3.

Alternatively, one could choose various subsets of 7 points from a given set of n >

7 points and then apply the method described in Section 9 to determine a quadric
of revolution. This quadric could then be taken as a starting point in, e.g., a least-
squares Gauss-Newton fit optimization procedure. Deficiencies or defects stemming
from singularity of the involved matrices Mk,k are easy to detect. In such a case the
chosen 7-tupel of points can be easily replaced by another. After all, camera data
contain a great many points.

It is believed that the unified treatment of the three types of quadrics of revolution exposed
herein is original and constitutes a solid foundation upon which to build effective, precise
methods to quickly fit overdetermined point sets to such surfaces. This will be invaluable
in camera aided inspection of manufactured structural and machine elements of such cross
section, a fruitful extension of this research that will have important industrial applications.
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