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Abstract. This paper first reviews a method for using diffusion limited ag-
gregation (DLA) to make non-photorealistic enlargements of digital images that
combine characteristics of mosaic rendering with space-filling curve rendering. The
issue we then address is the topological connectivity of the graphs induced by pixel
adjacencies in our image enlargements. In particular, we examine the size of the
largest connected component and the number of connected components that occur
in the induced graphs in order to assess empirically how close the induced graphs
are to being simply connected.
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1. Introduction

Image magnification obtained by using a low resolution image is a classical digital image pro-
cessing challenge that motivates half toning and (colour) dithering. Although Ken Knowl-

ton [4] pioneered some of the earliest non-photorealistic pixel by pixel, scanline magnification
techniques for addressing this challenge, currently the most popular pixel by pixel method
is Photomosaics by R. Silvers [9]. An alternative non-photorealistic image magnification
technique invokes curve fitting using only a carefully selected subset of source image pixels.
Prominent examples of this technique include TSP Art by Kaplan and Bosch [3], which
uses solutions to the traveling salesperson problem (TSP) to fit curves to sampled image
points, and the space filling curve approach used by K. Mitchell [7].

In this paper we combine pixel magnification and curve fitting by first using diffusion

limited aggregation (DLA) to form “dendrites” for pixel by pixel magnification and then
again using DLA to glue dendrites of pixels together in such a way that they almost yield
a space filling curve. By “almost” we mean that the induced pixel adjacency graph has a
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connected component that accounts for up to 99 percent of the magnified image’s dendritic
pixels. More precisely, in general, our method yields a small number of “large” connected
components, and that small number decreases as the magnification factor increases. This
paper follows upon the author’s related work [1, 2]. For a completely different approach to
using DLA in non-photorealistic rendering see Long [6].

Stated formally, our objective is to magnify a source image S with pixel dimensions w×h

to obtain an enlarged image D with pixel dimensions pw× ph that is surrounded by a border
of white pixels of width p in such a way that the filled or coloured pixels of D are simply
connected.

2. Magnification Algorithm

2.1. DLA simulation

Diffusion limited aggregation (DLA) is a simulation technique used to model dendritic growth.
The method of Kobayashi et al. [5] aggregates particles to a central seed by releasing particles
one at a time a fixed distance away from the growing dendrite and allowing them to undergo a
random walk for a fixed number of time steps until they either adhere to the existing dendrite,
wander out of range, or their time limit expires. An example of the typical dendritic structure
this method yields is shown in Fig. 1. We modify the method slightly by replacing the taxicab
distance metric with the supremum distance metric so that neighborhoods of central seeds
will be squares instead of diamonds.

Figure 1: An example of a DLA dendrite produced using the basic Kobayashi et al. algorithm

2.2. Three-pass magnification

Let the magnification factor p > 3 be odd. Writing p = 2k + 1, our three pass image
magnification scheme identifies pixel (i, j) of the source image S with the 2k × 2k pixel
neighborhood N of radius k centred at pixel

(

p(i + 1) + k, p(j + 1) + k
)

of the destination
image D that is defined by the supremum distance. The first two passes independently place
a dendrite of radius k emanating from the centre of each neighborhood N of D. In the third
and final pass, for each neighborhood N of D we initiate a random walk around the edges
of the four cardinally adjacent neighborhoods of N in search of a dendrite particle. If one is
found, we use it as a central seed and grow a dendrite a radius k emanating from it, but we
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only aggregate particles if they lie in N . In this way a neighboring dendrite flows back into
N .

2.3. Artistic considerations

To more faithfully reproduce the image when it is magnified, and to help nullify image fading
due to the presence of white pixels that are not visited during DLA aggregation, the three pass
algorithm also uses a stickiness, or fluffiness, factor s, where 0 ≤ s ≤ 1, which stochastically
determines how often a particle in motion aggregates when it encounters an existing DLA
structure. By setting s to be the luminance value of source image pixels, the magnification
algorithm more accurately reproduces the luminance profile in the enlargement because darker
source pixels then spawn more aggregated particles.

2.4. An example

Figure 2 shows a 194× 259 pixel source image down sampled from a 1944× 2592 pixel photo
of a giraffe taken by J. Ward.

Figure 2: The 194 × 259 down sampled source image giraffe (left) and
2156 × 2871 DLA based enlargement (right). Not to scale.

3. Enlargement Connectivity

Henceforth, as a test image, we use the 158× 158 gray scale Lena image shown in Fig. 3. For
p = 7, which gives p + 158p + p = 1120 , Fig. 3 also shows the 1120× 1120 magnified image,



190 G. Greenfield: Connectivity and a Digital Image Magnification Technique

while Fig. 4 shows detail from the lower left corner of this image, DLA deposited 599809
particles. Taking these as the vertices of a pixel adjacency graph, if we define adjacency
solely on the basis of the four cardinal compass directions, there are 805069 edges yielding
530 connected components. The largest component contains 582357 vertices or 97% of the
vertices; no other component contains more than 571 vertices; and only 30 components contain
more than 100 vertices. If we also include edges to account for diagonal pixel adjacency, which
seems more natural if our goal is to determine the number of connected components our visual
system would recognize, then the resulting graph has 1487762 edges, and now there are only
124 components with the largest component having 597483 vertices, or 99.6% of the vertices.
Moreover, no other component contains more than 45 vertices!

Figure 3: The 158 × 158 test Lena source image (left) and
1120 × 1120, p = 7 DLA based enlargement (right). Not to scale.

Figure 4: Lower left hand corner of the p = 7 Lena enlargement
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4. Empirical Results

Since topological connectivity and the number of connected components depend on how likely
a dendrite will reach the boundary of a neighboring block of pixels, as well as the total number
of blocks of pixels, one would expect that as the magnification factor increases and the blocks
become larger, the size of the largest connected component will decrease. Arguing on the
basis of random graphs, if after the first two passes there are wh connected components i.e.,
disconnected subgraphs, and we now add at most wh edges connecting these subgraphs in
such a way that a subgraph can be connected to at most four of its immediately adjacent
components by one of these edges, then one would expect a large central “core” component
to arise with many smaller components congregating near the boundary.

In other words, by viewing the enlarged blocks of pixels as vertices in their own right, by
contraction, we are concerned with the connectivity of a very special kind of random graph:
one all of whose vertices lie on a two dimensional w × h grid; all of whose edges have unit
length; and all of whose vertices have radius at most one. Since a formal analysis is difficult
(for a partial analysis of the one-dimensional case, see Noshiro et al. [8]) we resort to an
empirical verification that large connected components will result. To this end, by using
the test Lena image, we make p-fold enlargements using successively smaller down sampled
Lena source images in such a way that each enlargement is approximately 1500×1500 pixels.
Henceforth we will always include edges (necessarily of length

√
2) in our graph for each pair

of diagonally adjacent aggregated particles in our enlargements.

Table 1 shows the resulting empirical data. In Table 1, the magnification factor is p,
the down sampled source image width (equal height) dimension in pixels is w, the number
of vertices in the induced enlargement graph is V , the number of edges is E, the number of
connected components is C, and the number of pixels/vertices in the largest component is L.

Table 1: Empirical data from a sequence of 1500 × 1500 pixel p-fold Lena enlargements

p w V E C L

9 165 995118 2451908 323 982571

11 135 940303 2316570 361 913937

13 115 911963 2243271 331 862442

15 100 886618 2181885 326 804341

17 85 796465 1956077 278 687384

19 75 752452 1841225 268 435163

21 70 786544 1924211 251 400411

23 65 794964 1938561 251 467158

25 60 784229 1908339 242 225046

27 55 752637 1825291 253 196541

29 50 708330 1713313 225 89823

31 45 643828 1553037 177 109681

35 40 632336 1519907 162 65545

39 35 584407 1401034 149 61221

45 30 549257 1307716 121 54752

55 25 540408 1273111 107 24678
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The results are as expected. Although the number of vertices in the largest component
as a percentage of the total number of vertices drops from 98.7% to 9.9%, in all cases there
are a small number of very large components. For example, in the p = 45 case, where the
largest component accounts for only 4.6% of the total number of vertices, if the 549257 −
54742 = 494505 unaccounted for vertices were evenly distributed among the remaining 120
components, the average component would have 4120 vertices. But examining the sizes of
the components reveals that there are four additional components — of sizes 42152, 27613,
23320, 20657 — that also have more than 20000 vertices so the average number of pixels in
most of the remaining components is much, much smaller than this worse case estimate.

Figure 5: Lena enlargement using magnification factor p = 21 (left) and p = 45 (right)

More importantly, by comparing the p = 7 enlargement in Fig. 3 with the p = 21 enlarge-
ment and the p = 45 enlargement both shown in of Fig. 5, one becomes quickly convinced
that it is difficult for the eye to discern that any of the Lena enlargements have as many
components as they really do. Using the data in Table 1, the Pearson linear correlation co-
efficient is 0.876 for the variables p and L, while for the variables p and C it is 0.963. Using
p as the independent variable, the equation of the regression line predicting the size of L is
L = −23772.7p + 1013911. It does not appear to be very useful.

One anomaly that does stand out in Table 1 is the size of the largest component for the
p = 29 enlargement. This does seem to be an exceptional case. Table 2 shows the empirical
results obtained from six different p = 29 enlargements. Perhaps the variability in C, the size
of the largest component, is caused by parameter settings in the underlying DLA simulation.
On the other hand the average number of vertices for these six largest components is 120549
which meshes nicely with Table 1. Figure 6 shows the two enlargements corresponding to the
examples from Table 2 with the maximal and minimal largest connected components. To the
eye, there is little discernable difference between them.
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Table 2: Empirical data from six 1500 × 1500 pixel p = 29 Lena enlargements

V E C L

709525 1718086 223 229421

708885 1716264 209 170485

708219 1713060 217 104744

707165 1709846 223 75486

707732 1713435 238 73300

706889 1709486 229 69858

5. Conclusions

We have presented an algorithm for image enlargement from thumbnail images based on
diffusion limited aggregation to obtain a non-photorealistic image style that combines mosaic
and space-filling curve techniques. Since the method is stochastic, we examined how close
colored pixels in the enlargement come to representing a connected curve by examining the
number of connected components and their sizes in the induced pixel adjacency graph.

We used empirical data to reveal that the graph is dominated by large connected compo-
nents, and to try to demonstrate that the human visual system cannot distinguish between
the individual components. This helps to confirm that the algorithm does minimize both
the blocky artifacts persistent in mosaic enlargements and the angular geometric artifacts
persistent in space filling curve enlargements.

Figure 6: Two of the p = 29 Lena enlargements referred to in Table 2. Left, the one whose
largest connected component has 229421 vertices/pixels. Right, the one whose largest con-
nected component has 69898 vertices/pixels.
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