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Abstract. Dupin cyclides are canal surfaces defined as envelopes of a family of
oriented spheres which touch three given oriented spheres. With respect to their
attractive geometric properties they are often used in Computer Aided Geometric
Design and in many engineering applications. In this paper, we study these surfa-
ces from the point of view of Lie sphere geometry. This representation enables
to solve many complicated problems through simple and well known methods of
linear algebra. As for applications, we present an algorithm for computing their
rational parametrizations and demonstrate a construction of blends between two
canal surfaces using methods of Lie geometry.
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1. Introduction

The Dupin cyclides belong to a larger family of surfaces referred to as canal surfaces. They
were introduced in the nineteenth century by the French mathematician and engineer C.

Dupin (1784–1873) as envelopes of a one-parameter set of spheres tangent to three given
spheres. In addition to the classical definition, they can also be looked at in many other
different ways — as the envelopes of spheres with centres on a conic and touching a sphere;
in terms of the two extremal circles lying in the plane of their symmetry; as the inverse of a
torus; etc. — for more details see [5, 9, 6, 21, 23, 13, 10] and the references cited therein.

From the early beginning, the family of classical Dupin cyclides as a subfamily of general
cyclides has attracted the interest of several researchers. Thanks to their geometric properties
they have been considered as useful surfaces for modelling purposes. In CAGD, Dupin cyclides
were introduced in [6, 21]. Nowadays, they play an important role in pipe joining, blending
and motion planning — see [1, 2, 11, 23, 27].
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Dupin cyclides are envelopes of a system of spheres touching three given spheres and
thus it is no problem to compute their implicit representation if we use a suitable elimination
technique. However, since rational descriptions of geometric objects (NURBS objects) have
become a universal standard in technical applications such as CAD or CAM it is necessary
to find their rational parametrizations — see, e.g., [6, 21, 25, 13, 12].

One effective way for studying Dupin cyclides uses the so-called Laguerre sphere geometry
— see [13, 20]. The great advantage of this approach lies in the fact that cyclides are repre-
sented as special curves (PE circles) in R

4 and hence well-known curve modelling techniques
can be used. These results were consequently applied for constructing joins and blends of
surfaces (cf. [20]). Another sphere geometry, Möbius geometry, was used in [16, 15] where
quadratic series of spheres in R

4 were studied. A separate investigation of cyclides in both
above mentioned geometries motivated us to study these surfaces in Lie sphere geometry (see
[7]), in which Laguerre and Möbius geometries are subgeometries. Recently, Lie geometry
was used in [17] for studying bisectors; some investigations of Dupin cyclides in Lie geometry
can be found in [5, 10].

In this paper, we use the projective model of Lie sphere geometry based on the quadratic
vector space R

4,2. The significant advantage of the presented approach lies in the fact that
all results are obtained with the tool of linear algebra and thus they have direct and simple
implementations. Hence, the main aim of this paper is to show that some chosen problems of
CAGD can be easily solved by applying well known methods of linear algebra if we apply a
Lie sphere geometry model and the associated techniques.

Studying Dupin cyclides through Lie sphere geometry enables us to reformulate algo-
rithms for the computation of their rational parametrizations, which are, in addition, PN and
principal (cf. [3, 19, 22]). Moreover it also gives a possibility to solve the operation of blending
canal surfaces — see, e.g., [26, 1, 2, 23, 24, 27, 10, 11]. The significant advantage of using Lie
sphere geometry lies in the fact that the operation of blending becomes considerably simple
since it is based only on dealing with special subspaces of the quadratic space R

4,2.
The rest of the paper is organized as follows: Section 2 recalls some basic facts concerning

a quadratic space R
4,2, its subspaces, orthogonal transformations and the projective model

of Lie geometry. Section 3 is devoted to introducing and studying cyclides in Lie sphere
geometry. The algorithm for computing a principal PN parametrization of Dupin cyclides
is presented. In Section 4, we provide a method for the construction of blends of two canal
surfaces using Dupin cyclides in Lie sphere geometry. Finally, we conclude the paper.

2. Preliminaries

2.1. Quadratic spaces and orthogonal transformations

This section recalls some basic facts and notions which are necessary for better understanding
methods of Lie geometry and related problems dealing with its application for Dupin cyclides.

Definition 2.1. Let V be a finite-dimensional real vector space and Φ: V ×V → R a symmet-
ric bilinear form. Then the pair (V,Φ) is called a quadratic space. We say that the quadratic
space is regular (or singular) if the quadratic form given by the associated bilinear form Φ is
regular (or singular).

Readers who are more interested in the theory of quadratic spaces can find more details
in [4, 8]. Let the triple (p, r, q) denote the signature of the symmetric bilinear form Φ, i.e., the
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number of positive, zero, and negative eigenvalues, respectively. A space of signature (p, r, q)
will be denoted by R

p,r,q. If r = 0 or r = q = 0 we write briefly R
p,q or R

p, respectively.
Further, the symbol “·” is used for the inner product given by Φ, and x ·x will be abbreviated
to x2. Vectors fulfilling x2 > 0, x2 = 0, or x2 < 0 are called positive, neutral, or negative,
respectively.

In what follows, we will deal with linear mappings maintaining inner products given by
symmetric bilinear forms which determine corresponding quadratic spaces.

Definition 2.2. The mapping θ : (V,Φ)→ (W,Ψ) between two quadratic spaces is called an
isometry if

1. θ is an isomorphism of vector spaces,

2. ∀x, y ∈ V : Φ(x, y) = Ψ(θ(x), θ(y)).
Two spaces V,W are called isometric, denoted by V ∼= W , if there exists an isometry between
them. An isometry θ : V → V is called orthogonal transformation. The group of orthogonal
transformations will be denoted by O(V,Φ).

Any real quadratic space is uniquely determined up to isometries by its signature (p, r, q).
The orthogonal group of R

p,r,q is denoted by Op,r,q; similarly we will use the notations Op,q

and Op for r = 0 and r = q = 0, respectively.

Theorem 2.3. (Witt’s extension theorem)
Let R

p,q be a regular quadratic space V and W be a subspace of R
p,q. Then any isometry

θ : W → R
p,q can be extended to an orthogonal transformation of R

p,q.

A proof of Witt’s extension theorem can be found, e.g., in [4, 8].

2.2. Orthogonal complements of R
4,2

In the rest of this paper, we will deal mainly with subspaces of the quadratic space R
4,2 and

their orthogonal complements. Let us recall that for any subspace A ⊂ R
p,r,q, the orthogonal

complement of A is defined as

A⊥ = {x ∈ R
p,r,q | ∀y ∈ A : x · y = 0}. (1)

Basic properties of orthogonal complements are summarized in the following theorem (see [8]
for more details).

Theorem 2.4. Let R
p,q be a regular quadratic space and V , W its arbitrary subspaces. Then

the following statements hold:

1. (V ⊥)⊥ = V ,

2. dimV + dimV ⊥ = dim R
p,q = p+ q,

3. V ∼= W iff V ⊥ ∼= W⊥.

Now, let A be a k-dimensional subspace of R
4,2 isometric with R

p,r,q, p+ q+ r = k. Obvi-
ously, not all triples (p, r, q) can describe potential subspaces of R

4,2. Eliminating impossible
combinations of p, q, r (for the sake of brevity we omit this procedure), we arrive at all pairs
of subspaces of R

4,2 and their orthogonal complements.

Proposition 2.5. There exist exactly 15 pairs of nontrivial subspaces of R
4,2 and their or-

thogonal complements, which are summarized in Table 1.

Properties of these subspaces and their relation to representations of Dupin cyclides in
Lie sphere geometry will be discussed in Section 3.
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Table 1: All pairs of nontrivial orthogonal complements in R
4,2 of dimensions

a) 1 and 5, b) 2 and 4, c) 3 and 3.

(a)
A R

1
R

0,1,0
R

0,0,1

A⊥
R

3,2
R

3,1,1
R

4,1

(b)
A R

2
R

0,2,0
R

0,0,2
R

1,1,0
R

1,1
R

0,1,1

A⊥
R

2,2
R

2,2,0
R

4
R

2,1,1
R

3,0,1
R

3,1,0

(c)
A R

3
R

2,1,0
R

2,1
R

1,2,0
R

1,2
R

1,1,1

A⊥
R

1,2
R

1,1,1
R

2,1
R

1,2,0
R

3
R

2,1,0

2.3. Projective model of Lie sphere geometry

In this subsection, we introduce in brief some fundamentals of Lie sphere geometry — for
more details see [5] or [7]. Lie sphere geometry is a geometry of oriented spheres, oriented
planes and points, called Lie spheres altogether. Let us recall that under oriented spheres or
planes we understand standard Euclidean spheres or planes equipped with the orientation of
associated normal vector fields, e.g., the orientation of a sphere is given by its signed radius
— the positive sign of the radius means that the normal vectors are pointing outside.

A crucial invariant of Lie geometry is the so-called oriented contact. Two Lie spheres
are said to be in oriented contact if they are tangent and moreover if the corresponding
normal vectors at the contact point have the same orientation (cf. Fig. 1). For a point and a
sphere/plane, the oriented contact means just the incidence.

As a suitable model of Lie sphere geometry we will use the projective space P 5 associated

S1

S1

S2

S2

S

N

ρ1 > 0 ρ1 > 0

ρ2 > 0
ρ2 < 0

ρ < 0m

m1

m1

m2

m2

Figure 1: Oriented contact of Lie spheres – for the sake of simplicity demonstrated in R
2
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with the quadratic space R
4,2. Points xR in P 5 are represented by vectors x 6= o in R

4,2.
Analogously, we introduce the correspondence between A ⊂ R

4,2 and AR ⊂ P 5 for any
homogeneous set A. In the projective model, Lie spheres are in bijective correspondence with
neutral points from P 5, i.e., with points xR ∈ P 5 fulfilling x2 = 0. The neutral vectors in R

4,2

constitute the so-called Lie quadric

L4 = {xR ∈ P 5 | x2 = 0}. (2)

Next, we consider an orthogonal basis {e1, e2, e3, e+, e−, er} in R
4,2 , where

e21 = e22 = e23 = e2+ = 1 and e2
−

= e2r = −1. (3)

After denoting n∞ = e+ + e− and n0 = e+ − e−, we can easily describe the correspondence
between Lie spheres and projective points of L4.

First, let S be an oriented sphere with the Euclidean centre m = α1e1 +α2e2 +α3e3 ∈ R
3

and the oriented radius ρ ∈ R. This sphere is represented by the point

mR = [2m+ (m2 − ρ2)n∞ − n0 + 2ρer]R (4)

(for more details see [7]). The vector m is called a normalized representative of the sphere S.
If ρ = 0, we can consider the sphere S as a point. Clearly, the representatives of all points lie
in the hyperplane

B : er · x = 0. (5)

If a non-normalized representative x of an oriented sphere (or a point) is given, we can easily
normalize it

x 7→ −2
x

x · n∞

. (6)

Second, let N be an oriented plane given in R
3 by the equation x · n + λ = 0, where

n = β1e1 + β2e2 + β3e3 ∈ R
3 is the unit normal vector. This plane corresponds to the point

on Lie quadric
nR = [n+ λn∞ − er]R (7)

(for more details see [7]). Analogously to the previous case, the vector n is called a normalized
representative of the plane N . Representatives of all oriented planes lie in the hyperplane

N : n∞ · x = 0. (8)

Furthermore, we can normalize an arbitrary representative of an oriented plane

x 7→
x

x · er

. (9)

Remark 2.6. Since there is a bijective correspondence between Lie spheres in R
3 and their

representatives in L4, we will not distinguish between them if there is no danger of confusion.

One of the main advantages of the presented model consists in the possibility to describe
the oriented contact of two Lie spheres using the bilinear form which defines the corresponding
quadratic space.

Lemma 2.7. Let x,y ∈ L4 be two representatives of Lie spheres. Then these spheres are
tangent iff x · y = 0.
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We denote the group of the Lie sphere transformations by Lie(3). Since the oriented
contact is the fundamental invariant of Lie sphere geometry, it is convenient to recall (see
[7]), that the following correspondence holds.

Theorem 2.8. Lie(3) ∼= O4,2/{±id}.

Among important subgeometries of Lie geometry, we can find Laguerre and Möbius geom-
etry. Laguerre geometry studies properties which are invariant under Laguerre transformations
consisting of two bijective mappings which preserve the oriented contact — one acts in the
set of oriented spheres and the other in the set of oriented planes. Readers who are inter-
ested in a detailed survey of this kind of geometry are referred to [5, 7, 18, 20, 13]. Hence,
Laguerre transformations are exactly those Lie transformations mapping the hyperplane N
given by (8) to itself. So the group of Laguerre transformations Lag(3) is a subgroup of Lie(3).
On the other hand, Möbius geometry studies properties invariant under Möbius transforma-
tions which preserve points and non-oriented Möbius spheres (planes or Euclidean spheres).
It can be shown that the group of Möbius transformations is double covered by Lie sphere
transformations mapping a hyperplane

B : er · x = 0 (10)

to itself. For mores details see [5, 7, 16, 15].

3. Dupin cyclides in Lie sphere geometry

3.1. PE subspaces and Dupin cyclides representation

A Lie canal surface is the envelope of a one-parameter family of Lie spheres. This envelope can
be constructed as the union of all circles/lines of intersection of infinitesimally neighbouring
pairs of Lie spheres. These circles/lines are called composing curves. In this paper, we will deal
with a special class of Lie canal surfaces, namely with Dupin cyclides — see Definition 3.2.
Modelling canal surfaces with Dupin cyclides in the cyclographic model of Laguerre geometry
was thoroughly studied in [20]. It was shown that any Dupin cyclide is the cyclographic image
of the so-called PE (Pseudo-Euclidean) circle. Next in [13], a theory of Dupin cyclides using
associated isotropic hypersurfaces was developed. Recently, the correspondence between Lie
canal surfaces and curves a(ξ)R on the Lie quadric has been presented in [17]; the condition
for a real Lie canal surface has the form

d a

d ξ
·
d a

d ξ
≥ 0. (11)

In addition, the equality holds for composing curves being degenerated to points.

Remark 3.1. If the strong inequality in (11) holds for some ξ0 then the tangent space

span

(

d a

d ξ
(ξ0), a(ξ0)

)

(12)

is isometric to R
1,1,0.
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We start with studying families of Lie spheres tangent to three fixed Lie spheres. Consider
three distinct Lie spheres represented by neutral vectors a1, a2, a3 ∈ R

4,2 and denote

A = span(a1, a2, a3) . (13)

Then applying Lemma 2.7, the set of all Lie spheres touching three given spheres is exactly
the set of Lie spheres contained in the subspace A⊥.

Since we have assumed that the Lie spheres ai are distinct then we can obtain only the
following possible signatures of A⊥:

Case I. If dimA = 2 then the projective line AR intersects L4 in three distinct points aiR,
which is possible only for AR ⊂ L4. This is equivalent to A ∼= R

0,2,0 and by Table 1(b) we
have A⊥ ∼= R

2,2,0. This case represents a pencil of tangent Lie spheres whose envelope is not
well-defined.

Case II. If dimA = 3 then ai are three linearly independent neutral vectors and thus A has
to be isometric to one of the following spaces:

1. A ∼= R
1,2. Using Table 1(c) we obtain A⊥ ∼= R

3. Hence A⊥
R ∩ L4 = ∅, and no Lie

sphere exists which touches all ai .

2. A ∼= R
1,1,1. In this case A⊥ ∼= R

2,1,0 and therefore it contains exactly one Lie sphere.

3. A ∼= R
2,1 is the most interesting situation when the orthogonal complement A⊥ is also

isometric to R
2,1. In this case we obtain a one-parameter set of Lie spheres touching ai,

i.e., it gives a Lie canal surface as its envelope.

Definition 3.2. Let a1, a2, a3 be three Lie spheres such that A = span(a1, a2, a3) ∼= R
2,1.

Then the envelope of all Lie spheres tangent to ai, denoted by CA, is called Dupin cyclide.
Further, any subspace isometric to R

2,1 will be called PE-subspace.

Remark 3.3. The name PE subspace emphasizes a relation to the pseudo-Euclidean (PE) inner
product studied in [20, 13]. Clearly, for any PE-subspace A the corresponding projective set
AR ∩ L4 is a regular conic section.

Since we deal in this paper only with Dupin cyclides, we call them “cyclides” only, provided
there is no danger of confusion.

In [13], the so-called isotropic hypersurface was defined as the linear join of two dual
PE-circles. We use this construction analogously for PE-subspaces in Lie sphere geometry.

Definition 3.4. For an arbitrary PE-subspace A we define the set

CA := {∆ = span(a, a⊥) | a ∈ A, a⊥ ∈ A
⊥, a2 = a2

⊥
= 0}. (14)

As mentioned above, the set CA is in a direct correspondence with the isotropic hyper-
surfaces introduced in [13] and thus any ∆ = span(a, a⊥) ∈ CA represents a bundle of Lie
spheres tangent to the given cyclide at the point of contact of a and a⊥. Hence, we can
formulate:

Proposition 3.5. For all ∆ ∈ CA, every x ∈ ∆ represents a Lie sphere tangent to the cy-
clide CA.

Corollary 3.6. Any Dupin cyclide is an envelope of two one-parameter sets of Lie spheres,
one represented by A and the other by A⊥, i.e., the subspaces A and A⊥ determine the same
Dupin cyclide.
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3.2. Classes of Dupin cyclides

Definition 3.7. Let G be a subgroup of Lie(3). Then two cyclides CA and CB are said to be
G-equivalent if there exists θ ∈ G such that θ(A) = B, or θ(A) = B⊥.

Since Dupin cyclides are envelopes of two one-parameter families of Lie spheres contained
in some PE-subspace, it is seen that two cyclides are equivalent if and only if there exists
a transformation from G which maps these families at each other. Using Theorem 2.3, we
can construct for every pair of PE-subspaces A,B a certain transformation θ ∈ Lie(3) ∼=
O4,2/{±id} such that θ(A) = B. This implies the following observation.

Theorem 3.8. All Dupin cyclides are Lie-equivalent.

Since there is only one type of Dupin cyclides in Lie geometry it is useful to study them
also in a suitable subgeometry, i.e., using some subgroup of Lie(3), to get a better insight
into their geometric properties. We take Lag(3) ⊂ Lie(3) and study classes of equivalent
Dupin cyclides in Laguerre geometry. Our approach will lead to the well-known classification
of these surfaces (degenerate, quartic, cubic or parabolic cyclides — see, e.g., [13, 10]). Let
us recall that transformations from Lag(3) map oriented planes to oriented planes, i.e., the
hyperplane N given by (8) is invariant with respect to all Laguerre transformations.

We consider PE-subspace A and denote

D = A ∩N and D⊥ = A⊥ ∩N , (15)

whose dimensions can be restricted to

2 ≤ dimD, dimD⊥ ≤ 3. (16)

The neutral vectors in these subspaces correspond to the oriented planes and hence, their
signatures indicate the number of planes contained in the generating family of the given
cyclide.

Since span(n∞) ∼= R
0,1,0 we obtain N ∼= R

3,1,1 — see Table 1(a). Hence, D and D⊥ have
to be isometric to one of the following subspaces

a) R
2,1, b) R

2, c) R
1,1, d) R

1,1,0. (17)

We know that n∞ is an element of N (the hyperplane of all representatives of Euclidean
planes), on the other hand it is not a representative of any plane. Thus, the case n∞ ∈ A
must be investigated separately.

Lemma 3.9. If n∞ ∈ A then D ∼= R
1,1,0.

Proof. We assume that the statement is false. Then there exists a neutral vector a ∈ D such
that dim(span(a, n∞)) = 2. From the definition of D in (15) follows that a · n∞ = 0 which
gives span(a, n∞) ∼= R

0,2,0. However, a space of signature (0, 2, 0) cannot be a subspace of a
PE-subspace A. This completes the proof.

Next, we will see that the signatures of the subspaces D and D⊥ from (15) are closely
related.

Lemma 3.10. The following statements hold:
I. D ∼= R

1,1,0 and n∞ ∈ D iff D⊥
∼= R

2,1.
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II. D ∼= R
1,1,0 and n∞ 6∈ D iff D⊥

∼= R
1,1,0 and n∞ 6∈ D⊥.

III. D ∼= R
2 iff D⊥

∼= R
1,1.

Proof. For the sake of brevity, we prove only the first part of Lemma 3.10 the remaining
statements can be proved in a similar way.

Case I. Let n∞ ∈ D. Since all neutral vectors in A⊥ are Lie spheres tangent to n∞, it follows
that A⊥ contains only representatives of oriented planes. Hence D⊥ = A⊥ ∩ N ∼= R

2,1. On
the contrary, D⊥

∼= R
2,1 implies that A⊥ ⊂ N contains only oriented planes and n∞ ∈ A.

Hence, by Lemma 3.9 we get D ∼= R
1,1,0 and n∞ ∈ D.

Clearly, Lemma 3.10 divides the set of Dupin cyclides into three subsets. The following
theorem says that these subsets are exactly the classes of Laguerre eqivalence.

Theorem 3.11. (Laguerre classification)
The three types of cyclides given by Lemma 3.10 give the classes of Laguerre-equivalence.

Proof. Let CA and CB be two Dupin cyclides of the same type. Denote E = B ∩ N , E⊥ =
B⊥ ∩ N .

Case I. Since n∞ ∈ D ⊂ A and n∞ ∈ E ⊂ B, there exists an isometry ψ : A → B such that
ψ(n∞) = n∞. Extending this isometry to the orthogonal transformation ψ̂ ∈ O4,2, we get the
required transformation.

Case II. In this case n∞ ∈ D⊕D⊥, where the symbol ⊕ denotes the direct sum. If not, then
with respect to the definition of N (see (8)) we obtain

N = D ⊕D⊥ ⊕ span(n∞) ∼= R
1,1,0 ⊕R

1,1,0 ⊕R
0,1,0 ∼= R

2,3,0. (18)

However, we know that N ∼= R
3,1,1 — see Table 1(a). The same argument holds for E ⊕E⊥.

Hence, the isometries
ϕ : D → E, and ϕ⊥ : D⊥ → E⊥ (19)

can be extended by Witt’s extension theorem (Theorem 2.3) to the isometries

ϕ̂ : A→ B, and ϕ̂⊥ : A⊥ → B⊥. (20)

Since A and A⊥ are orthogonal complements, any vector x ∈ R
4,2 can be written uniquely in

the form x = y + y⊥, where y ∈ A and y⊥ ∈ A⊥. Further, the orthogonal transformation
ψ ∈ O4,2, defined by

ψ(x) := ϕ̂(y) + ϕ̂⊥(y⊥) (21)

maps the hyperplane N to itself, and thus any two cyclides of type II are Laguerre-equivalent.

Case III. Now, we have D⊕D⊥
∼= R

3,0,1. There is no neutral vector in this space and therefore
n∞ 6∈ D ⊕ D⊥. Hence, there exist a ∈ A\D and a⊥ ∈ A⊥\D⊥ such that n∞ = a + a⊥.
Moreover, since n∞ · x = 0 for all x ∈ N , the following statements hold

A = D ⊕ span(a) , A⊥ = D⊥ ⊕ span(a⊥) , a2 + a2

⊥
= 0. (22)

The analogous claims are fulfilled for B and B⊥. Now, the construction of the Laguerre
transformation mapping CA on CB is trivial.

With respect to the previous classification, we obtain one class of degenerate and two
classes of nondegenerate Dupin cyclides; in classical geometry the latter are called quartic
and parabolic. Representatives of all these Laguerre types I, II and III are shown in Figs. 2,
3 and 4.
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Figure 2: Type I — degenerate cyclides: Cylinder and cone

Figure 3: Type II — nondegenerate cyclides: Quartic cyclides

Figure 4: Type III — nondegenerate cyclides: Parabolic cyclides

3.3. Algorithm for computing rational parametrizations of Dupin cyclides

Rational descriptions of geometric objects (NURBS objects) have become a universal stan-
dard in most of technical applications. From this reason, it is necessary to find rational
parametrizations of cyclides to use them for modelling in CAD and CAM. In this paper, we
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formulate a parametrization algorithm based on the representation of Dupin cyclides in Lie
sphere geometry (i.e., using suitable methods of linear algebra).

Let CA be a cyclide determined by a pair of PE-subspaces (A,A⊥). For arbitrary neutral
vectors a ∈ A, a⊥ ∈ A⊥ it holds ∆ = span(a, a⊥) ∈ CA by Definition 3.4. Proposition 3.5
says that ∆ is corresponding to the bundle of all Lie spheres tangent to CA. Obviously, any
point sphere in this bundle is a point of the cyclide CA. Since a and a⊥ are tangent and
distinct, there must exist exactly one point sphere c in ∆. This point can be computed as
follows

c = (er · a)a⊥ − (er · a⊥)a. (23)

Indeed, c ∈ ∆ because it is the linear combination of a and a⊥ and it is a point sphere because
c · er = 0, cf. (5).

Now, let a(ξ)R be a parametrization of AR ∩ L4 and a⊥(ζ)R be a parametrization of
A⊥

R ∩ L4. Then
∆(ξ, ζ) := span(a(ξ), a⊥(ζ)) (24)

is a parametrization of CA. Using (23), we arrive at

c(ξ, ζ) := [er · a(ξ)]a(ζ)⊥ − [er · a(ζ)⊥]a(ξ). (25)

To compute a parametrization of CA in R
3 from (25), we have to find the corresponding

normalized representative (6) of c(ξ, ζ) in the form

c(ξ, ζ) 7→ −2
c(ξ, ζ)

c(ξ, ζ) · n∞

. (26)

Finally, using (4) for ρ = 0 we arrive at

c(ξ, ζ) = 2c(ξ, ζ) + c2(ξ, ζ)n∞ − n0, (27)

where c(ξ, ζ) is a parametrization of CA. In addition, if ∆(ξ, ζ) is rational then the parametriza-
tion c(ξ, ζ) is rational, too. Algorithm 1 summarizes the presented method.

Algorithm 1 Parametrization of Dupin cyclide

Input: Three Lie spheres {a1, a2, a3}
Output: A parametrization c(ξ, ζ) of the Dupin cyclide CA
1: A← span(a1, a2, a3)
2: if A ∼= R

2,1 then

3: a(ξ)R← a parametrization of AR ∩ L4

4: a⊥(ζ)R← a parametrization of A⊥
R ∩ L4

5: ĉ(ξ, ζ)← [er · a(ξ)]a(ζ)⊥ − [er · a(ζ)⊥]a(ξ)

6: c(ξ, ζ)← 2
ĉ(ξ, ζ)

ĉ(ξ, ζ) · n∞

= 2c(ξ, ζ) + c2(ξ, ζ)n∞ − n0

7: return c(ξ, ζ)
8: else

9: A does not determine a Dupin cyclide.
10: end if
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Remark 3.12. Instead of parametrizing curves AR ∩ L4 and A⊥
R ∩ L4 it could be more

convenient to start with some referential pair of PE-subspaces (A0, A
⊥

0 ), say

A0 = span(e1, e2, e−) and A⊥

0 = span(e3, e+, er) , (28)

and find a transformation θ ∈ Lie(3) such that θ(A0) = A. Now, the rational parametrizations
of A0R ∩ L4 and A⊥

0 ∩ L
4 can be computed by

a0(ξ)R := [2ξe1 + (1− ξ2)e2 + (1 + ξ2)e−]R (29)

and
a0

⊥
(ζ)R := [2ζe3 + (1− ζ2)e+(1 + ζ2)er]R. (30)

Hence a(ξ)R = θ(a0(ξ))R and a⊥(ζ)R = θ(a0
⊥
(ζ))R.

Under some conditions, cyclides may degenerate to curves, namely if A or A⊥ is a subset
of B. For practical reasons, we will omit this possibility in the remainder of this paper and
mean by cyclides only 2-surfaces.

Any parametrization obtained by the described method is principal, i.e., parametric curves
of c(ξ, ζ) are principal (their velocities always point in a principal direction). Hence, by
the presented approach we cannot obtain an arbitrary parametrization of the given cyclide.
Nevertheless, if we choose a(ξ)R and a(ζ)R being birational then c(ξ, ζ) is birational, too.
Therefore, any rational parametrization of the given cyclide can be obtained by some rational
reparametrization of c(ξ, ζ).

Finally, we recall that rational surfaces with rational offsets, called Pythagorean Normal
vector (PN) surfaces (cf. [19, 18, 14]), are such surfaces which possess rational parametriza-
tions (PN parametrizations) providing rational associated unit normal vector fields.

Theorem 3.13. The rational parametrizations computed by Algorithm 1 are PN parametriza-
tions.

Proof. Let the parametrization of CA be computed from (27) and consider the function

n(ξ, ζ) = [n∞ · a(ξ)]a(ζ)⊥ − [n∞ · a(ζ)⊥]a(ξ). (31)

By Proposition 3.5, n(ξ0, ζ0) is the plane tangent to the cyclide at the point c(ξ0, ζ0) for any
arbitrary ξ0 and ζ0, except for both a(ξ0) and a⊥(ζ0) being planes (in this case n(ξ0, ζ0)R =
c(ξ0, ζ0)R = n∞R, i.e., the tangent planes are not defined for points at infinity). Using (9)
we can normalize n(ξ, ζ):

n(ξ, ζ) 7→
n(ξ, ζ)

n(ξ, ζ) · er

= n(ξ, ζ) + λ(ξ, ζ)n∞ − er . (32)

Thus, for rational c(ξ, ζ) we have a rational unit normal field n(ξ, ζ).

4. Blending two canal surfaces with Dupin cyclides

The most used application of Dupin cyclides in geometric modelling is G1-blending of canal
surfaces, which is aG1-continuous transition between two given canal surfaces along prescribed
curves. Next, we show how this practical problem can be solved via methods of Lie sphere
geometry.
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Definition 4.1. Two Lie canal surfaces R and S are said to be glued along the curve K iff
R is tangent to S along K and K is a composing curve of both surfaces.

Remark 4.2. Tangent planes of any Lie canal surface along a composing circle envelope the
so-called tangent cone, which may happen to be a cone of revolution, a cylinder of revolution
or a plane. Hence, instead of blending general canal surfaces, we may focus only on blending
cones. If no confusion occurs we will just speak of a “cone” instead of a “tangent cone”.

The projective model of Lie sphere geometry translates the operation of gluing to the
tangency of projective curves corresponding to one-parameter families of generating spheres.
More exactly, let r(ξ)R be the curve corresponding to the first canal surface and s(ζ)R the
curve corresponding to the other one. Then the composing curve is determined by r(ξ0)R
and s(ζ0)R for some ξ0 and ζ0. The gluing condition is then equivalent to

r(ξ0)R = s(ζ0)R and span

(

r(ξ0),
d r

d ξ
(ξ0)

)

= span

(

s(ζ0),
d s

d ζ
(ζ0)

)

. (33)

In what follows, we will deal only with non-degenerate cases (see Remark 3.1), when
tangent spaces are isometric to R

1,1,0. Since these spaces correspond to tangent cones, we
may take R, S ∼= R

1,1,0 as the input of our blending algorithm.

Remark 4.3. For the rest of this paper let R = span(r0, r+) and S = span(s0, s+), where
r2
0 = s2

0 = 0, r2
+, s

2
+ > 0, are two subspaces isometric to R

1,1,0.

Definition 4.4. A Dupin cyclide C blends two cones R and S if and only if C and R are
glued along a curve K1, C and S are glued along a curve K2 and K1,K2 belong to the same
family of composing curves of C.

However, a construction of a single cyclide blend (cf. Fig. 5) is in most input situations
infeasible. Thus, we have to take into account a double cyclide blend (cf. Fig. 6) where a
blending Dupin cyclide C in Definition 4.4 is replaced by two glued Dupin cyclides CA and CB.

It directly follows from (33):

Proposition 4.5. Two cyclides CA and CB are glued along a parametric curve if and only if
any of the subspaces A ∩ B, A ∩ B⊥, A⊥ ∩B, A⊥ ∩B⊥ is isometric to R

1,1,0 or R
2,1.

Applying Proposition 4.5, the construction of cyclide blend between two cones is equiva-
lent to finding PE-subspaces A and B such that:

1. R ⊂ A,

2. S ⊂ B,

3. A ∩ B ∼= R
1,1,0 or A ∩B ∼= R

2,1.
The subspace A corresponds to the cyclide CA which is glued to the cone R (cf. Condition 1)
and similarly B determines the cyclide CB glued to the cone S (cf. Condition 2). In addition,
both cyclides are glued along the curve determined by A ∩ B (cf. Condition 3).

Next, we will investigate different possibilities for the subspace R + S. For this, it is
convenient to prove the following lemma:

Lemma 4.6. For R ∩ S ∼= R
1 the following equivalences hold:

(i) R + S ∼= R
1,2,0 ⇔ r0 · s0 = 0,

(ii) R + S ∼= R
2,1 ⇔ r0 · s0 6= 0.
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Proof. From the list of all possible 3-dimensional subspaces of R
4,2 in Table 1(c) we conclude:

R
1,2,0 and R

2,1 are the only subspaces which contain two subspaces isometric to R
1,1,0 and

intersect in a positive subspace. Obviously, R
1,2,0 contains a 2-dimensional neutral subspace

which is equivalent to the condition s0 ·r0 = 0. Hence, R+S ∼= R
2,1 if and only if s0 ·r0 6= 0.

Next, we consider only such configurations of given cones where the fixed generating Lie
spheres are not in oriented contact, i.e., we assume r0 · s0 6= 0. The situation with tangent
generating Lie spheres may be handled similarly; for the sake of brevity we omit this case.
Now, we can continue with the discussion:

Case I. Let dimR + S = 3. With respect to the assumption r0 · s0 6= 0, the intersection is
a positive subspace. Moreover, R + S is isometric to R

2,1 by Lemma 4.6 and therefore the
cones can be blended by a single cyclide determined be PE-subspace R + S (see Fig. 5).

Figure 5: Single cyclide blend

Case II. If dimR + S = 4 then R and S are disjoint, and thus two cyclides are necessary for
blending the given cones. For any subspace T = span(t0, t+) ∼= R

1,1,0 such that

T ∩R = span(r) ∼= R
1, t0 · r0 6= 0, (34)

T ∩ S = span(s) ∼= R
1, t0 · s0 6= 0, (35)

the subspaces A = R + T and B = S + T are isometric to R
2,1 by Lemma 4.6. The corre-

sponding cyclides CA and CB obviously form a blend between the given cones.
To find all subspaces T fulfilling conditions mentioned above, it suffices to take all pairs

(r, s), where r ∈ R and s ∈ S are positive vectors such that T = span(r, s) ∼= R
1,1,0 and

neutral vectors in this space are not orthogonal neither to r0, nor to s0.

Lemma 4.7. Let (X,Φ) be a two-dimensional quadratic space. Then (X,Φ) ∼= R
1,1,0 if and

only if there exist two positive non-collinear vectors x, y ∈ X such that

|Φ(x, y)| =
√

Φ(x, x)
√

Φ(y, y). (36)

Moreover, if these vectors exist the equality holds for all pairs of positive vectors.

Proof. Let {e1, e2} be an orthogonal basis of (X,Φ) and let x = α1e1 + α2e2, y = β1e1 + β2e2
be two positive vectors satisfying

|Φ(x, y)| =
√

Φ(x, x)
√

Φ(y, y). (37)
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Substituting for x and y into (37) we obtain

(α1β2 + α2β1)
2Φ(e1, e1)Φ(e2, e2) = 0. (38)

Since the vectors x and y are linearly independent we get Φ(e1, e1)Φ(e2, e2) = 0. Without
loss of generality we may assume Φ(e1, e1) = 0, then Φ(e2, e2) > 0 (otherwise x and y are not
positive).

Conversely, let {e1, e2} be a basis of (X,Φ) such that Φ(e1, e1) = 0 and Φ(e2, e2) = 1.
Then it is easily seen that the relation holds for any two positive vectors.

Figure 6: A system of double cyclide blends

The positive vectors in R can be parametrized by

r(α) = αr0 + r+ (39)

and analogously for S

s(β) = βs0 + s+. (40)

By Lemma 4.7 the space

T (α, β) = span(r(α), s(β)) (41)

is isometric to R
1,1,0 if and only if

[r(α) · s(β)]2 = r2(α)s2(β). (42)

We substitute for r(α) and s(β) from (39), (40) and obtain

(r0 · s0αβ + r0 · s+α+ r+ · s0β + r+ · s+)2 − r2

+s2

+ = 0. (43)

This equation in α and β factorizes into two quadratic equations describing two hyperbolas.
Hence, we have obtained two one-parameter families of subspaces T . It remains to show that
for any α, β solving (43) the neutral vector t0 ∈ T is orthogonal neither to r0 nor to s0 —
see (34), (35). Since T = span(r, s), the neutral vector t0 can be computed as

t0 := (s · s)r− (s · r)s. (44)
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Substituting for r and s from (39) and (40), we can see that t0 · s0 = 0 if and only if

α = −
r+ · s0

r0 · s0

, (45)

and t0 · r0 = 0 if and only if

β = −
r0 · s+

r0 · s0

. (46)

Obviously, these are the equations of the axes of hyperbolas from (43) and thus they can-
not appear as solutions of this equation. Finally, the blending procedure is summarized in
Algorithm 2.

Algorithm 2 Blending two cones (canal surfaces)

Input: Two subspaces R = span(r0, r+), S = span(s0, s+) isometric to R
1,1,0 with

r0 · s0 6= 0.
Output: Single/double cyclide blend given by {cyclide CA}/{cyclides CA, CB}.
1: if dimR + S = 3 then

2: A← R + S
3: return CA
4: else

5: (α0, β0)← a solution of (43)
6: T ← span(α0r0 + r+, β0s0 + s+)
7: A← R + T
8: B ← S + T
9: return CA, CB

10: end if

5. Conclusions

Spatial Lie sphere geometry gives a suitable tool for studying Dupin cyclides. These surfaces
are represented in R

4,2 as so-called PE-subspaces and they are equivalent under particular lin-
ear transformations. Hence, this approach enables to translate some chosen problems of geo-
metric modelling into the language of linear algebra. The results presented in this paper relate
the well-known approach based on the Lagurre geometry with more general methods based
on Lie geometry. Following this, we formulated the algorithm for the computation of rational
parametrizations of Dupin cyclides and discussed properties of the obtained parametrizations.
Finally, one of the classical problems of CAD, namely blending of canal surfaces, was solved
using the introduced representation. The operation of blending was translated into algebraic
operations with subspaces of R

4,2 which makes this procedure considerably simpler.
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