
Journal for Geometry and Graphics
Volume 13 (2009), No. 2, 209–220.

A 3D Head Model From Stereo Images
by a Self-Organizing Neural Network

Levente Sajó1, Miklós Hoffmann2, Attila Fazekas1

1Faculty of Informatics, University of Debrecen

P.O. Box 12, H-4010 Debrecen, Hungary

email: sajo.levente@inf.unideb.hu, fazekas.attila@inf.unideb.hu

2Institute of Mathematics and Informatics, Eszterházy Károly College

Leányka str. 4, H-3300 Eger, Hungary

email: hofi@ektf.hu

Abstract. In this paper a model based approach is presented for generating 3D
face models from two stereo images. The proposed method works with a small
number of feature points of the face. The automatically registrated point pairs are
used to reconstruct their 3D correspondence, then a predefined general face model
is adjusted to the reconstructed 3D points. Fitting the general face model to the
feature points is made iteratively by applying a self-organizing neural network.

Key Words: 3D face model, stereo images, neural network

MSC 2000: 68U05, 51N05, 51N20

1. Introduction

Generating a 3D model from pictures is a challenging task and an active area of computer
graphics research since decades. Although there are different possible views of this task, here
we only deal with the problem where a complete 3D structure should be obtained from the
2D data. For a recent overview of different methods see, e.g., [5].

All methods for facial reconstruction from stereo images typically consist of three main
steps: camera calibration, establishing point correspondences between pairs of points from
the left and the right image and reconstruction of the 3D coordinates of the points (i.e., the
head model) in the scene.

In several earlier approaches the process of generating a head model of a specific person
entails extensive user intervention [14]. More recent works give more or less automatic recon-
struction using two pictures captured from mutually orthogonal directions: typically a frontal
and a profile photo [13] or even more photos or video sequences [4].

Here we focus on the problem of generating the 3D model from two stereo images cap-
tured from general viewpoints. A recently used method is a model-based approach, where a

ISSN 1433-8157/$ 2.50 c© 2009 Heldermann Verlag

210 L. Sajó, M. Hoffmann, A. Fazekas: A 3D Head Model From Stereo Images

predefined general face model is adjusted to the reconstructed 3D points. One of the crucial
steps of reconstruction is to generate as much point correspondences as possible to obtain an
algebraic adjustment with acceptable accuracy. These methods use the disparity map, the
measure of the displacement of relative features, to register hundreds of corresponding point
pairs on the stereo images (see [18, 4]).

In the proposed method we use only very few points of the face (the feature points) to
reconstruct the head. The registration of point pairs is completely automatic as well as the
reconstruction of the 3D points. Due to the relatively small number of points the general
head model cannot be adjusted by simple algebraic methods, so here we apply self-organizing
neural network [10] to iteratively fit the general model to the feature points. The method is
fast and the head model is easily adjustable by different face characteristics and expressions.

2. Registration of the feature points

Registration of the feature points on faces is a pattern recognition problem. In general it
can be considered as an object detection task. Many object detection techniques have been
invented in the recent years and have been collected in different surveys [17, 6, 9]. These
methods have been classified in four categories:

• knowledge based methods,

• feature invariant approaches,

• template matching methods, and

• appearance-based methods.

The most successful ones were appearance based methods. These rely on the same concept:
scanning over the image with a window of fixed size, selecting the small image patches which
are then passed to classifiers. For face localization we choose Haar-classifier based boosted

cascade detector introduced by Viola and Jones in 2001 [16], because it has the same
accuracy as the other techniques but exceeds them in speed. It can be applied in case of
arbitrary objects having complex and varying textures, e.g., faces. The basic idea of this
classifier is that the recognition process can be much more efficient if it is based on the
detection of features that encode some information about the class to be detected. This is
the case of Haar-like features that encode the existence of oriented contrasts between regions
in the image. A set of these features can be used to encode the contrasts exhibited by a
human face and their spacial relationships. Haar-like features are so called because they are
computed similar to the coefficients in Haar wavelet transforms.

Facial features are generally stable points from the faces, like corners of the eyes, corners
of the eyebrows, corners of the nostrils, tip of the nose, corners of the lips. Since the texture of
these points is quite simple and contains little gray level information, usual object detection
techniques can not deliver good results. They should be combined also with some heuristics
about the estimated place of these features and their relative locations to each other. The
Active Appearance Model (AAM), proposed first by Cootes in 1998 [2], is a method which
uses both shape and appearance for detecting the precise location of facial features. In our
project, we have used a variation, called independent AAM, described in [12], because it has
demonstrated a good performance in speed and therefore it is possible to be used in real time
applications. From this point up to the spatial reconstruction we are dealing with shapes and
information obtained from 2D images.

L. Sajó, M. Hoffmann, A. Fazekas: A 3D Head Model From Stereo Images 211

2.1. Independent AAM

Independent AAM also contains a shape and appearance model but in contrast to Cootes’

AAM, it treats them separately. In our case the landmark points are the facial feature points
(see Fig. 1.)

Figure 1: The selected feature points on an image from our database

Building shape and appearance models is done similarly. In case of the shape model the
coordinates of the landmark points (vertices) are aligned into a common coordinate frame
and organized into a vector. If the coordinates of the vertices are vi = (xi, yi), i = 1, . . . , v,
then let’s define a shape s as

s = (x1, y1, x2, y2, . . . , xv, yv)
T . (1)

Applying PCA on these vectors, if the mean shape is considered as a base shape and eigen-
vectors to the n largest eigenvalues as shape vectors, then the shape s can be expressed as a
base shape s0 plus a linear combination of the n shape vectors si

s = s0 +
n

∑

i=1

pi si, (2)

where pi are the shape parameters.
Before sampling the grey level information, each training image is shape normalized so that

its control points match the base shape. For shape normalization linear shape transformations
and global shape transformations are used.

For performing the linear shape normalization, a triangulated mesh is defined to the shape
model, which describes the connectivity between vertices. If we take a pair of meshes s0 and
s a piecewise affine warp can be defined between them. For each triangle in s0 there is a
corresponding triangle in s such that the vertices of the first triangle map to the vertices
of the second triangle. Piecewise affine warp will be denoted with W (x,p). For a pixel
x = (x, y)T in s0 the corresponding pixel in s is x′ = W (x,p), (p is the vector of shape
parameters pi).

The linear shape normalization is followed by global shape transformations of 2D similarity
transformations (translation, rotation and scale). Instead of these 2D similarity transforma-
tions one can define a global warp which has equal effects on the mesh. Let’s denote the global
shape normalizing warp with N(x,q). Suppose the base mesh is s0 = (x0

1, y
0
1, . . . , x

0
v, y

0
v)

T ,
then the shape vectors can be chosen as s1 = (1, 0, . . . , 1, 0)T , s2 = (0, 1, . . . , 0, 1)T , s3 = s0 =
(x0

1, y
0
1, . . . , x

0
v, y

0
v)

T , s4 = (y0
1,−x0

1, . . . , y
0
v ,−x0

v)
T . This results in a global shape normalizing

212 L. Sajó, M. Hoffmann, A. Fazekas: A 3D Head Model From Stereo Images

warp N(x,q) with parameters q = (q1, q2, q3, q4) which works similarly to the linear shape
warp W (x,p).

In the following, let’s denote with T (x,pq) the consecutive execution of the two warps
described above, where pq means the concatenation of the two parameter vectors:

T (x,pq) = N(W (x,p),q), pq = (p,q). (3)

The shape normalized image with T (x,pq), is used to sample the gray level information
(appearance) within the base mesh. A vector of these gray values is formed on which PCA
is applied. Over the x = (x, y)T pixels from inside the base mesh s0 can be defined the
appearance A(x) of AAM. Then applying PCA results in the following:

A(x) = A0(x) +

m
∑

i=1

λiAi(x) ∀x ∈ s0, (4)

where λi are the appearance parameters.

Figure 2: An instance of the AAM results from base models
plus a linear combination of transformation vectors

Given an input image I(x), the goal of the fitting process is to find out the optimal p,
q and λ parameters to minimize the error between the input image and the model instance.
This will be done in the coordinate frame of the AAM. If x is a pixel in s0 then the minimum
of the following equation is determined:

∑

x

[A0(x) +

m
∑

i=1

λiAi(x)− I(T (x,pq))]2. (5)

Many different algorithms can be used to minimize the equation. Probably, the most
straightforward one is the standard gradient descent algorithm. The problem with this al-
gorithm is that it is slow. A better solutions is using the Inverse Compositional Algorithm
described in [12]. This algorithm has two main steps. The first one is the image alignment.
It works on a constant template image. The best location of the constant template image
is determined in an input image by using linear shape variations followed by global shape
transformation. In the second step the appearance variation is included. In the following,
these steps will be presented in more detail.

L. Sajó, M. Hoffmann, A. Fazekas: A 3D Head Model From Stereo Images 213

2.1.1. Inverse compositional image alignment

Let’s denote the constant template image with A0(x). Then Eq. (5) changes to

∑

x

[A0(x)− I(T (x,pq))]2. (6)

This equation should be minimized with respect to the warp parameters p. This is a nonlinear
optimization problem. If we assume that the initial estimate of p is known, then the problem
can be linearized by iteratively minimizing for the parameters ∆p

∑

x

[A0(x)− I(T (x,pq + ∆pq))]2, (7)

and then updating p by
pq ← pq + ∆pq. (8)

Instead of solving this equation, in an inverse compositional algorithm a variation of (7) is
used, where the roles of template and example image are reversed. The incremental warp is
computed with respect to the template A0

∑

x

[I(T (x,pq))− A0(T (x, ∆pq))]2. (9)

In every iteration, first ∆p is determined and then the warp parameter is updated using

T (x,pq) ← T (x,pq) ◦ T (x, ∆pq)−1. (10)

For determining ∆pq the Taylor series expansion of Eq. (9) is taken:

∑

x

[I(T (x,pq))− A0(T (x, 0))− ▽A0
∂T

∂pq
∆pq]2. (11)

From this ∆pq can be expressed in the following form:

∆pq = H−1
∑

x

[SD(x)]T [E(x)], (12)

where E(x) is the error image

E = I(T (x,pq))−A0(T (x, 0)), (13)

SD(x) is the steepest descent image

SD(x) = ▽A0
∂T

∂pq
, (14)

and H is the Gauss-Newton approximation of the Hessian matrix

H =
∑

x

[SD(x)]T [SD(x)]. (15)

The benefit of this approach is that, since A0 is a constant template image and
∂T

∂pq

is evaluated at pq = 0 (identity transform), the computation of the Hessian matrix of the
objective function can be moved into a pre-computation step.

214 L. Sajó, M. Hoffmann, A. Fazekas: A 3D Head Model From Stereo Images

2.1.2. Including appearance variation

By now, we have presented all the steps to fit a constant template image to an input image.
The last remaining step is to include appearance variations. For this, rewrite Eq. (5) as

∑

x

[A0(x) +
m

∑

i=1

λiAi(x)− I(T (x,pq))]2 =

∥

∥

∥

∥

∥

A0(x) +
m

∑

i=1

λiAi(x)− I(T (x,pq))

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

A0(x) +
m

∑

i=1

λiAi(x)− I(T (x,pq))

∥

∥

∥

∥

∥

2

span(Ai)⊥

+

∥

∥

∥

∥

∥

A0(x) +
m

∑

i=1

λiAi(x)− I(T (x,pq))

∥

∥

∥

∥

∥

2

span(Ai)

,

(16)
where ‖.‖ is the L2 norm, span(Ai) denotes a linear subspace spanned by a collection of
vectors Ai and span(Ai)

⊥ its orthogonal complement. The first term can be simplified:

‖A0(x)− I(T (x,pq))‖2span(Ai)⊥
+

∥

∥

∥

∥

∥

A0(x) +

m
∑

i=1

λiAi(x)− I(T (x,pq))

∥

∥

∥

∥

∥

2

span(Ai)

; (17)

for any pq the minimum of the second term is always 0. Therefore the minimum value can be
found in two steps. First, the first term should be minimized with respect to pq by applying
the inverse compositional algorithm with no appearance variation. The only difference is that
it should be done in the linear subspace of span(Ai)

⊥ rather than in the full vector space.
What is needed to do is to project the steepest descent image into that subspace, using

▽A0
∂T

∂pq
−

m
∑

i=1

[

∑

x

Ai(x)▽A0
∂T

∂pq

]

Ai(x) (18)

In the second step, by using the optimal value of pq as a constant, the minimum value of the
second term is computed with respect of λ:

λi =
∑

x

Ai(x) [I(T (x,pq))− A0(x)]. (19)

Figure 3: The convergence of the fitting process

L. Sajó, M. Hoffmann, A. Fazekas: A 3D Head Model From Stereo Images 215

2.1.3. The algorithm of feature points registration

Pre-computation:

• Evaluate the gradient ▽A0 of the template A0(x);

• Evaluate the Jacobian
∂T

∂pq
at (x, 0);

• Compute the modified steepest descent image using Eq. (18);

• Compute the Hessian matrix using Eq. (15).

Iterate:

• Warp I with T (x,pq) to compute I(T (x,pq));

• Compute the error image E(x) using Eq. (13);

• Compute ∆pq by multiplying the inverse Hessian and the dot product of the modified
steepest descent image with the error image using Eq. (12);

• Update pq using Eq. (10).

Post-computation:

• Compute λi using Eq. (19).

3. 3D reconstruction

After registration of the 2D facial feature points on both images, the 3D coordinate of these
points are calculated using a 3D reconstruction method. For this, first, in a calibration step the
intrinsic and extrinsic parameters of the camera should be calculated. Then, the coordinates
of the 3D point is given by the intersection of the two lines, which connect the focuses of the
cameras and the 2D points. For the geometrical background and detailed description of the
reconstruction see [11] and [15].

3.1. Camera calibration

The aim of the calibration is to determine the orientation parameters for both cameras (left
– index l, right – index r). These parameters are either intrinsic or extrinsic parameters. The
intrinsic parameters are the following:

• focal lengths: fl and fr; Since the x and y size of the camera pixels are not equal, we
compute with focal lengths measured separately in x and y directions: (fxl, fyl) for
the left and (fxr, fyr) for the right camera;

• the pixel coordinates of the projection of focus to the image: (cl, rl) and (cr, rr);

• distortion parameters.

The extrinsic parameters describe the connection between the coordinate system of the
camera (its center is the focus, the z-axis is perpendicular to the screen, x and y-axis are
parallel to pixel axis) and the world coordinate system. These can be written by a rotation
matrix (Rl and Rr) and a shifting vector (tl and tr). The connection between the two cameras
coordinate systems is given by (Rcam, tcam), where the left camera coordinate system is used
to describe the right camera coordinate system. These parameters can be expressed with the
combination of first two: Rcam = RlR

T
r , tcam = tl − Rcamtr.

216 L. Sajó, M. Hoffmann, A. Fazekas: A 3D Head Model From Stereo Images

If P (x1, x2, x3) is a point in the world coordinate system and its projection is Pl(xl1, xl2)
on the left and Pr(xr1, xr2) on the right cameras (in pixel coordinates) then the connection
between them can be described using standard equations (c.f. [11]). For determining these
parameters, many different softwares can be found on the web. Usually, the common idea
is that a chessboard-like shape is moved to different angles in front of the two cameras and
pictures are taken. The corresponding pixel-coordinate pairs (the edges of the black and
white squares) are used by the calibration software to calculate the intrinsic and extrinsic
parameters of the camera. As calibration software we have used [1].

3.2. Reconstruction

The goal of the reconstruction is to calculate the coordinates of P (x1, x2, x3) using the two
corresponding 2D points: Pl(xl1, xl2) and Pr(xr1, xr2). For this, we have used a method based
on ray-casting: the two lines, which connect the focuses of the cameras and the 2D points,
should intersect in P . In practice, because of errors (distortion), usually these are skew lines
and their transversal has to be determined and the center of this transversal is considered as
the location of P (see Fig. 4).

Figure 4: Reconstructing a 3D point using the two corresponding 2D points

The coordinates of Pl(xl1, xl2) in the left camera’s coordinate system can be expressed as
Plcam(xlcam1, xlcam2, xlcam3), where third coordinate is the focal lenght xlcam3 = fl, and
the first two coordinates can be calculated using equations:

xlcam1 =
(xl1 − cl)

fx1
fl, xlcam2 =

(xl2 − rl)

fx2
fl.

The vector pointing from the origin of the left camera’s coordinate system is

vl = Plcam − Origol = (xlcam1, xlcam2, xlcam3)

Similarly, one can calculate the vector vr starting from the other camera. This is expressed in
the coordinate system of the right camera. For working in a single coordinate system, keeping
vl, vr should be transformed to the left coordinate system by vr = R−1

camvT
r .

The transversal vector is given by the vector product of the two vectors: vn = vl × vr.
Finally, a vector equation with three scalar parameter, a, b and c is written:

avl + bvn − cvr = tcam .

L. Sajó, M. Hoffmann, A. Fazekas: A 3D Head Model From Stereo Images 217

Solving this equation, the wanted 3D point is given by the middle point of the section defined
by the endpoints Origol + avl and Origol + tcam + cvr:

P = Origol + avl +
b

2
vn.

In this way the 3D point is written in the coordinate system of the left camera. It can be
transformed into the world coordinate system using Rl and tl.

3.3. Constructing the 3D feature points

Applying the method described above for the registered feature point pairs separately their
3D correspondences can be calculated. Since only a limited number of feature points are used,
this will result in a very simple 3D object. A general head model should be fit to the feature
points. In the fitting process a self-organizing neural network is used which is presented in
the next section.

4. The self-organizing neural network

The Kohonen net is a two-layered, unsupervised, continuous valued artificial neural network.
Applying the method developed in [8], this network can be used for spatial organization of
scattered data. The great advantage of this network, which will be used in this problem, is the
ability of fast organization of any number of unordered points. The training procedure will
result in a topology-preserving grid following the 3D positions of the reconstructed points.

Here the number of input neurons is three, since the network will be trained by the
coordinates of the 3D input points. The output neurons form a quadrilateral grid, and this
topology will be preserved during the whole procedure. All the output nodes are connected
to each input node and a weight is associated to every connection. Hence a three dimensional
weight vector is assigned to each output node.

Now consider these weights as the spatial coordinates of points of the grid. During the
training process the weights will be changing, hence this grid will move slowly in the three
dimensional space toward the input points, meanwhile the topology of the grid will remain the
same. A short description of the training is the following: one of the input points is selected
randomly to be the input vector of the net. A winning unit is determined by the minimum
Euclidean distance of this point to the output nodes. The node with the minimum distance is
the winning unit. Around this node a neighborhood of output points is determined according
to the topology of the grid (this neighborhood decreases in time). Finally the weights of the
nodes in this neighborhood are updated, i.e., change slightly toward the value of the input
vector. After updating the weights in the neighborhood, a new input point is presented and
the above steps are repeated. For a more detailed description of the Kohonen network see
[10].

4.1. The training procedure

In a standard example mentioned also by Kohonen the network is trained by points selected
from a uniformly distributed area [10]. A main difference between this kind of applications
and our problem is that we normally have a finite number of points and they are in the 3D
space, while the grid remains two-dimensional. Now we give the exact algorithm of the applied
Kohonen network, which produces a rectangular grid onto the 3D reconstructed points.

218 L. Sajó, M. Hoffmann, A. Fazekas: A 3D Head Model From Stereo Images

Let a set of feature points pi(x1i, x2i, x3i), i = 1, . . . , n, be given. The coordinates of these
points will form the input vectors of the net. The net itself contains two layers: the input
layer consists of three nodes and the output layer consists of m nodes. These m output nodes
form a grid with arbitrary, but predefined topology, which is quadrilateral in our case. Each
node of the output layer connected to each of the nodes of the input layer. Every connection
has a weight: wij denotes the weight between the input node i and the output node j. In our
case n = 56 and m = 576.

• Coordinates of the feature points: pi(x1i, x2i, x3i), i = 1, . . . , n ;

• Coordinates of the output points: qj(w1j, w2j, w3j), j = 1, . . . , m ;

• STEP 1. Initialize the weights wsj, s = 1, 2, 3, j = 1, . . . , m , as small random values
around the average of the coordinates of the input points. Let the training time be
t = 1;

• STEP 2. Present new input values (x1i0 , x2i0 , x3i0), as the coordinates of a randomly
selected input point pi0 ;

• STEP 3. Compute the Euclidean distance of all output nodes to the input point

dj =

3
∑

s=1

(xsi0 − wsj)
2;

• STEP 4. Find the winning unit qj0 as the node which has the minimum distance to the
input point, so where j0 is the value for which dj0 = min(dj);

• STEP 5. Compute the neighborhood N(t) = (j0, j1, . . . , jk);

• STEP 6. Update the weights (i.e., the coordinates) of the nodes in the neighborhood
by the following equation:

wsj(t + 1) = wsj(t) + η(t)(xsi0 − wsj(t)) ∀j ∈ N(t),

where η(t) is a gain term decreasing in time;

• STEP 7. Let t = t + 1. Repeat STEP 2 – 7 until the network is trained.

If the number of input points is relatively small, as in our case, then the network is said
to be trained if all the input points are on the grid. The radius of the neighborhood and the
gain term are important factors of computing, both are decreasing in time. Here we used the
functions defined in [8] and [7]. The crucial point of the training process is the number of
iterations t0, when the radius diminishes to zero. After this point the fundamental order of
points is determined and only the non-approximated input points attract the nearest output.

5. Conclusion

In this paper we have presented our method to generate a 3D face model from two stereo
images. It is a model based approach in which only a very few point correspondences are used
to calculate the location of the 3D points. These point pairs are usually feature points from
the face like corner of the eyes, tip of the nose, etc. Their registration and the reconstruction
of the 3D points are completely automatic. Since a relatively small number of points are used
and the reconstruction does not result in a complete face model, a predefined general face
model is adjusted to the reconstructed 3D points. A self-organizing neural network is applied
to iteratively fit the general model to the 3D feature points.

L. Sajó, M. Hoffmann, A. Fazekas: A 3D Head Model From Stereo Images 219

Figure 5: Fitting the general face model to the reconstructed 3D feature points

The resulted face model is carrying the characterics of the faces and reflects the different
facial expressions. These benefits urge us to use the reconstructed 3D head for facial emotion
recognition in our next research.

Acknowledgement

This work is financially supported by the research project “Theoretical foundations of the
technology of man-machine communication” (TÁMOP 4.2.2-08/1/2008-0009). The second
author is supported by the János Bolyai Fellowship of the Hungarian Academy of Science.

References

[1] Camera Calibration Toolbox for Matlab: http://www.vision.caltech.edu/bouguetj/

calib_doc/htmls/example5.html, referenced in March 2009.

[2] T. Cootes, G. Edwards, C. Taylor: Active appearance models. In Proc. of the
European Conference on Computer Vision 1998, vol. 2, pp. 484–498, .

[3] T. Cootes, C. Taylor, D. Cooper, J. Graham: Active Shape Models-Their Training

and Application. Computer Vision and Image Understanding 61, no. 1, 38–59 (1995).

[4] R. Enciso, J. Li, D. Fidaleo, T.Y. Kim, J.Y. Noh: Synthesis of 3D faces. Proc.
Workshop on Digital and Computational Video, 2000.

[5] C.E. Esteban, F. Schmitt: Silhouette and Stereo Fusion for 3D Object Modeling. Proc.
Fourth Internat. Conference on 3-D Digital Imaging and Modeling, 2003, pp. 46–54.

[6] E. Hjelmas, B.K. Low: Face detection: A survey. CVIU 83, 236–274 (2001).

[7] M. Hoffmann: Modified Kohonen Network for Surface Reconstruction. Publ. Math.
Debrecen 54, 857–864 (1999).

[8] M. Hoffmann, L. Várady: Free-form surfaces for scattered data by neural networks.
J. Geometry Graphics 2, 1–6 (1998).

[9] A. King: A Survey of Methods for Face Detection. Computer Vision Course, 2003.

[10] T. Kohonen: Self-organization and associative memory. 3rd edition, Springer, 1989.

[11] Yi Ma, St. Soatto, J. Košecká, S.Sh. Sastry: An Invitation to 3D-Vision.
Springer, New York 2004.

[12] I. Matthews, S. Baker: Active Appearance Models Revisited. International Journal
of Computer Vision 60, no. 2, 135–164 (2004).

220 L. Sajó, M. Hoffmann, A. Fazekas: A 3D Head Model From Stereo Images

[13] I.K. Park, H. Zhang, V. Vezhnevets: Image-Based 3D Face Modeling System.
Journal on Applied Signal Processing 13, 2072–2090 (2005).

[14] F. Pighin, J. Hecker, D. Lischinski, R. Szeliski, D.H. Salesin: Synthesiz-

ing realistic facial expressions from photographs. Proc. of SIGGRAPH Conference 1998,
pp. 75–84.

[15] H. Stachel: Descriptive geometry meets computer vision – the geometry of two images.
J. Geometry Graphics 10, 137–153 (2006).

[16] P. Viola, M. Jones: Robust real-time object detection. Technical Report CRL
20001/01, Cambridge Research Laboratory, 2001.

[17] M.H. Yang, D. Kriegman, N. Ahuja: Detecting faces in images: A survey. IEEE
Trans. on PAMI 24(1), 34–58 (2002).

[18] Y. Zheng, J. Chang, Z. Zheng, Z. Wang: 3D face reconstruction from stereo: a

model based approach. Proc. of Internat. Conference on Image Processing 2007, pp. 65–68.

Received April 27, 2009; final form December 2, 2009

