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Abstract. Deformation theory focuses on the examination of rigidity conditions
of surfaces. In this paper we present our tools for the examination of torus-
like surfaces with a polygonal meridian in the Euclidean 3-space E3. Based on
Cohn-Vossen’s method we check infinitesimal bendings of the generated sur-
faces. Starting from given nodes of a meridian we perform the analysis and display
the obtained toroids and their deformed shapes. We use C++ and OpenGL to
carry out all underlaying calculations and the 3D model visualization.
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1. Introduction

The surface bending theory considers the bending of surfaces, i.e., isometric deformations
as well as infinitesimal bendings. It presents one of the main parts of global differential
geometry. Any bending transforms a surface into a continuous family of isometric surfaces,
i.e., such that angles and the arc length of curves on the surface are preserved. On the other
hand, an infinitesimal bending of a surface is — roughly speaking — an approximation of an
isometric deformation; we only require that for each curve the arc length remains stationary.

The basic aim of deformation theory is to find classes of rigid or non-rigid surfaces. The
main task at infinitesimal bending problems is to check the flexibility of a surface with respect
to the given class of infinitesimal deformations. In this paper torus-like surfaces are considered
which are obtained by revolving a polygonal meridian in E3.

In the last century the bending theory was developed thanks to the work of leading
mathematicians in the considered area like D. Hilbert, H. Weyl, W. Blaschke, S.
Cohn-Vossen, A.D. Alexandrov, N.V. Efimov, A.V. Pogorelov, I.N. Vekua,
V.T. Fomenko, I.Kh. Sabitov, I.I. Karatopraklieva, R. Connelly, R. Bishop,

ISSN 1433-8157/$ 2.50 c© 2009 Heldermann Verlag
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H. Stachel, H. Gluck, V.A. Alexandrov. The first result on infinitesimal bendings
of a non-convex surface is due to H. Liebmann [12, 13]. He has proved that the torus and
analytic surfaces containing a convex strip are rigid with respect to infinitesimal bendings,
i.e., infinitesimally rigid.

In 1938 A.D. Alexandrov [1] extended the results of Liebmann [12, 13]. He considered
closed surfaces, subdivided by piecewise smooth curves into a finite number of regions with
constant Gaussian curvature. He proved that these surfaces are infinitesimally rigid, i.e.,
they do not admit any nontrivial infinitesimal bending. Later, T. Rado and T. Minagawa
enforced the results of H. Liebmann. They proved the rigidity of the torus [15, 16] and of
surfaces of revolution of class C1, containing a convex strip of class C2, under the presumption
that the bending field is of class C1. It is also well-known [6, 5] that a sphere is infinitesimally
rigid.

The above mentioned results naturally lead to the question whether there exist non-rigid
closed surfaces. The first answer to this question was given by S. Cohn-Vossen [4, 5]. He
proved that from each plane curve we can get the meridian of a non-rigid surface of revolution
of genus 0. This result of S. Cohn-Vossen and his method influenced many papers on
infinitesimal bendings of non-convex surfaces of revolution. Surfaces of revolution of genus 0
or 1 generated by rotation of a polygon were considered by Cohn-Vossen, Bublik, K.M.
Belov [3], and N.G. Perlova [17]. Cohn-Vossen considered surfaces of genus 0 generated
by a polygonal line and argued about the non-rigidity of some of them. K.M. Belov [3]
presented a class of flexible toroids that are topologically equivalent to a torus. At one class
the meridians have the shape of a special quadrangle (with mutually perpendicular diagonals
— one parallel to the axis of rotation).

Toroid surfaces containing no planar part and generated by a triangular meridian [21] or
by a parallelogram a meridian [26] are rigid. Generalizations of the investigations presented
in [3] were given in [22]–[25].

2. The basic facts of infinitesimal bending theory

We start with the basic facts of the theory of infinitesimal bendings of surfaces according to
[6] and [5]. The basic concept used in this work can be defined in different ways.

2.1. Infinitesimal deformations of surfaces

Let’s consider a surface S in E3 of class Cα, α ≥ 3.

Definition 2.1. The surface Sε is a deformation of the piecewise regular surface S if it is
included in a continuous family of surfaces

Sε : r̄ = (u, v, ε) = r̄ε(u, v), (u, v) ∈ D ⊂ R2, ε ∈ [0, 1], and r̄ε : D × [0, 1] → R3,

and we obtain S for ε = 0.

Here we consider a kind of continuous family of surfaces which is defined according to [6]:

Definition 2.2. Let the surface

S : r̄ = r̄(u, v), (u, v) ∈ D, D ⊂ R2 (2.1)
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be included in a family of surfaces

Sε : r̄ε = r̄ε(u, v, ε), ε ≥ 0 (2.2)

depending continuously on the parameter ε and with Sε = S for ε = 0. If

Sε : r̄ε = r̄(u, v) +
m∑

j=1

εj
(j)

z̄ (u, v), m ≥ 1, (2.3)

where
(j)

z̄ (u, v) ∈ Cα with α ≥ 3 for j = 1, . . . ,m are given vector fields, then the family Sε is
called an infinitesimal deformation of order m of the surface S.

The theory considering geometric objects in connection with Sε up to the precision of order
m with respect to ε for ε → 0 is called infinitesimal deformation theory of surfaces of order
m. Different and more special conditions give rise to different kinds of surface deformations.
Higher order deformations of polyhedral surfaces were, e.g., considered in [19] and [2].

2.2. Infinitesimal bending of first order

Let the regular surface S of class Cα, α ≥ 3, be given in vector form by (2.1) and included in
the family of surfaces

Sε : r̄ε(u, v, ε) = r̄(u, v) + ε z̄(u, v), (2.4)

where ε→ 0, (u, v) ∈ D ⊂ R and r̄0(u, v, 0) = r̄(u, v).

Definition 2.3. The surfaces (2.4) are infinitesimal bendings of first order of the surface S if

ds2
ε − ds2 = o(ε), (2.5)

i.e., if the difference of the squares of line elements of these surfaces is of order higher than
one. The field z̄(u, v) for which

∂r̄(u, v, ε)

∂ε

∣∣∣∣
ε=0

= z̄(u, v) (2.6)

is the velocity field or infinitesimal bending field of the infinitesimal bending.

According to [6, 5] this definition is equivalent to what is stated in the next theorem:

Theorem 2.1. A necessary and sufficient condition for the surface Sε in (2.4) to be an
infinitesimal bending of the surface S in (2.1) is

dr̄ · dz̄ = 0 , (2.7)

with z̄(u, v) as the velocity field at the initial instant of deformation and · denoting the scalar
product.

Equation (2.7) is equivalent to the following three partial differential equations:

r̄u · z̄u = 0, r̄u · z̄v + r̄v · z̄u = 0, r̄v · z̄v = 0. (2.8)
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Theorem 2.2. Under an infinitesimal bending of a surface each line element is transformed
according to

dsε − ds = o(ε) ≥ 0. (2.9)

Proof: Based on (2.4) and (2.5) we have

ds2
ε = dr̄2 + ε2dz̄2 =⇒ ds2

ε = ds2

[
1 + ε2

(
dz̄

ds

)2
]
,

i.e.,

dsε = ds

[
1 + ε2

(
dz̄

ds

)2
]1/2

.

If we apply the development of the function f(x) = (1 + x)1/2 into a Maclaurin series at

x = ε2
(

dz̄

ds

)2

, we obtain (2.9).

3. Infinitesimal bending of toroids with a polygonal meridian

Now we consider an infinitesimal deformation of a surface of revolution with a simple polygonal
meridian. We will give necessary and sufficient conditions for such a toroid to be non-rigid.
And we explain the procedure for generating a bending field.

Let Pn be the simple polygon with apices Ai(ui, ρi), i = 1, 2, . . . , n, in a meridian plane
equipped with a cartesian coordinate system uOρ with u as axis of rotation. The sides of Pn

obey the equations

AmAm+1 : ρ(m) = ρm +
ρm+1 − ρm

um+1 − um

(u− um), (3.1)

ρ′(m) =
ρm+1 − ρm

um+1 − um

= km, m = 1, 2, . . . , n; An+1 ≡ A1,

where ρ(m) is the value of ρ on AmAm+1. In order to consider an infinitesimal bending of this
surface of revolution with a closed piecewise smooth meridian, we will use Cohn-Vossen’s
method [5]. The radius vector of the surface is

r̄(u, v) = u ē+ ρ(u)ā(v),

where ρ = ρ(u) is the equation of the meridian. If ē is the unit vector of the axis of rotation,
ā(v) the unit vector of the ρ-axis, v the angle between the initial meridian plane including
ā(v), then ā′(v) is perpendicular to ā(v) and to ē (see [6, p. 90] or [5, p. 253]).

We try to find a fundamental infinitesimal bending field of the surface S in the form

z̄(u, v) = z̄k(u, v) = [ϕk(u)e
ikv + ϕ̃k(u)e

−ikv] ē+

[ψk(u)e
ikv + ψ̃k(u)e

−ikv] ā(v) + [χk(u)e
ikv + χ̃k(u)e

−ikv] ā′(v).

The functions ϕk(u), ψk(u) and χk(u) satisfy the equations

ϕ′k(u) + ρ′(u)ψ′k(u) = 0,
ψk(u) + ik χ′k(u) = 0,

ik ϕk(u) + ρ′(u)[ ik ψk(u)− χk(u)] + ρ(u)χ′k(u) = 0.
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The differential equation of the second order

ρ(u)λ′′(u) + (k2 − 1)ρ′′(u)λ(u) = 0 (3.2)

is satisfied for λ(u) = ψk(u), χk(u). We omit the index k and denote with ψ(i) the value of
the function ψ on AiAi+1 for i = 1, 2, . . . , n under An+1 ≡ A1.

From the equations (3.1) and (3.2) follows also the linearity of the functions ψi(u)

ψ(i) = Mi u+Ni , i = 1, 2, . . . , n (3.3)

At the points u = σ of the meridian, where ρ(σ − 0) = ρ(σ + 0), i.e., at the apices of the
polygon, we get, supposing the continuity of the function ψ(i)(u),

ψ(i)(ui) = ψ(i−1)(ui), i = 2, . . . , n; ψ(1)(u1) = ψ(n)(u1),

and from there based on (3.3)

Mi ui +Ni = Mi−1ui +Ni−1 i = 1, 2, . . . , n; M0 ≡Mn, N0 ≡ Nn.

If we consider this system as a system with respect to unknowns Ni, i = 1, 2, . . . , n, we get

N1 −Nn = −M1u1 +Mnu1

N1 −N2 = −M1u2 +M2u2

. . . . . . . . . . . . . . . . . .

Nm−1 −Nm = −Mm−1um +Mmum

. . . . . . . . . . . . . . . . . .

Nn−1 −Nn = −Mn−1un +Mnun

(3.4)

At the apices of the polygon we have according to [5] the next equation

ρ(σ)[ψ′k(σ + 0)− ψ′k(σ − 0)] + (k2 − 1)ψk(σ)[ρ′(σ + 0)− ρ′(σ − 0)] = 0.

Applying this equation to the apices Mi, i = 1, 2, . . . , n , we get the system of equations

ρi(Mi −Mi−1) + (k2 − 1)((Mi ui +Ni)(ki − ki−1) = 0,

i = 1, 2, . . . , n; M0 ≡Mn, k0 ≡ kn.
(3.5)

The equations (3.4) and (3.5) represent a system of linear equations for the unknowns Mi and
Ni, i = 1, 2, . . . , n. Let A denote the matrix of the system and P the extended matrix.

The system is compatible if and only if rankA = rankP , i.e., if and only if

Mn =
1

u1 − un

n−1∑
i=1

(ui − ui+1)Mi. (3.6)

According to (3.5) and (3.6) we get the reduced system

N1 −Nn = (Mn −M1)u1

−N2 +Nn = (M1 −Mn)u1 + (M2 −M1)u2,

. . . . . . . . . . . .

−Nm +Nn = (M1 −Mn)u1 +
∑m

l=2(Ml −Ml−1)ul,

. . . . . . . . . . . .

Nn−1 +Nn = (M1 −Mn)u1 +
∑n−1

l=2 (Ml −Ml−1)ul,

for m = 3, . . . , n− 2.

(3.7)
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After introducing the notation

ui − uj = ui,j, ki − kj = ki,j

we get from (3.7)

N1 = Nn +
u1

u1,n

[
un,2M1 +

∑n−1
i=2 ui,i+1Mi

]
. . . . . . . . .

Nm = Nn +
u1

u1,n

∑m−1
i=1 ui,i+1Mi +

umun − u1um+1

u1,n
Mm +

u1

u1,n

∑n−1
i=m+1 ui,i+1Mi

. . . . . . . . .

Nn−1 = Nn +
un

u1,n−2
+

∑n−2
i=1 ui,i+1Mi +

unun−1,1

u1,n
Mn−1

for m = 2, . . . , n− 2.

(3.8)

Then the system (3.5) with unknowns M1, . . . ,Mn−1, Nn reduces to

[
ρ1u2,n + (k2 − 1)k1,nu1u1,2

]
M1 =

n−1∑
i=1

ui,j+1

[
(k2 − 1)k1,nu1u1,2

]
M1 (3.9.1)

[(k2 − 1)k2,1unu1,2 − ρ2u1,n] M1 + [ρ2u1,n + (k2 − 1)k2,1u1u2,3] M2

+(k2 − 1)k2,1

[
u1,2Nn + u1

∑n−1
i=3 ui,i+1Mi

]
= 0

(3.9.2)

. . . . . . . . .

(k2 − 1)km,m−1un

∑m−2
i=1 ui,j+1Mi + [(k2 − 1)km,m−1unum−1,m + ρmun,1] Mm−1

+ (k2 − 1)km,m−1u1

∑n−2
i=m+1 ui,j+1Mi + (k2 − 1)km,m−1u1,nNn = 0

(3.9.m)

. . . . . . . . .

[ρn + (k2 − 1)kn,n−1un]
∑n−1

i=1 ui,i+1Mi + [ρnun−1,1 + (k2 − 1)kn,n−1unun−1,n] Mn−1

+ [ρmu1,n + (k2 − 1)km,m−1u1um,m+1] Mm + (k2 − 1)kn,n−1u1,nNn = 0
(3.9.n)

Let B denote the matrix of the system (3.9). A necessary and sufficient condition for a
nontrivial solution of this system of homogenous linear equations is

detB = 0. (3.10)

After transforming B in triangular form we get the condition

Bn,n = 0. (3.11)

In this way, the next theorem is proved.

Theorem 3.1. A necessary and sufficient condition for the non-rigidity of the surface of
revolution with the polygonal meridian with apices Ai(ui, ρi), ρi > 0, ui 6= ui+1, i = 1, 2, . . . , n,
is given by (3.10), which is equivalent to (3.11), where B is the matrix of the system (3.9)
and

ui,j = ui − uj, ki,j = ki − kj, ki =
ρi+1 − ρi

ui+1 − ui

, k ≥ 2.
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The procedure used here offers a possibility to determine the field of infinitesimal bending.
Under condition (3.10) we obtain from (3.9) the reduced system

b1,1Nn + b1,2Mn−1 + · · · + b1,nM1 = 0
b2,2Mn−1 + · · · + b2,nM1 = 0

. . . . . . . . .

bn−1,n−1M2 + bn−1,nM1 = 0

and from there M2 =
bn−1,n

bn−1,n−1
M1, provided bn−1,n−1 6= 0, and M3, . . . ,Mn−1, Nn expressed in

terms of M1 (undefined constant). Further we get ψi(u) based on (3.3). In this way we get
the bending field.

4. Visualization of infinitesimal bendings of a toroid with a polygo-
nal meridian

The computer enables to display surfaces when seen from different points of view. Further-
more, it enables to analyze the non-rigidity conditions and to compute a bending field.

Previously, we started with a family of toroids and determined their properties using
the package Mathematica. We took points of a meridian as input, and checked the rigidity
conditions. The output string defined in symbolical notation the surface of revolution together
with the field of infinitesimal bending of first order. The result was the basis for the graphical
output which allowed a graphical analysis. Graphical representations of deformations have
been considered in [9, 10, 20].

In order to have more flexibility in the visual presentation and to speed up the basic and
3D calculations, we developed SurfBand. It is very useful to examine surfaces of revolution
and to check their distortion under the influence of an infinitesimal bending field.

4.1. Use of SurfBand

SurfBand, the program devoted to visualize infinitesimal bending of toroids, has been devel-
oped in C++ [11] and uses OpenGL [8, 14] standard to display graphics. It should therefore
be portable, although it has only been tested on Microsoft Windows platforms. The under-
laying calculations of the geometric model were done in ANSI C++, but rising control to
interactive level was done using MFC [18].

It has early been presented at the ESI Conference “Rigidity and Flexibility” in Vienna,
2006. It takes as input cartesian coordinates of points of the polygon, and then performs
the non-rigidity analysis. If a polygon satisfies the non-rigidity conditions, we are able to
display the family of bendable surfaces. It also can show a few already found examples of
infinitesimally flexible convex and non convex toroids with a polygonal meridian.

As soon as the polygon of an appropriate flexible toroid is specified, we can use a
View/Property dialog in order to examine the shape. Here we can influence the visibility
and the colors of the conical sections of the surface. At the beginning the bending parameter
is set 0.0 (no bending), the angle of rotation is set 3π

2
, and the number of subdivision points

of the grid is set to 20. Afterwards is can be changed via appropriate scroll bars, and the
effect on the 3D model can be inspected in the main application window.

Pressing and holding down the left mouse button, while dragging the mouse, will rotate
the surface. Pressing “w” is necessary to show the wire frame model and “f” for filling the
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model. The point of view can be positioned farer or closer to the model. There is a bright
spotlight to achieve more realistic pictures of the 3D object.

The program can run in the “drag and rotate” mode where the rotation of the model can be
repeated continuously (loop or reversed way). The apices of the selected polygon trace circles
around the z-axis during the rotation. Bending deforms the circles into curves which are
visible and manageable via the View/Cone borders dialog. Its activation pushes the program
to run in a mode, which hides cones or shows them only. It is possible to adjust interactively
properties like color and visibility of curves of all available polygon’s apices, the minimum
and maximum values of the bending parameter and the number of inner borders. The display
can show curves representing borders or meshes which are more suitable for representing the
surface formed by the bending borders.

We use a kind of Free-form deformation (FFD) in modeling the infinitesimal bending
of a bendable toroid. FFD [7, 20] is a general method for deforming objects that provides
a higher and more powerful level of control and is computationally efficient. It enables to
create an animation. We are able to define the initial form and properties of the model
via the AnimationBeginProperty dialog and the final form and properties of the model via
the appropriate AnimationEndProperty dialog. After checking the Drag to the animate box,
pressing and holding down the left button of the mouse while moving the mouse will memorize
the applied rotations. Releasing the left mouse button will finish the creation of animation
which shows the transformation from the initial to the final form.

5. Examples

• The first example of a non-rigid toroidal surface (Fig. 1) is given by the meridian, a
convex quadrangle with apices A(−3, 18

7
), B(0, 65

28
), C(5, 18

7
), D(0, 32

7
), k = 3, ε = 0.15.

• The second example (Fig. 2) is based on the convex pentagon with apices A(−1, 1),

B(−2, 3), C(1, 4), D(2, 24275−31
√

51937
6069

, E(1, 2), k = 3, and ε = 0.01.

• The third example (Fig. 3) has a convex hexagonal meridian with apices A(−1, 1),
B(−2, 2), C(−1, 3), D(0, 6), E(1, 3), F (2, 2), k = 2, and ε = 0.1 .

• The fourth example (Fig. 4) of a non-rigid toroidal surfaces is based on the convex

hexagonal polygon with apices D(0, 167−
√

6133
37

), E(1, 3), F (2, 2), A(−1, 1), B(−2, 2),
C(−1, 3), k = 2, and ε = 0.1.

Figure 1:
Figure 2:
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Figure 3: Figure 4:

6. Conclusions

In this paper the authors analyse a class of surfaces topologically equivalent to a torus. It
is known that a circular torus is rigid. Based on theoretical considerations, the authors
present a tool for examining the infinitesimal rigidity of a toroid generated by a polygonal
meridian. In this way the family of surfaces that is non-rigid is enlarged, and the deformed
surfaces are presented. The developed program SurfBand starts with nodes of a meridian,
performs the analysis and displays the obtained toroid and its deformed shapes. Besides
theoretical considerations based on Differential Geometry and Fourier Analysis, we use C++
and OpenGL to perform the underlying calculations and the 3D model visualization.
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