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Abstract. Let S be a non parabolic line congruence in E3, whose middle sur-
face P (u, v) is different from its middle envelope M(u, v). We prove that there
exist two line congruences S ′, S ′′ orthogonal to S and to each other with common
middle surface P (u, v) iff S is isotropic or the straight lines of S ′, S ′′ are directed
by the tangent vectors of the spherical image of the S-principal ruled surfaces of
S, in case S is not isotropic. Then, studying the properties of a triplet S, S ′, S ′′,
we find a new geometric interpretation for the curvature of S.
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1. Introduction

In a three-dimensional Euclidean space E3 let S, S ′ be two line congruences, whose straight
lines correspond one-to-one. S, S ′ are called orthogonal iff their corresponding straight lines
are orthogonal to each other. N. K. Stephanidis [4], G. Stamou [3] and the authors [2]
studied orthogonal line congruences with common middle surface. The present paper expands
this study, focusing on triplets of orthogonal line congruences with common middle surface.
An example of such a triplet is obtained by considering the normal line congruence S of a
minimal surface P (u, v). In this case the middle surface P (u, v) of S coincides with its middle
envelope and there exist exactly two line congruences S ′, S ′′ orthogonal to S and to each
other, which have P (u, v) as middle surface [4, p. 324]. The straight lines of S ′ and S ′′ are
tangent to the asymptotic lines of P (u, v). Since we discuss extensively about S, S ′, S ′′ in [2],
we shall exclude the above triplet from our study. Thus, we assume that S is not the normal
line congruence of a minimal surface, that is, the middle envelope of S is different from its
middle surface.

Firstly, we examine when there exist triply orthogonal line congruences S, S ′, S ′′ sharing
the same middle surface and then, we find various properties connecting invariants of S, S ′,
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S ′′. Among them appears a new geometric interpretation for the curvature of the given line
congruence S.

Suppose S is a line congruence in E3, defined on a simply connected domain G in the
(u, v)-plane by

x(u, v, t) = OP + t e3, −∞ < t < +∞, (1.1)

where OP = P (u, v) is the position vector for the surface of reference and e3(u, v) is the unit
vector in the direction of the straight lines of S.

Let D = {ei(u, v) | i = 1, 2, 3} be an orthonormal, positively oriented moving frame of S
and OM = M(u, v) be the middle envelope of S.

We assume that S satisfies the following conditions:

(a) The functions P (u, v), M(u, v) and ei(u, v), i = 1, 2, 3, are of class C4 throughout G.

(b) The spherical representation of S is one-to-one.

(c) The middle envelope M(u, v) is a regular surface having no parabolic or umbilical points.

(d) There is a one-to-one mapping between the points of the middle surface and the points
of the middle envelope.

Referring to the moving frame D, we may write

dP =
3∑

i=1

σi ei, (1.2)

dej =
3∑

i=1

ωji ei, ωij + ωji = 0, i, j = 1, 2, 3, (1.3)

where σi, ωij are linear differential forms for i, j = 1, 2, 3. We denote by “∧” the exterior
product of two differential forms. According to condition (b) the differential forms ω31, ω32

are linearly independent, i.e.,
ω31 ∧ ω32 6= 0. (1.4)

Thus, for the exterior derivatives dω31, dω32 of the differential forms ω31, ω32 we may put

dω31 = q ω31 ∧ ω32, dω32 = q̃ ω32 ∧ ω31, (1.5)

where q, q̃ are functions of u and v defined on G. Then it is well-known [4, p. 319] that

ω12 = q ω31 − q̃ ω32. (1.6)

The surface of reference OP = P (u, v) is the middle surface of S iff [4, p. 319]

ω31 ∧ σ2 + σ1 ∧ ω32 = 0. (1.7)

From now on, we assume that OP = P (u, v) is the middle surface of S. There exist functions
l,m, n of u and v defined on G, such that

σ1 = −mω31 − nω32, σ2 = lω31 +mω32. (1.8)

The curvature k, the mean curvature h and the limit distance 2z of S are given by the formulae

k = l n−m2, 2h = l + n, (1.9)

2z =

√
(l − n)2 + 4m2 = 2

√
h2 − k. (1.10)
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Considering e3(u, v) as the unit normal vector of M(u, v) and D as the moving frame on
M(u, v), there exist linear differential forms ρ, σ such that

dM = ρ e1 + σ e2 . (1.11)

Moreover, a middle plane of S is tangent to the middle envelope. Hence, there are functions
a = a(u, v), b = b(u, v), (u, v) ∈ G, such that

OP = OM + a e1 + b e2 . (1.12)

Let us now denote the Pfaffian derivatives with respect to the forms ω31, ω32 by ∇i, i = 1, 2,
and the principal radii of M(u, v) by ri, i = 1, 2. The functions a = a(u, v), b = b(u, v) satisfy
the condition [4, p. 321]

∇1a+ ∇2b− q̃a− qb = r1 + r2 (1.13)

and the relation [4, p. 320]
σ3 = −aω31 − b ω32 (1.14)

is valid.
We assume that the middle envelope M(u, v) of S is different from its middle surface

P (u, v). At every point of P (u, v) we consider a positively oriented orthonormal frame D′ =
{e′i(u, v) | i = 1, 2, 3}, such that

e′
1

= e3 , (1.15)

e′
2

= sinϕ e1 − cosϕ e2, (1.16)

e′
3

= cosϕ e1 + sinϕ e2, (1.17)

where ϕ = ϕ(u, v) is the oriented angle between e1(u, v) and e′
3
(u, v). Each line congruence

S ′(ϕ), whose straight lines are directed by the unit vector e′
3
(u, v), is obviously orthogonal to

S. In addition, it is well-known [4, p. 322] that in a neighbourhood of each point (u0, v0) ∈ G,
there are infinitely many line congruences, which are orthogonal to S and have the same
middle surface P (u, v). All these congruences are defined by the differentiable functions
ϕ(u, v) that satisfy the equation

b∇1ϕ− a∇2ϕ−m cos 2ϕ+
l − n

2
sin 2ϕ+ q̃a+ qb = 0 (1.18)

or equivalently

aΓ + b∆ −m cos 2ϕ+
l − n

2
sin 2ϕ = 0, (1.19)

where
Γ = q̃ −∇2ϕ, ∆ = q + ∇1ϕ. (1.20)

Suppose S, S ′(ϕ) are two orthogonal line congruences with the same middle surface
P (u, v). We denote the elements of S ′(ϕ) by the accentuated symbols of the corresponding
elements of S. Thus, referring to the moving frame D′, similarly to the formulae (1.2), (1.3),
we may write

dP =
3∑

i=1

σ′

i e
′

i, (1.21)

d e′j =
3∑

i=1

ω′

ji e
′

i, ω′

ij + ω′

ji = 0, i, j = 1, 2, 3. (1.22)
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We know [4, p. 321] that

σ′

1
= σ3, σ′

2
= sinϕσ1 − cosϕσ2, σ′

3
= cosϕσ1 + sinϕσ2, (1.23)

ω′

12
= sinϕω31 − cosϕω32, (1.24)

ω′

31
= − cosϕω31 − sinϕω32, (1.25)

ω′

32
= −ω12 − dϕ = −∆ω31 + Γω32. (1.26)

Besides [2, p. 125]

ω′

31
∧ ω′

32
= Dω31 ∧ ω32, (1.27)

where

D = − (Γ cosϕ+ ∆ sinϕ) . (1.28)

The linear differential forms ω′

31
, ω′

32
are linearly independent iff D 6= 0 ∀(u, v) ∈ G.

Hereafter we assume D 6= 0, i.e.,

Γ cosϕ+ ∆ sinϕ 6= 0 ∀(u, v) ∈ G. (1.29)

Then, there exist functions l′, m′, n′, a′, b′ of u and v, defined on G, such that

σ′

1
= −m′ω′

31
− n′ω′

32
, (1.30)

σ′

2
= l′ω′

31
+m′ω′

32
, (1.31)

σ′

3
= −a′ω′

31
− b′ω′

32
. (1.32)

From the preceding relations, taking into account (1.8), (1.14), (1.19), (1.23)–(1.26) and
(1.28), we derived [2, p. 126]

m′ =
1

D
(aΓ + b∆) =

1

D

(
m cos 2ϕ− l − n

2
sin 2ϕ

)
, (1.33)

l′ = − 1

D
[(mΓ + n∆) sinϕ+ (lΓ +m∆) cosϕ] , (1.34)

n′ =
1

D
(a sinϕ− b cosϕ) , (1.35)

a′ =
1

D
[(mΓ + n∆) cosϕ− (lΓ +m∆) sinϕ] , (1.36)

b′ = − 1

D

(
l sin2 ϕ+ n cos2 ϕ−m sin 2ϕ

)
. (1.37)

In the following sections we assume that the given line congruence S is not parabolic
(k 6= 0).
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2. The existence

We consider a line congruence S whose middle surface P (u, v) is different from its middle
envelope M(u, v). Then, in a neighbourhood of each point (u0, v0) ∈ G, there is always a line
congruence S ′(ϕ) orthogonal to S, which has also P (u, v) as middle surface, where ϕ(u, v) is a
solution of the differential equation (1.18). The aim of this section is to answer the question,
when there exist a third line congruence S ′(ψ), which is orthogonal to S, S ′(ϕ) and has a
common middle surface with them.

Such a line congruence S ′(ψ) corresponds to the function ψ = ϕ + π

2
(or ψ = ϕ + 3π

2
),

which satisfies (1.18). That is,

b∇1ψ − a∇2ψ −m cos 2ψ +
l − n

2
sin 2ψ + q̃a+ qb = 0 (2.1)

or equivalently

b∇1ϕ− a∇2ϕ+m cos 2ϕ− l − n

2
sin 2ϕ+ q̃a+ qb = 0. (2.2)

Since the straight lines of S ′(ψ) for ψ = ϕ + π

2
and ψ = ϕ + 3π

2
have the same direction, we

continue to have only the function ψ = ϕ+ π

2
. By subtracting (1.18) from (2.2), we find

2m cos 2ϕ− (l − n) sin 2ϕ = 0. (2.3)

Relations (2.2) and (2.3) imply

b∇1ϕ− a∇2ϕ+ q̃a + qb = 0 (2.4)

or, taking into account (1.20),
aΓ + b∆ = 0. (2.5)

Conversely, we suppose that (2.3) is valid. Then, by virtue of (1.18), we obtain (2.4) and as
a consequence (2.2) holds. Thus, we deduce:

Proposition 2.1. Let S, S ′(ϕ) be orthogonal line congruences with the same middle surface
P (u, v). A line congruence S ′(ϕ + π

2
) is orthogonal to S, S ′(ϕ) and has P (u, v) as middle

surface iff (2.3) or equivalently (2.4) is valid.

Proposition 2.2. Given a line congruence S with middle surface P (u, v) and the line congru-
ences S ′(ϕ), S ′(ϕ+ π

2
) orthogonal to S and to each other. If two of the following propositions

(i) P (u, v) is the middle surface of S ′(ϕ),

(ii) P (u, v) is the middle surface of S ′(ϕ+ π

2
),

(iii) 2m cos 2ϕ− (l − n) sin 2ϕ = 0

hold true, then the third one is also valid.

(A) Let us, firstly, consider that S is isotropic, i.e.,

l − n = 0 and m = 0 ∀(u, v) ∈ G. (2.6)

By virtue of (2.6), the equation (1.18) reduces to (2.4). Evidently, if ϕ(u, v) satisfies (2.4),
then every function ϕ(u, v)+c, where c = const., also satisfies (2.4). Putting c = π

2
, we obtain

the following:
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Proposition 2.3. If S is an isotropic line congruence with middle surface P (u, v), there are
infinitely many pairs of line congruences S ′(ϕ), S ′(ϕ+ π

2
) orthogonal to S and to each other,

which have P (u, v) as middle surface.

In this case, we also have:

Proposition 2.4. Suppose S, S ′(ϕ), S ′(ϕ+ π

2
) are triply orthogonal line congruences. Then,

the following conditions are equivalent:

(i) P (u, v) is the middle surface of S ′(ϕ).

(ii) P (u, v) is the middle surface of S ′(ϕ+ π

2
).

(iii) b∇1ϕ− a∇2ϕ+ q̃a+ qb = 0.

(B) Now, we assume that S is a nonisotropic line congruence and P (u, v) is its middle
surface. Without loss of generality, we consider that the S-principal ruled surfaces of S are
the parameter surfaces defined by ω31 = 0, ω32 = 0. That happens iff

m ≡ 0. (2.7)

Then, e1, e2 are the tangent vectors to the spherical images of the S-principal ruled surfaces
of S. On account of (2.7), the equation (2.3) takes the form

(l − n) sin 2ϕ = 0. (2.8)

Since S is nonisotropic, l − n 6= 0 for all (u, v) ∈ G. Hence the relation (2.8) is valid iff
ϕ = 0, π

2
, π, 3π

2
. From now on, we shall keep only the values ϕ = 0, ϕ = π

2
, because the

straight lines of S ′(0) and S ′(π) (resp. S ′(π

2
) and S ′(3π

2
)) have the same direction. Moreover,

in view of (1.17), the straight lines of S ′(0) and S ′(π

2
) are directed by the vectors e1 and e2 ,

respectively. Therefore we derive:

Proposition 2.5. Let S be a nonisotropic line congruence with middle surface P (u, v). There
exist exactly two line congruences S ′(0), S ′(π

2
) orthogonal to S and to each other, which have

P (u, v) as middle surface. The straight lines of S ′(0), S ′(π

2
) are directed by the tangent vectors

to the spherical images of the S-principal ruled surfaces of S.

In this case, inserting consecutively the values ϕ = 0 and ϕ = π

2
into (2.4), we find

q̃a + qb = 0, (2.9)

which leads to

Proposition 2.6. Suppose P (u, v) is the middle surface of a nonisotropic line congruence
S. For the triply orthogonal line congruences S, S ′(0), S ′(π

2
) the following conditions are

equivalent.

(i) P (u, v) is the middle surface of S ′(0),

(ii) P (u, v) is the middle surface of S ′(π

2
),

(iii) q̃a + qb = 0 .

Summing up the conclusions of (A) and (B), we may answer the question of the existence
that we posed in the beginning.
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Proposition 2.7. Let S be a nonparabolic line congruence whose middle surface P (u, v) is
different from its middle envelope M(u, v). Then,

if (A), S is isotropic, there exist infinitely many triplets of mutually orthogonal line congru-
ences S, S ′, S ′′ with common middle surface P (u, v), while

if (B), S is not isotropic, there exists exactly one such triplet S, S ′, S ′′. In this case the
straight lines of S ′, S ′′ are directed by the tangent vectors to the spherical images of the
S-principal ruled surfaces of S.

3. Case with S isotropic

In this section we assume that:

(A) S is isotropic and S, S ′, S ′′ are triply orthogonal line congruences with common middle
surface P (u, v).

S ′ and S ′′ are defined by the functions ϕ and ϕ + π

2
respectively, which satisfy (2.4). The

straight lines of S ′ and S ′′, via the relation (1.17), are directed by the vectors

e′
3

= cosϕ e1 + sinϕ e2 and e′′
3

= − sinϕ e1 + cosϕ e2 ,

respectively. Moreover, according to the conclusion of the Remark 2.1 of [2, p. 127]

e′
3
6= ± MP

|MP |
, e′′

3
6= ± MP

|MP |
. (3.1)

For the line congruence S ′ the relations (1.15)–(1.17) and (1.20)–(1.29) are valid. In addition,
taking into account (2.6) the formulae (1.33)–(1.37) for S ′ become

m′ = 0, (3.2)

l′ = l, (3.3)

n′ =
1

D
(a sinϕ− b cosϕ), (3.4)

a′ =
l

D
(∆ cosϕ− Γ sinϕ), (3.5)

b′ = − l

D
. (3.6)

On the other hand, substituting the value ϕ+ π

2
into relations (1.15)–(1.17) and (1.25)–(1.28)

and denoting the elements of S ′′ by double accentuated symbols, we obtain

e′′
1

= e3 , e′′
2

= cosϕ e1 + sinϕ e2 , e′′
3

= − sinϕ e1 + cosϕ e2, (3.7)

ω′′

31
= sinϕω31 − cosϕω32 , ω′′

32
= −∆ω31 + Γω32 , (3.8)

ω′′

31
∧ ω′′

32
= D∗ω31 ∧ ω32, (3.9)

where
D∗ := Γ sinϕ− ∆ cosϕ. (3.10)

We assume D∗ 6= 0 ∀(u, v) ∈ G. That makes ω′′

31
, ω′′

32
linearly independent. Then, in view of

(1.28), (2.6), (3.10) the relations (1.33)–(1.37) for S ′′ take the form

m′′ = 0, (3.11)
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l′′ = l, (3.12)

n′′ =
1

D∗
(b sinϕ+ a cosϕ), (3.13)

a′′ =
lD

D∗
, (3.14)

b′′ = − l

D∗
. (3.15)

Evidently, from (3.3) and (3.12) we have

l′′ = l′ = l. (3.16)

Besides, from the equations (3.4) and (3.13), using (1.28), (3.10) and the assertion (iii) of
Proposition 2.4, which is equivalent to

aΓ + b∆ = 0, (3.17)

we find
n′′ = n′. (3.18)

We shall prove the following

Proposition 3.1. Given (A), the relations

k′ = k′′, h′ = h′′, 2z′ = 2z′′ (3.19)

hold true, where k′, k′′ are the curvatures, h′, h′′ the mean curvatures and 2z′, 2z′′ the limit
distances of the line congruences S ′, S ′′, respectively.

Proof: Applying the formulae (1.9), (1.10) to S ′, S ′′, it follows

k′ = l′n′ −m′2, 2h′ = l′ + n′, (3.20)

2z′ = 2
√
h′2 − k′, (3.21)

and
k′′ = l′′n′′ −m′′2, 2h′′ = l′′ + n′′, (3.22)

2z′′ = 2
√
h′′2 − k′′, (3.23)

respectively. From (3.20)–(3.23), making use of (3.2), (3.11), (3.16) and (3.18), we immedi-
ately derive the relations (3.19).

Since S is isotropic, the relations

z = 0, k = l2, h = l (3.24)

are valid and, by means of (3.20), (3.22) and (3.16), Proposition 3.1 implies

Corollary 3.1. If one of S ′, S ′′ is normal, then

(i) the other one is also normal and

(ii) k′ = k′′ = −k.
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Corollary 3.2. If one of S ′, S ′′ is isotropic, then

(i) the other one is isotropic too,

(ii) k′ = k′′ = k and

(iii) h′ = h′′ = h.

Moreover, according to Proposition 2.2 of [2, p. 128] S ′, S ′′ are not parabolic. Thus, a
direct consequence of Proposition 3.1 is the following

Corollary 3.3. Both of S ′, S ′′ are simultaneously elliptic or hyperbolic line congruences.

Let P be an arbitrary point on the middle surface P (u, v) and g′, g′′ the straight lines of
S ′, S ′′, respectively, that pass through P . The lines g′, g′′ are perpendicular and lie on the
middle plane of S at P .

We assume firstly that S ′, S ′′ are hyperbolic: For the angle 2ω′ (resp. 2ω′′) between the
focal planes of S ′ (resp. S ′′), which contains g′ (resp. g′′), the formula

cos 2ω′ =
h′√

h′2 − k′
( resp. cos 2ω′′ =

h′′√
h′′2 − k′′

)

holds true [1, p. 154]. Thus, via Proposition 3.1, it follows

Corollary 3.4. The angles 2ω′, 2ω′′ between the corresponding focal planes of S ′ and S ′′ are
equal.

We denote by F ′

i , F
′′

i , i = 1, 2, the focal points of g′, g′′ respectively. According to
Proposition 3.1 the focal distances of S ′, S ′′ are equal. Hence

Corollary 3.5. If (A) is valid and S ′, S ′′ are hyperbolic line congruences, the focal points
F ′

i , F
′′

i , i = 1, 2, define a square, whose center is the common midpoint P . The length of its
diagonals is equal to the common focal distance 2

√
−k′ and its area is −2k′.

Further, taking into account Corollary 3.1, we get

Corollary 3.6. If one of the line congruences S ′, S ′′ is normal, the length of each diagonal
of the square F ′

1
F ′′

1
F ′

2
F ′′

2
equals 2

√
k and its area is 2k, where k is the curvature of S.

Next, we assume that S ′, S ′′ are nonisotropic: Similarly, using Proposition 3.1, for the
limit points Z ′

i, Z
′′

i , i = 1, 2, of g′, g′′ respectively, we deduce:

Corollary 3.7. If (A) is valid and S ′, S ′′ are nonisotropic line congruences, the limit points
Z ′

i, Z
′′

i , i = 1, 2, are the vertices of a square with the common midpoint P at the center. The
length of its diagonals is 2z′ and its area equals to 2z′2.

Let us now discuss the middle envelopes OM ′ = M ′(u, v) and OM ′′ = M ′′(u, v) of S ′ and
S ′′ respectively. Applying the formula (1.12), we have for S ′ and S ′′

OM ′ = OP − a′e′
1
− b′e′

2
, (3.25)

OM ′′ = OP − a′′e′′
1
− b′′e′′

2
. (3.26)

We insert the right-hand sides of (1.15), (1.16), (3.5), (3.6) (resp. (3.7), (3.14), (3.15)) into
(3.25) (resp. (3.26)) and, using (3.10), it turns out

M ′P =
l

D
(− sinϕ e1 + cosϕ e2 −D∗e3), (3.27)
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M ′′P =
l

D∗
(− cosϕ e1 − sinϕ e2 +De3). (3.28)

Obviously, M ′P 6= 0, M ′′P 6= 0.

Proposition 3.2. Given (A), the following properties are valid:

(i) k = −
〈
M ′P, M ′′P

〉
, k′ = −

〈
MP, M ′P

〉
, k′′ = −

〈
MP, M ′′P

〉
.

(ii) M ′M ′′, MP are orthogonal.

(iii) The points P , M , M ′, M ′′ are coplanar.

Proof: (i) Since S is isotropic and S ′, S ′′ are orthogonal to S with P (u, v) as middle surface,
it is an immediate consequence of the Proposition 2.1 of [2, p. 128]

k′ = −
〈
MP, M ′P

〉
, k′′ = −

〈
MP, M ′′P

〉
. (3.29)

In addition, using (3.27), (3.28) and the second relation of (3.24) we obtain

k = −
〈
M ′P, M ′′P

〉
. (3.30)

(ii) From Proposition 3.1 we know that k′ = k′′, which, by virtue of (3.29), can be written
〈
MP, M ′′P −M ′P

〉
= 0 (3.31)

or equivalently 〈
MP, M ′M ′′

〉
= 0. (3.32)

Hence the property (ii) holds true.

(iii) Taking into account the relations (3.27), (3.28),

MP = ae1 + be2, a2 + b2 6= 0, (3.33)

and applying (1.28), (3.10), we find

det
(
MP, M ′P , M ′′P

)
= − l2

DD∗
(aΓ + b∆) . (3.34)

Then, in view of (3.17), it follows

det
(
MP, M ′P , M ′′P

)
= 0, (3.35)

which proves (iii).

The following is evident because of (3.30):

Corollary 3.8. If (A) holds, then
∣∣M ′M ′′

∣∣2 =
∣∣M ′P

∣∣2 +
∣∣M ′′P

∣∣2 + 2k.

Besides, if one of S ′, S ′′ is also isotropic, via the relations k = k′ = k′′ (Corollary 3.2) and
the assertions (i), (ii) of Proposition 3.2, we derive

〈
MP, M ′M ′′

〉
= 0,

〈
M ′P , MM ′′

〉
= 0,

〈
M ′′P, MM ′

〉
= 0.

Hence we obtain

Corollary 3.9. If (A) is valid and one of S ′, S ′′ is isotropic, then P is the orthocenter of the
triangle MM ′M ′′.
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4. Case with S nonisotropic

Hereafter, we suppose that

(B) S is a nonisotropic line congruence and S ′, S ′′ are two line congruences, whose straight
lines are directed by the tangent vectors to the spherical images of the S-principal ruled surfaces
of S.

According to Proposition 2.7, the line congruences S, S ′, S ′′ are triply orthogonal and have
the same middle surface P (u, v).

We consider again, without loss of generality, that the S-principal ruled surfaces of S are
the parameter surfaces ω31 = 0, ω32 = 0, i.e., m ≡ 0. Then, the unit vectors in the direction
of the straight lines of S ′, S ′′ are

e′
3

= e1, e′′
3

= e2 (4.1)

and correspond to the values ϕ = 0 and ϕ = π

2
respectively (§2(B)). Here (3.1) is replaced by

e1 6= ± MP

|MP |
, e2 6= ± MP

|MP |
,

which, in view of (3.33), are equivalent to

b 6= 0 and a 6= 0. (4.2)

Substituting ϕ = 0 (resp. ϕ = π

2
) into (1.16), (1.24)–(1.26) and using (1.6), (1.15), we obtain

for S ′ (resp. S ′′):
e′
1

= e3, e′
2

= −e2, (4.3)

ω′

12
= −ω32, ω′

31
= −ω31, ω′

32
= −ω12 = −qω31 + q̃ω32, (4.4)

ω′

31
∧ ω′

32
= −q̃ω31 ∧ ω32, (4.5)

(resp.
e′′
1

= e3, e′′
2

= e1, (4.6)

ω′′

12
= ω31, ω′′

31
= −ω32, ω′′

32
= −ω12 = −qω31 + q̃ω32, (4.7)

ω′′

31
∧ ω′′

32
= −qω31 ∧ ω32). (4.8)

The differential forms ω′

31
, ω′

32
(resp. ω′′

31
, ω′′

32
) are linearly independent iff

q̃ 6= 0 (resp. q 6= 0) ∀(u, v) ∈ G. (4.9)

Note that for the constant values ϕ = 0 and ϕ = π

2
, from (1.20) we get

Γ = q̃, ∆ = q . (4.10)

Similarly, inserting ϕ = 0 (resp. ϕ = π

2
) into (1.28), in view of (4.10), we obtain

D = −q̃ (resp. D = −q ). (4.11)

Proposition 4.1. Let k′, h′, 2z′ and k′′, h′′, 2z′′ be the curvature, the mean curvature and
the limit distance of S ′ and S ′′, respectively. If (B) holds true, then

(i) 2z = 2|h′ − h′′|, 2z′ = 2|h′′ − h|, 2z′′ = 2|h− h′|,
(ii) k′k′′ = k(h′ + h′′ − h)2,
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(iii) z ≤ z′ + z′′. The equality is valid iff h′ ≤ h ≤ h′′ or h′′ ≤ h ≤ h′.

Proof: The relations (1.33)–(1.35) for ϕ = 0 and, by means of (2.7), reduce to

m′ = 0, (4.12)

l′ = l, (4.13)

n′ =
b

q̃
. (4.14)

Similarly, for ϕ = π

2
they become

m′′ = 0, (4.15)

l′′ = n, (4.16)

n′′ = −a
q
. (4.17)

Taking into account (2.9), from (4.14) and (4.17) we find

n′′ = n′. (4.18)

We consider that for the corresponding invariants of S ′, S ′′ the formulae (3.20)–(3.23) are
valid. Thus, applying (4.13), (4.16) and (4.18) to the second formulae of (3.20) and (3.22),
we get

2h′ = l + n′, 2h′′ = n+ n′. (4.19)

Besides, making use of (4.12), (4.13), (4.15), (4.16) and (4.18), the first formula of (3.20) and
(3.22) may be written

k′ = l n′, k′′ = nn′. (4.20)

Finally, from (3.21), (3.23), via (4.19), (4.20), we obtain

2z′ = |l − n′|, 2z′′ = |n− n′|. (4.21)

(i) To prove the first relation of (i), it suffices to use the first formula of (1.10), (2.7) and
(4.19). Similarly, by virtue of (4.19) and the second equation of (1.9), we derive from (4.21)
the other two formulae of (i).

(ii) On account of (2.7), the first equation of (1.9) becomes

k = l n. (4.22)

Thus, from (4.20), (4.22) it follows
k′k′′ = kn′2. (4.23)

By using now (4.19) and the second of the formulae (1.9), we deduce

(h′ + h′′ − h)2 = n′2 (4.24)

and consequently
k′k′′ = k(h′ + h′′ − h)2. (4.25)

(iii) Because of (4.21), we have

2z = |l − n| = |l − n′ − n+ n′| ≤ |l − n′| + |n− n′| = 2z′ + 2z′′.
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Suppose now that
z = z′ + z′′. (4.26)

According to (i), the relation (4.26) takes the form

|h′ − h′′| = |h′′ − h| + |h− h′|. (4.27)

That happens iff (h′′ − h)(h− h′) ≥ 0, i.e.,

h′ ≤ h ≤ h′′ or h′′ ≤ h ≤ h′. (4.28)

Conversely, if (4.28) is valid, the equality (4.26) obviously holds true.

Remark 4.1: By a process similar to that in Proposition 4.1, it turns out that the following
relations are valid:

(i) kk′ = k′′(h+ h′ − h′′)2, kk′′ = k′(h+ h′′ − h′)2,
(ii) z′ ≤ z′′ + z, z′′ ≤ z + z′.

In addition, z′ = z′′ + z (resp. z′′ = z + z′) iff h ≤ h′ ≤ h′′ or h′′ ≤ h′ ≤ h (resp. h ≤ h′′ ≤ h′

or h′ ≤ h′′ ≤ h).

Since, according to (4.2), b 6= 0, from (4.23) and (4.14) we derive

(h′ + h′′ − h)2 =
b2

q̃2
> 0 . (4.29)

Thus, (4.25) leads to

Corollary 4.1. If S is a hyperbolic line congruence, then one of S ′, S ′′ is also hyperbolic,
while the other one is elliptic. If S is elliptic, then both of S ′, S ′′ are simultaneously elliptic
or hyperbolic.

We further assume that S is normal (h = l + n ≡ 0) but not the normal line congruence
of a minimal surface P (u, v) which has been excluded in §1. Using the relations (4.20), (1.10)
together with claims (i) of Proposition 4.1, we conclude:

Corollary 4.2. When S is a normal line congruence, the following properties hold true.

(i) k′ = −k′′,
(ii) z′ = |h′′|, z′′ = |h′|,
(iii) k = −(h′ − h′′)2.

Again, we shall focus on the middle envelopes OM ′ = M ′(u, v) and OM ′′ = M ′′(u, v) of
S ′ and S ′′, respectively. Taking into account (4.10), (4.11), for the values ϕ = 0 and ϕ = π

2
,

the relations (1.36), (1.37) turn into

a′ = −nq
q̃
, b′ =

n

q̃
, (4.30)

a′′ =
lq̃

q
, b′′ =

l

q
(4.31)

respectively. Then, by substituting (4.1), (4.3), (4.6), (4.30) and (4.31) into (3.25), (3.26), it
follows

M ′P = −n
q̃
e2 −

nq

q̃
e3, (4.32)
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M ′′P =
l

q
e1 +

lq̃

q
e3 . (4.33)

On account of (3.33), (4.32), (4.33) and using (4.14), (4.17), (4.20), (4.22) and (4.18), we
deduce:

Proposition 4.2. Let (B) hold true. Then, the formulae

k = −
〈
M ′P, M ′′P

〉
, k′ = −

〈
MP, M ′′P

〉
, k′′ = −

〈
MP, M ′P

〉
(4.34)

are valid.

An immediate consequence of the first equation of (4.34) is

Corollary 4.3. The following relation holds true:

|M ′M ′′|2 = |M ′P |2 + |M ′′P |2 + 2k (4.35)

Thus, in case that S is hyperbolic (resp. elliptic) the angle M̂ ′PM ′′ is acute (resp. obtuce).

Moreover, by virtue of (3.33), (4.32), (4.33), we find

det(MP, M ′P , M ′′P ) = − l n
qq̃

(q̃a + qb), (4.36)

which, according to (2.9), vanishes. Therefore

Proposition 4.3. The points P , M , M ′, M ′′ are coplanar.

Remark 4.2: We see that Proposition 4.3, Corollary 4.3 and the first equation of Proposition
4.2 hold true for both cases (A) and (B), as well as for the case that S is the normal congruence
of a minimal middle surface [2, p. 132]. Hence in any case a triplet of mutually orthogonal
line congruences S, S ′, S ′′ with common middle surface has the above properties.

Notice that considering the relation (3.30), we may have a new geometric interpretation
for the curvature of each, nonparabolic, line congruence S. In particular, if S is isotropic,
whenever there are infinitely many pairs S ′, S ′′ consisting with S the preceding triplet S, S ′,
S ′′ (§2, Proposition 2.3), the relation (3.30) does not depend on the function ϕ(u, v). In other
words, it is independent of the choice of the pair S ′, S ′′. Thus, we come to

Proposition 4.4. Let S be a nonparabolic line congruence and P (u, v) its middle surface. If
S ′, S ′′ are line congruences sharing the same middle surface P (u, v) and orthogonal to S and
to each other, then for the curvature k of S the relation

k = −
〈
M ′P, M ′′P

〉

is valid. Here M ′(u, v), M ′′(u, v) stand for the middle envelopes of S ′, S ′′, respectively.
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