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Abstract. Geometrography studies the complexity of ruler-and-compass con-
structions. According to our knowledge, so far the only remarkable work in this
field is by É. Lemoine. We survey his method and present another method based
on statistical modelling. We compare these methods by studying the complexity
of certain constructions of a perpendicular to a line and a regular pentagon. A
purpose of this paper is to show that geometrography has potential to enrich
geometry and graphics education in school. The latter, statistical, method also
provides tools for a more advanced analysis of error propagation through geomet-
ric transformation.
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1. Introduction

Ruler-and-compass constructions, which only less than a century ago constituted a core of
mathematical education, are today almost fully ignored in teaching geometry. Indeed, nowa-
days even in upper secondary school, geometry education merely builds on students’ intuitive
and informal knowledge of their environment and space rather than on strict deductive rea-
soning. The focus is preferably on applications than on the logical structure of geometric
knowledge. Also most ICT based dynamic geometry environments are designed to support
teaching and learning problem solving skills related to, for example, measuring, rather than
general deductive thinking. For a more detailed discussion, see, e.g., [15].

As an example of this global and rapid development, we mention that in Finland, the PISA
winning country, only a few decades ago upper secondary school’s matriculation examination
regularly contained ruler-and-compass constructions. For example, in 1951 students were
asked to draw a circle sector whose arc is 72◦ and area is equal to the area of a given circle.
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Today Finnish students are introduced to, if any, only a few trivial constructions like angle
bisection etc.

There are several obvious reasons why ruler-and-compass constructions do not deserve so
much emphasis in mathematics education today. On the other hand, there are also grounds
why these constructions, in our opinion, warrant a little more attention than they nowadays
are paid to. For example, studying the three classical unsolvable Greek construction problems
still invokes even amateurs’ interest toward mathematics in general. Also the value of these
constructions to the fine arts is timelessly consistent. There are, however, also more mod-
ern and concrete possibilities to increase the relevance of ruler-and-compass constructions to
mathematics education — and eventually for all mathematical sciences.

For instance, computer scientists have already noticed that [2, p. 85] “. . . the algorithmic
problems occurring in geometric reasoning have also an enormous scientific appeal [to com-
puter science]. In the past few years, geometric reasoning problems have provoked a whole
spectrum of new algorithmic techniques.” In other words, any suitable approach to study,
for example, the complexity of algorithms in the context of geometry would arguably enrich
mathematics teaching in school. Further, in school, statistics is often introduced only as an
application of mathematics and the fact that both of these autonomous disciplines promote
each other is not usually noticed. We believe that any relevant way to diversify students’
knowledge in statistics is welcome, too. Last but not least, the consistent problem of math-
ematics education in universities is related to the training of prospective researchers: how to
find reasonable ways to introduce students with the process of doing research in mathematics
already at the level of basic studies? As some recent articles, e.g., [6] and [17] verify, it is
still possible to achieve new results relying only on undergraduate mathematics. We see that
participation into yielding such results is authentic and, hence, a motivating context for such
activities. Therefore, we want to speak for surveying topics in the intersections of different
areas of mathematical sciences – such as geometric constructions and statistics – since new,
but only moderately challenging, observations are most probably found in these junctions.

We shall show that geometrography, i.e., studying the complexity of ruler-and-compass
constructions, can answer the above demands. Especially, the new approach to geomet-
rography to-be-introduced below provides in upper secondary school and in undergraduate
mathematics education — particularly in mathematics teacher education — a natural setting
to discuss many modern mathematical phenomena including algorithmic thinking and pro-
gram design, in a classical geometric context. Indeed, this approach requires that geometric
constructions are described precisely in an algorithmic form for computer software; the syntax
and method of this description are yet simple and easy to learn. Further, the approach enables
learners to study at a general level relations between abstract mathematical structures and
their models, and how statistics can support mathematical reasoning and problem solving.
Finally, it also provides a complementary approach to graphics education.

We shall first bring up the almost forgotten work of É. Lemoine [14] which seems to be
so far the only comprehensive treatise in this field. We will survey his approach in Section 2.
In Section 3, we will present an alternative, statistical, approach due to S. Mustonen [18].
Its main idea is that, in practice, the ruler and compass are never placed exactly right.
The errors so arising are modelled statistically. The measure of the final error, defined in
a certain reasonable way, is computed using simulation experiments. It turns out that the
result expresses, besides the inaccuracy, also the complexity of the construction.

We will illustrate both approaches and compare them by studying first a construction of a
perpendicular to a line in Section 4. Second, we will consider three constructions of a regular
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pentagon in Section 5. The results of this section motivate us to study correlations of certain
complexity measures for the constructions of the regular pentagon. We will do it in Section 6.

The rise of CAD and the arithmetic of floating point numbers behind it have vitalized
research on error propagation of geometric constructions in ICT environments, e.g., [11, 21,
23, 24, 25]. In Section 7, we will shortly compare Mustonen’s approach and that of Hu and
Wallner [11].

2. Lemoine’s geometrography

A trivial way (see, e.g., [13]) to define the complexity of a ruler-and-compass construction is
simply to count how many (straight) lines and circles must be drawn. So, if l lines and c circles
are required, then the complexity is l+ c. But these operations are geometric, not arithmetic,
and as such incommensurable. Experience makes us to think that drawing a circle is more
complicated than drawing a line, yet also the opposite can be argued, see [5]. Anyway, they
are here considered equally complex and, if necessary elsewhere, this matter may be taken into
account by defining also the “symbol” lL + cC where L and C are indeterminates expressing
relative complexities of drawing a line and a circle, respectively.

This definition, nevertheless, ignores the fact that single operations with the same instru-
ment may have different complexities. For example, to draw a line through two given points
is obviously more complicated than to do it through one given point. Further, to draw a
circle with a given center and radius is clearly more complex than to do it with a given center
only. Therefore a deeper analysis is needed and that has been done by Lemoine [14] (see
also [3, 4, 7, 12, 20]). He distinguishes the following basic operations.

L1. Place the ruler through a given point.

L2. Draw a line.

C1. Place one leg of the compass on a given point.

C2. Place one leg of the compass on an indeterminate point of a given line.

C3. Draw a circle.

If the numbers of these operations in a construction are respectively l1, l2, c1, c2, c3, then
the complexity of the construction is defined by l1 + l2 + c1 + c2 + c3. Actually Lemoine

calls it simplicity (and so do also the other references above) but we find “complexity” more
appropriate. Since the summands are again incommensurable, it is more precise to define (as
Lemoine does) the symbol of the construction by l1L1 + l2L2 + c1C1 + c2C2 + c3C3. Here the
indeterminates L1, L2, C1, C2, C3 express relative complexities of the respective operations.
For brevity, we denote the symbol by the 5-tuple (l1, l2, c1, c2, c3).

These basic operations can be trivially partitioned into two sets according to the instru-
ment but there is also another natural partition. In L1, C1 and C2 an instrument is placed,
while in L2 and C3 it is used. We may plausibly think that the only factor effecting on
accuracy is how exactly the instrument is placed; once it is done, then “arbitrarily thin” and
(subject to the placing) “arbitrarily exact” lines and circles can be drawn. This leads us to
define the inexactness of the construction by l1 + c1 + c2. Actually Lemoine calls it exacti-

tude (and so do also [4, 7, 12], while [3] and [20] do not mention this concept) but we find
“inexactness” more appropriate. It turns out that in practice there is no essential difference
between complexity and inexactness. We will discuss this in Section 6.

Lemoine’s geometrography is not widely known today, neither did it get much attention
even in his time. O’Connor and Robertson [20] write as follows.
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“He presented these results to the meeting of the Association Française pour
l’Avancement des Sciences in 1888 at Oran in Algeria. One would have to say that
these results were not thought to be particularly interesting by mathematicians at
the meeting and there has been a similar lack of interest ever since.
It is perhaps worth asking what is interesting in mathematics. Why are the results
of Lemoine not found interesting? All I [Robertson] can add is that I agree with
the mathematicians of the time who preferred a construction with a large number
of easily understood steps to a shorter one with sophisticated, rather obscure, steps.
Let me add that I do find Lemoine’s results on symmedians of a triangle to be very
interesting and beautiful!”

As a red herring, let it be told that the symmedian of a triangle is the reflected image
of a median in the corresponding angle bisector. The symmedians intersect in the same
point, called the Lemoine point (or the Grebe point or the symmedian point). According to
Honsberger ([9, p. 53], see also [26]), this point is “one of the crown jewels of modern
geometry”. Further, Eves [4, p. 438] says that Lemoine’s presentation of this point “can be
claimed to have seriously started the modern study of the geometry of the triangle” .

We cite also Hudson [12, pp. 7–8] on Lemoine’s geometrography. In the introduction
of her book, she describes the section on geometrography as follows.

“The idea of the last section of the same chapter is to make a numerical estimate
of the length of a construction, by reckoning up all the different operations with
ruler and compasses that it requires, so as to be able to say which is the shortest
of different solutions of the same problem. This plan of ’giving marks’ is little more
than a pastime, and the scale of marking is very arbitrary; but Lemoine’s book on
Geometrography deserves to be better known, and some account of the matter is
given here in the hope of introducing more English readers to his original work.”

In our opinion, also Hudson’s book [12] deserves to be known better.

3. Mustonen’s geometrography

S. Mustonen’s interest in the statistical accuracy of ruler-and-compass constructions origi-
nates from the circle-squaring problem. When comparing various approximate constructions,
the degree of the approximation cannot be taken into account if Lemoine’s measure is used,
but Mustonen’s model observes this effect reasonably as explained in [18, Section 4]. In this
model, also the addition of incommensurable entities is avoided.

Thinking statistically, it is natural to assume that the actual point where the instrument
is placed follows a two-dimensional normal distribution around the correct point.

In case of the intersection of two lines, the question arises how the distribution depends
on the angle between them. The simplest answer is that the angle has no effect and hence
the variance of the placement is a constant σ2 in all directions. But if the angle is small, then
one is tempted to think that the variation depends on the angle and, with a fixed angle, is
greatest along the bisector and smallest in the orthogonal direction. For two such models, we
refer to [18, Sections 5.1 and 5.2].

Hudson [12, pp. 109–111] also discusses the “ill-defined intersection” of two lines (and,
respectively, that of a line and a circle, and of two circles). In these cases, she suggests
“to economize the chance of error” by performing an additional construction yielding the
same point as the intersection of two lines (or, respectively, of a line and a circle, or of two
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circles) meeting “at a moderate angle”. So, the models depending on the angle between
the intersecting lines are problematic in the sense that the accuracy of the construction
can be seemingly improved by Hudson’s method. Nevertheless, computer experiments on
various constructions of a regular pentagon [18, p. 43] show that in practice there is not
much difference between the results of the constant-variance model and the two non-constant-
variance models mentioned above. Furthermore, computer experiments on the intersection
of two random lines [18, Section 5.5] attest similarity between the results of these models.
In other words, Hudson’s method does not after all provide significant improvement to
the accuracy. This allows us to assume that the point actually obtained follows the two-
dimensional normal distribution with the correct point as mean and the variance σ2 in all
directions.

We also assume (likewise, e.g., in [3]) that the compass is “modern”, i.e., “noncollapsing”
and so permits transferring of lengths by a single operation. Mustonen’s geometrography
is now made up of the following basic operations.

B1. Set a point with given coordinates.

B2. Draw a line through two given points.

B3. Set a point on a given line with given coordinates.

B4. Measure the distance between two given points.

B5. Draw a circle with a given center and a given radius.

B6. Draw a circle with a given center and going through a given point.

B7. Set the intersection point of two given lines.

B8. Set the intersection point of a given circle and a given line that is closer to a given point.

B9. Set the intersection point of two given circles that is closer to a given point.

These operations are also commands for the GEOM program which operates in the ver-
satile computing environment Survo. For more information on this program and the original
and international cult status bearing computing system, see [19].

Concerning a solution of a given ruler-and-compass construction, the GEOM program has
the following objectives.

a. To describe it.

b. To plot its figure.

c. To compute its Lemoine complexity and inexactness.

d. To compute its statistical accuracy by simulations.

So, we have two different approaches to geometrography. The traditional way, due to Lemoine,
counts numbers of certain operations, while the new way, due to Mustonen, is statistical.
Both approaches obviously measure the intricacy of ruler-and-compass constructions but from
different points of view. Therefore it is interesting to ask how similar results these geometro-
graphies give. A natural subquestion is to compare the Lemoine complexity and inexactness
with each other. Further, one may also hypothesize that the more operations are needed, the
more inaccurate the construction will be, and conversely. In Section 6, we will make these
comparisons for certain exemplar constructions, but before that, we consider the drawing of
a perpendicular to a line in Mustonen’s geometrography.
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4. Example: a perpendicular to a line

We describe by Mustonen’s geometrography the ordinary construction for drawing a per-
pendicular from a given point P to the line going through given points P1 and P2. The
5-tuples (l1, l2, c1, c2, c3) in certain steps indicate the Lemoine symbol of that step. Note that
the drawing of the “initial” points, lines and circles does not effect on the Lemoine symbol.
Also note that certain initial points, lines and circles are kept fixed (without random varia-
tion) in the simulation experiments. The GEOM code is to be found in [18, pp. 4–5] but its
steps are the following.

S1. Set P1 = (4, 4).

S2. Set P2 = (4, 6).

S3. Draw the line L1 through P1 and P2.

S4. Set P = (5, 4).

S5. (0, 0, 1, 0, 1). Draw the circle C1 with center P and radius 2. The fact that the radius
need not be exactly 2, explains why the Lemoine symbol is not (0, 0, 2, 0, 1). This remark
concerns also S8 and S9 where the radius is the same as here.

S6. Set Q1 as the intersection point of C1 and L1 that is closer to (4,2).

S7. Set Q2 as the intersection point of C1 and L1 that is closer to (4,6).

S8. (0, 0, 1, 0, 1). Draw the circle C2 with center Q1 and radius 2.

S9. (0, 0, 1, 0, 1). Draw the circle C3 with center Q2 and radius 2.

S10. Set P ′ as the intersection point of C2 and C3 that is closer to (3, 4).

S11. (2, 1, 0, 0, 0). Draw the line L through P and P ′.

S12. The desired perpendicular is L.

S13. Set M as the intersection point of L and L1. (This is actually not necessary for the
construction itself but it is needed for simulation experiments.)

By adding the 5-tuples we get the Lemoine symbol (2, 1, 3, 0, 3), complexity 2+1+3+0+3 = 9,
and inexactness 2 + 3 + 0 = 5.
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Figure 1: The perpendicular from a given point.
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In order to study inaccuracy experimentally, we first subtract from the actual y-coordinate
of M the correct value 4 obtaining d = y− 4. If d appears to be unbiased, i.e., the mean E(d)
is close to zero, then we can measure the inaccuracy by the standard deviation D(d). We also
compute the actual direction angle of L, that is

α = arctan
y′ − y

x′ − x

where (x, y) and (x′, y′) are the actual coordinates of P and P ′, respectively. Since the correct
value is α = 0, the bias of α is E(α). If it is close to zero, then we can also use D(α) as a
measure of inaccuracy.

In an experiment, this construction was repeated for 100000 times. In each replicate,
when drawing lines and circles, points locating them were replaced by their sampled values
using the standard deviation σ = 0.001. For more details, see [18, Section 2]. The results were
E(d) = −0.000003, E(α) = 0.000001, D(d) = 0.000957, D(α) = 0.000958. So d and α seem
to be unbiased and D(d) is close to σ. (That also D(α) is close to σ is only a meaningless
coincidence.)

A natural attempt to improve the accuracy is to increase the radii of the circles. Let the
radius of C1 be r and let that of C2 and C3 be 2r. Results for certain values of r are tabulated
in [18, p. 7].

In general, D(d) remains quite firmly close to σ = 0.001. For example, if r = 3, then
D(d) = 0.000901 which seems to be near to the minimum. However, although we in this case
get a good M , this does not hold for all points of L. For example, if the comparison point
is (2, 4) instead of M = (4, 4), then the corresponding inaccuracy is 0.00111, about as much
above σ as D(d) is below. As r → ∞, it appears that D(d) → σ. For large values of r, there
seems to be a tendency that D(d) increases as r increases.

The inaccuracy D(α) is significant for “moderate” values of r but seems to decrease
as r increases, tending to zero as r → ∞. For example, D(α) = 0.000365 if r = 3 and
D(α) = 0.00000129 if r = 1000.

These observations make us conclude that there is no uniformly best way to gain the
maximum accuracy for drawing a perpendicular. However, a nominal level for the accuracy
can be achieved for any given point of the perpendicular by using sufficiently large circles.
Since it is not reasonable to restrict the size of the drawing area, we establish the following
interpretation. A perpendicular from a point P to a line L can be drawn without any error
in the direction angle, and its distance from the true perpendicular follows from the error
distribution of the placement of P .

This convention corresponds to using the square ruler in constructing the perpendicular.
Doing so it is assumed that the first edge of the square ruler can be positioned strictly
parallel to L and the second (orthogonal) edge through P like a standard ruler. Interestingly,
Lemoine [14] uses this instrument as an extra tool in some of his constructions.

We can also adopt similar conventions concerning drawing parallel lines, angle bisector
and finding the midpoint of a line segment. Hence, in order to simplify more complicated
constructions, the following composite operations have been added to the list of the operations
of the GEOM program.

B10. Draw from a given point a perpendicular to a given line.

B11. Draw from a given point a parallel to a given line.

B12. Draw the bisector of an angle between two given lines.

B13. Determine the midpoint of the line segment defined by two given points.
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5. Example: a regular pentagon

Our next problem is to inscribe a regular pentagon in a unit circle. In [18], the complexity of
various such constructions is studied both in Lemoine’s and Mustonen’s geometrography.
We present three of them in detail but first we recall the Carlyle circle. Let us consider the
equation x2−sx+p = 0 where s and p are given signed lengths. Set A = (0, 1) and B = (s, p).
Draw the circle with diameter AB. If it meets the x-axis at H1 = (x1, 0) and H2 = (x2, 0),
then x1 and x2 are the solutions of this equation. This circle has a role also in the case of
complex root, see [3, p. 100]. For more details, we refer to [3, Section 2].
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Figure 2: Carlyle circles; p ≤ 0 (left) and p > 0 (right).

DeTemple [3]. The vertices of the pentagon are the solutions of the equation z5 = 1;

they are zk = e
2kπi

5 where k = 0, 1, 2, 3, 4. Since z1 + z4 = 2 cos 2π

5
and z2 + z3 = 2 cos 4π

5

are the roots of the equation x2 + x − 1 = 0, the following construction is easily justified [3,
p. 101]. We describe it stepwise by using Mustonen’s geometrography. For more details
and the GEOM code, see [18, Section 3.1].

S1. Set O = (0, 0).

S2. Set Q = (−1, 0).

S3. Draw the circle C1 with center O and radius 1.

S4. Draw the line L1 through O and Q.

S5. Set P0 as the intersection point of C1 and L1 that is closer to (1,0).

S6. Draw the line L2 from O perpendicular to L1.

S7. Set A as the intersection point of C1 and L2 that is closer to (0,1).

S8. (2, 1, 2, 0, 1). Set M as the midpoint of QO. Since the circle C1 already exists, only
another circle (with center Q and radius 1) is needed.

S9. (0, 0, 2, 0, 1). Draw the circle C2 with center M and going through A.

S10. Set H1 as the intersection point of C2 and L1 that is closer to (1, 0).

S11. Set H2 as the intersection point of C2 and L1 that is closer to (−1.5, 0).

S12. (0, 0, 3, 0, 1). Draw the circle C3 with center H1 and radius 1.

S13. (0, 0, 1, 0, 1). Draw the circle C4 with center H2 and radius 1. The radius 1, measured
in S12, need not be measured again. So placing only one compass leg is enough.
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S14. Set P1 as the intersection point of C1 and C3 that is closer to (0, 1).

S15. Set P2 as the intersection point of C1 and C4 that is closer to (−1, 0.5).

S16. Set P3 as the intersection point of C1 and C4 that is closer to (−1,−0.5).

S17. Set P4 as the intersection point of C1 and C3 that is closer to (0,−1).

S18. The desired pentagon is P0P1P2P3P4.

This construction has the Lemoine symbol (2,1,8,0,4), complexity 2 + 1 + 8 + 0 + 4 = 15, and
inexactness 2 + 8 + 0 = 10.
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Figure 3: DeTemple’s construction of a regular pentagon.

To study the complexity in Mustonen’s geometrography, let e be the actual length

of P0P1. If the mean E(e) is close to the correct value 1

2

√

10 − 2
√

5 = 1.1755705..., then e

can be considered unbiased, and we can measure the inaccuracy of this side by the standard
deviation

ǫ = D(e).

Furthermore, let d2 be the squared total error of the locations of P0, P1, P2, P3 and P4. We
measure the inaccuracy of the entire construction by

δ = (1

5
D(d2))

1

2 .

In an experiment [18], this construction was repeated for 1000000 times with σ = 0.001.
The result E(e) = 1.1755738 showed that we can consider e unbiased. Similar results were
obtained also in other experiments, and so we can use the measure ǫ throughout. The results
were ǫ = 0.00227 and δ = 0.00276. It seems that δ is closely proportional to σ, cf. [18,
Table 2].

The right-hand side of Figure 3 shows the distribution of vertices in an experiment when
1000 replicates with σ = 0.01 were generated and plotted. The variance of P1 and P2 is
greater than that of P3 and P4.
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Ptolemy (see, e.g., [1], [3]). First, determine H1. The construction is otherwise similar
to DeTemple’s but it is based on the fact that a side of a regular pentagon is the larger part
when cutting a diagonal in the golden ratio. Second, take AH1 as the length of the sides of
the pentagon. The Lemoine symbol is (2, 1, 8, 0, 5). So the complexity 2 + 1 + 8 + 0 + 5 = 16
is one unit greater than DeTemple’s, whereas the inexactness 2 + 8 + 0 = 10 is equal. For
more details and the GEOM code, see [18, Section 3.2].

Again, this construction was repeated in [18] for 1000000 times with σ = 0.001. The
results ǫ = 0.00271 and δ = 0.00373 are worse than DeTemple’s. Especially P2 and P3

are more inaccurate since they are constructed relying on P1 and P4 which already contain
inaccuracies.

Labelle [13]. For brevity, we describe Labelle’s construction of a regular pentagon
directly by stating its steps. For more details and the GEOM code, we refer to [18, Section 3.3].

S1. Set O = (0, 0).

S2. Set P0 = (1, 0).

S3. Draw the circle C1 with center O and going through P0.

S4. Draw the line L1 through O and P0.

S5. Set Q as the intersection point of C1 and L1 that is closer to (−1, 0).

S6. (0, 0, 2, 0, 1). Draw the circle C2 with center P0 and going through Q.

S7. (0, 0, 2, 0, 1). Draw the circle C3 with center Q and going through O.

S8. Set A as the intersection point of C2 and C3 that is closer to (−1, 1).

S9. (0, 0, 2, 0, 1). Draw the circle C4 with center A and going through P0.

S10. Set B as the intersection point of C2 and L1 that is closer to (3, 0).

S11. Set C as the intersection point of C2 and C4 that is closer to (1, 2).

S12. (0, 0, 2, 0, 1). Draw the circle C5 with center B and going through C.

S13. Set D as the intersection point of C2 and C4 that is closer to (−1,−1).

S14. (0, 0, 2, 0, 1). Draw the circle C6 with center B and going through D.

S15. Set P1 as the intersection point of C1 and C5 that is closer to (0, 1).

S16. Set P2 as the intersection point of C1 and C6 that is closer to (−1, 0.5).

S17. Set P3 as the intersection point of C1 and C6 that is closer to (−1,−0.5).

S18. Set P4 as the intersection point of C1 and C5 that is closer to (0,−1).

S19. The desired pentagon is P0P1P2P3P4.

The Lemoine symbol is now (0, 0, 10, 0, 5). Hence the complexity 0 + 0 + 10 + 0 + 5 = 15 and
inexactness 0 + 10 + 0 = 10 are the same as for DeTemple’s construction.

An experiment in [18] repeating Labelle’s construction for 1000000 times with σ = 0.001
gave ǫ = 0.00245 and δ = 0.00282. From this viewpoint, Labelle’s construction is almost
as good as DeTemple’s.

6. Comparing complexity characteristics

In addition to the above constructions, we consider those due to Hirano [8], Richmond [22]
and “Mohr-Mascheroni” [10]. Their GEOM codes (and figures) are found in [18, Sections
3.4–3.6]. The lastly mentioned is of greater interest because it uses only the compass. Ac-
tually, this construction is probably not due to Mohr and Mascheroni, but it is named
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Figure 4: Labelle’s construction of a regular pentagon.

here after them because the Mohr-Mascheroni theorem (see, e.g., [16, Section 3]) states that
all ruler-and-compass constructions can be done by the compass only. Furthermore, Mus-

tonen [18, Section 9] improved Richmond’s construction. We include also this one, called
Richmond-Mustonen construction, in our comparison of constructions. All in all, we thus have
seven constructions of a regular pentagon. For each, we compute the Lemoine complexity C,
Lemoine inexactness I, and ǫ and δ defined above. We also compute the “trivial complexity”
T = C − I, that is, the sum of how many lines and how many circles must be drawn. These
characteristics are the following.

Construction C I T ǫ δ

DeTemple 15 10 5 0.00227 0.00276
Ptolemy 16 10 6 0.00271 0.00373
Labelle 15 10 5 0.00245 0.00282
Hirano 19 13 6 0.00405 0.00390
Richmond 45 26 19 0.00219 0.00478
Richmond-Mustonen 33 20 13 0.00219 0.00329
“Mohr-Mascheroni” 34 21 13 0.00520 0.00902

The correlations between these characteristics are given below. (In computing them, the
values of ǫ and δ were expressed with four significant digits.)

Variable C I T ǫ δ

C 1 0.997 0.996 0.075 0.521
I 0.997 1 0.986 0.130 0.550
T 0.996 0.986 1 0.008 0.482
ǫ 0.075 0.130 0.008 1 0.818
δ 0.521 0.550 0.482 0.818 1



26 J.K. Merikoski, T. Tossavainen: Two Approaches to Geometrography

The correlations between C and I, and, respectively, C and T , are perceptibly large.
Also the very large correlation between I and T is interesting. The correlation between C

and I has also been computed [18, p. 2] based on the data of 89 constructions taken from
Lemoine [14]. The result 0.996 confirms the strong parallelism between these characteristics.
(It is somewhat surprising that Lemoine does not at all discuss this matter.)

Also the correlations between δ and, respectively, C, I, T are significant but the paral-
lelism is not total as we see if we compare Richmond’s and “Mohr-Mascheroni” constructions.
Then C, I and T prefer “Mohr-Mascheroni” while δ prefers Richmond (and so does also ǫ).
On the other hand, Richmond-Mustonen is better than “Mohr-Mascheroni” according to all
the characteristics except T which judges them equal.

The correlations between ǫ and, respectively, C, I, T are very small. The explanation
is that ǫ in fact measures the inaccuracy of a different construction: to draw a line segment
whose length is that of the pentagon. If all the constructions were modified to draw only this
line segment, then these correlations would be larger. The large correlation between ǫ and δ

is easy to understand.

7. Another view to inaccuracy

Hu and Wallner [11] consider error propagation through affine transformations in the Eu-
clidean plane. They define that a fat point A is the set A of points. However, we can as well
interpret that the fat point A is a random variable with uniform distribution on the set A.
Assuming that the distribution is two-dimensionally normal, we result in Mustonen’s ge-
ometrography. Then, for example, in an initial placing of the compass, the mean of this
variable is the correct point and the standard deviation is a given positive number. If the
random variable describes a point obtained by a geometric construction, these characteristics
are found experimentally.

To be more precise, distributions of such random variables fill the whole plane unless
they are somehow cut. If this causes problems, then it is natural to restrict to disks where
the variable point lies with probability larger than a given number. If the distributions are
thereafter uniformized in these disks, we end up in a complete analogy with [11]. However,
it may be more useful to remain in the original normal distributions or cut distributions,
because more primal information then preserves.

Anyway, if a fat line consists of, for example, a set of parallel ordinary lines whose distri-
bution we know in the dimension of a normal vector, or of a set of ordinary lines coinciding a
point and a set with a known distribution, we can statistically control the error propagation
through reflections in this fat line. The same is true for the intersections of such fat lines and,
hence, we should also be able to determine, e.g., the area in which an image of a set in affine
transformations generated by such fat lines should lie with a certain probability. As a matter
of fact, combining the aspects of [11] and [18] seems to yield a whole set of research questions
– which should yet be reasonably solvable already on the basis of undergraduate studies in
mathematics.
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[21] B. Popkonstantinović, D. Petrović: A geometric approach to the numerical sta-

bility analysis of some projective collinear mapping methods. J. Geometry Graphics 11,
187–198 (2007).

[22] H.W. Richmond: Construction of regular pentagon. http://www.cut-the-knot.org/
pythagoras/RichmondPentagon.shtml
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