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Abstract. For any point P in the plane of the triangle ABC, we let BBP , CCP

be the cevians through P . Then the Steiner-Lehmus theorem states that if I is
the incenter of ABC and if BBI = CCI then AB = AC. Letting the internal
angle bisector of A meet BC at J , it is stated in [13] that the same holds if I
is replaced by any point on the ray AJ . However, the proof there is valid for
points on segment AJ and for points on the extension of AJ that are not very far
away from side BC. In this paper, we consider all points P on the line AJ and
we answer the question whether BBP = CCP implies AB = AC, or equivalently
whether AB 6= AC implies BBP 6= CCP . For a triangle ABC with AB 6= AC,
we describe a line segment XY on the line AJ inside of which there exists P with
BBP = CCP and ouside of which there are no such points.
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1. Introduction

The Steiner-Lehmus theorem states that if the internal angle bisectors of two angles of a
triangle are equal, then the corresponding sides are equal. This challenging statement has
attracted a lot of attention since 1840 when Professor C. L. Lehmus, Berlin, wrote to
C. Sturm asking for a purely geometrical proof. Publications related to this problem are
surveyed in [8] and papers that appeared later than [8] include [1], [9], [13], and [14], where the
last reference is devoted to trigonometric proofs of the theorem. Much of the huge amount of
literature on this problem is devoted to new proofs, variations on the theme, and foundational
issues, and very few results are true generalizations of the theorem. These generalizations are
summarized in the following:

(a) If BB′, CC ′ divide angles B, C of triangle ABC into the same ratio r, i.e.,

∠ABB′ : ∠B′BC = ∠ACC ′ : ∠C ′CB = r, (1)

and if BB′ = CC ′, then AB = AC (see [16], [11, X, p. 311], [17], and more recently [5],
[4], [10], and [15]).
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(b) If BB′, CC ′ are the internal angle bisectors of angles B, C of the triangle ABC and if
AB > AC, then BB′ +B′C > CC ′ + C ′B (see [9]).

(c) Statement (a) above is a neutral theorem.

In view of this, the generalization given in [13] comes as a welcome addition to the literature
on this theorem. This generalization proves that if P is any point on the internal angle
bisector AJ of the angle A in triangle ABC and if BBP , CCP are the cevians through this
point, then

BBP = CCP =⇒ AB = AC. (2)

The same holds if P lies on the extension of AJ as long as BP , CP lie on the extensions of
AC, AB, respectively. These are but two cases of a total of five cases that are fully treated in
Theorem 1 below. These two cases correspond to Cases (A-ii), (B) in the proof of Theorem 1,
and they are illustrated in Figs. 3 and 4.

We should also mention that, in our proofs, we consider the stronger implication

AB > AC =⇒ BBP > CCP (3)

(or AB > AC =⇒ BBP < CCP ) instead of (2). Clearly (3) implies (2). For an elaboration
on whether (2) implies (3) (see Remark 7).

Notation. Throughout this paper, fix a triangle ABC in which AB > AC, and let a, b, c,
A, B, C denote its side lengths and angles in the standard order. Let AJ be the internal
angle-bisector of A and let X , Y be the points on the extension of AJ such that CX , BY
are parallel to AB, AC, respectively (see Fig. 1). Let U , V be points on rays AJ , JA that
are infinitely far. For any point P on the line AJ , we let BBP , CCP be the cevians through
P . The points CX , BY can be thought of as undefined or lie at infinity. Note that we have
found it more convenient not to keep the shape and size of ABC fixed in all the figures.

2. The main result

In this section, we give, in Theorem 1 below, a full treatment of all the possible positions of
P on the line AJ . As mentioned earlier, Cases (A-ii) and (B) in the proof are the two cases
treated in [13]. Compared to the proof given in [13] which is purely geometric, our proof
of (A-ii) is trigonometric in that it makes use of the law of sines and simple properties of
trigonometric functions. It is instructive to compare our proof to the proof of the Steiner-
Lehmus theorem given in [6] and to compare the proof in [13] to that given in [18].

We shall freely use the simple fact that if M,N > 0 and if M +N < 180◦, then

M < N ⇐⇒ sinM < sinN. (4)

This is seen by constructing a triangle LMN having M , N as two angles, using the law of
sines, and then using the fact that M < N ⇐⇒ LN < LM .

Theorem 1. Let ABC be a triangle in which c > b. Let J , X, Y , U , V , BP , CP be as
defined above.
(A) If P lies on ray JV , then BBP > CCP .

(B) If P lies on line segment JX, then BBP < CCP .

(C) If P lies on ray Y U , then BBP > CCP .
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(D) There exists a point P on line segment XY such that BBP = CCP .

Proof: (A) We split the proof of (A) into two cases.

Case (A-i) Suppose that P lies on the extension of JA.
Let BJ = q, JC = p, PBP = s, PCP = t, BPB = u, CPC = v, as shown in Fig. 2, and
suppose that v ≥ u. We shall reach a contradiction.
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Figure 1: Notation
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Figure 2: Case (A-i)

The angle bisector theorem implies that q/p = c/b and therefore q > p. Ceva’s theorem
implies that qvs = ptu. Since q > p, v ≥ u, it follows that t > s. Adding this to v ≥ u, we
obtain PC > PB.
On the other hand, ∠PAB, ∠PAC are equal and obtuse, and b < c. Applying the law of
cosines to triangles PAB, PAC, we obtain the contradiction PC < PB.

Case (A-ii) Suppose that P lies on line segment AJ , and let B1, B2, C1, C2, B
′, C ′ be as

shown in Fig. 3.
Since c > b, it follows from the angle bisector theorem that BJ > JC. Thus the midpoint M
of BC lies between B and J . Since

∠AJC =
A

2
+B <

A

2
+ C = ∠AJB,

it follows that ∠AJC < 90◦. By the exterior angle theorem, ∠PMC < ∠PJC < 90◦.
Applying the law of cosines (or Proposition 24 of Book I of Euclid’s Elements, sometimes
referred to as the open mouth theorem, as in [12],) to triangles PMB, PMC, we conclude
that PB > PC and therefore

C1 > B1 , sinC1 > sinB1. (5)

Next, it follows from the trigonometric version of Ceva’s theorem ([3, Theorem 1.15.3, p. 56])
that

sinB2

sinC2

=
sinB1

sinC1

.
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Figure 3: Case (A-ii)

From this and (5), we conclude that

sinC2 > sinB2 , C2 > B2. (6)

It also follows from this and the exterior angle theorem that

C ′ > B′. (7)

To prove that BBP > CCP , we suppose now that BBP ≤ CCP (and AB > AC) and reach a
contradiction.

Using the law of sines and the assumptions that sinB < sinC and CCP ≥ BBP , we have

sinC ′

a
=

sinB

CCP

<
sinC

BBP

=
sinB′

a
.

Therefore sinC ′ < sinB′. But C ′ > B′ by (7). Therefore

C ′ is obtuse. (8)

By (6), there is a point E on line segment PBP such that

∠ECCP = ∠EBCP . (9)

Then ECBCP is cyclic. By (8), ∠CCPB, and hence ∠CEB, are obtuse. Therefore ∠ECB,
∠CPBC are acute. Also, ∠ECB > ∠CPBC by (5) and (9). Therefore the chord of ∠ECB
(in circle BCECP ) is greater than that of ∠CPBC, i.e., EB > CPC, contradicting the
assumption that BBP ≤ CCP .

(B) Suppose that P lies on line segment JX .
Let BJ = q, JC = p, BCP = s, CBP = t, as shown in Fig. 4. Applying Ceva’s theorem to the
cevians AJ , BBP , CCP in triangle ABC, we obtain qt(c+s) = p(b+t)s. By the angle bisector
theorem, we have q/p = c/b. Therefore ct(c + s) = b(b + t)s and hence ts(c− b) = b2s− c2t.
Since c > b, it follows that s > t. Therefore s+ c > t+ b, i.e., ACP > ABP . Now apply Case
(A-ii) to triangle ABPCP to conclude that BPB < CPC, as desired.
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Figure 5: Case (C)

(C) Suppose that P lies on ray Y U .
Let BJ = q, JC = p, ABP = s, ACP = t, as shown in Fig. 5. Applying Ceva’s theorem
to the cevians AJ , BBP , CCP in the triangle ABC, we obtain q(b + s)t = ps(t + c). By
the angle bisector theorem, we have q/p = c/b. Therefore c(b + s)t = bs(t + c) and hence
(c − b)st = cb(s − t). Since c > b, it follows that s > t. Now apply Case (A-i) to triangle
ABPCP to conclude that BPB > CPC, as desired.

(D) Let Q move contiuously from X to Y along the line segment XY . Then the ratio
BBQ/CCQ moves from 0 to ∞. By continuity, there is a point P on line segment XY for
which BBP/CCP = 1, as desired.
This completes the proof.

Remark 2. In view of Theorem 1, Theorem 2 of [13] is incorrect. It claims that

BBP = CCP =⇒ AB = AC

for points P lying on rayAJ , but proves it only for points lying on line segment AX . According
to Part (D) of Theorem 1, the statement is not true if P lies on line segment XY .

Remark 3. According to Part (D) of Theorem 1, there exists a point P on the line segment
XY for which the cevians BBP , CCP are equal. One wonders whether P may coincide with
the A-excenter of ABC, i.e., whether PB, PC bisect B, C externally. It follows from Part (b)
of Theorem 4 of [7] that this happens if and only if

sin2 A

2
= sin

B

2
sin

C

2
.

Remark 4. For every point P on line UV of Fig. 1, let ρ(P ) = BBP/CCP . We have seen
that ρ(P ) is never 1 outside segment XY except of course when P = J . Also, ρ(X) = 0 and
ρ(Y ) = ∞, and therefore ρ(P ) = 1 for at least one P on segment XY . It would be interesting
to have a more detailed sketch of the function ρ(P ) against the axis UV that shows the
increasing-decreasing behavior of ρ and that shows the values of ρ at the infinite points U
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and V . In particular, one wonders whether there are triangles for which ρ assumes the value
1 at more than one point on segment XY . To settle this question, we let P be a point on
line segment XY for which BBP = CCP . Then CP , BP lie on rays BA, AC, respectively.
Let ACP = y, CBP = x. Using Maple and the theorems of Ceva and Stewart, we obtain the
equations

f(y) = (c2 − cb)y3 − (a2c− b2c+ b3 − b2c+ 2c2b)y2

+(a2bc− 2b3c+ b2c2 + c3b)y − (c3b2 + c2b3) = 0, (10)

x =
b2(y + c)

bc− y(c− b)
. (11)

These equations yielded a unique solution for every numerical choice of the triple (a, b, c) that
we tried. For example, taking (a, b, c) = (3, 4, 6), we obtain y ≈ 20.36, x ≈ 25.23.

3. Other variants

We now record several variants of Statement (A) of Theorem 1 for points P lying on line
segment AJ .

Theorem 5. Let ABC be a triangle and let P be a point on the internal angle bisector AJ
of A. Let BBP , CCP be the cevians throuh P , and let B1, B2, C1, C2, B

′, C ′ be as in Fig. 3.
If c > b, then

(i) C1 > B1, (ii) C2 > B2, (iii) C ′ > B′, (iv) ACP > ABP , (v) BCP > CBP .

Consequently, each of the equalities C1 = B1, C2 = B2, C
′ = B′, ACP = ABP , BCP = CBP

implies that b = c.

Proof: The first three inequalities are nothing but (5), (6), and (7) in the proof of Theorem 1.
To prove the last two, let x = ACP , y = ABP . From the angle bisector theorem and Ceva’s
theorem, it follows that

1 =
x

c− x

BJ

JC

b− y

y
=

x

c− x

c

b

b− y

y
. (12)

Therefore xc(b− y) = yb(c− x), i.e., (x− y)bc = xy(c− b). Since c > b, it follows that x > y.
This proves (iv). Finally it follows from (12) that

BCP

CBP

=
c− x

b− y
=

c

b

x

y
> 1,

and hence (v).

Remark 6. One may wonder whether one can add the inequality PBP > PCP to the list
appearing in the conclusion of Theorem 5. The answer is given in the problem proposal [2],
where we are asked to prove that if A is acute then there is a point P on segment AJ for
which PBP = PCP . This is not so if A is obtuse.

Remark 7. It is natural to feel that (3) is stronger than (2) in the sense that (3) implies (2)
but (2) does not imply (3). We show now that (2) does imply (3) in the case when P lies
on line segment AJ . Other cases can be treated similarly. Thus assume that (2) holds and
that c > b. Let P be on line segment AJ . To show that BBP > CCP , we suppose that
BBP ≤ CCP , and we reach a contradiction. Note that BA = CA = A. Thus BBA > CCA.
From this and the assumption BBP ≤ CCP , it follows by continuity that there is a point Q
on the closed line segment PA for which BBQ = CCQ. By (2), we obtain the contradiction
c = b.
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