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Abstract. Single curved surfaces can always easily be covered by meshes that
result into an equilateral and orthogonal grid when the surface is developed. On
double curved surfaces, however, we can never find a mesh consisting of ‘squares
on the surface’. Nevertheless, there is a need for ‘orthogonal and locally almost
equilateral meshes’ on such surfaces in several fields, e.g., in architecture (fair and
easy to build, increased rigidity) and computer graphics (undistorted mapping of
textures, good tessellation for rendering purposes and also for aesthetical reasons).
We present an iterative force-directed algorithm that is capable of optimizing
given grids with rectangular topology and yields the task in an optimal way. It
allows to cover arbitrary parametric double-curved surfaces with grids that are
almost orthogonal and, optionally, locally have almost constant grid size in both
directions.
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1. Introduction

Among the immense variety of curved surfaces, the single curved ones can be developed into
the plane. In the plane, we can attach an equidistant orthogonal mesh to the surface and
reverse the developing transformation.

When the surface is double-curved this process of mesh generation will no longer work.
In fact, it is theoretically impossible to ever find two orthogonal sets of parameter lines with
global constant arc lengths from grid point to grid point on both curve sets. Therefore the
motivation of this work is to find grids that fulfill the following two geometric conditions
simultaneously:
(1) All lines intersect orthogonally and

(2) locally have almost constant grid size in both directions.
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It is well known that condition (1) by itself is fulfilled with the principal curvature lines
on double curved surfaces (see [12]). Such lines can be found by solving differential equations
that work with the first and second derivations of the parameterized surface equation.

We should emphasize that in this paper we are concerned with grids on surfaces that are
topologically equivalent to a rectangular grid, in the following simply called quadrangular
grids. These grids need not necessarily be topologically equivalent to the principal lines of
curvature.

We present an iterative force-directed algorithm that optimizes quadrangular grids with
regard to condition (1) and additionally (2). It does not depend on higher analytical theory
and is therefore simple to implement and leads to useful results with small expense. Input of
the algorithm is an arbitrary, in general non-orthogonal, quadrangular grid on a parametric
surface, e.g., by means of different parameterizations. In comparison to analytical methods
this gives creative freedom for the designing process of the mesh. On the other hand it avoids
the usual problems (e.g., numerical instability) in solving partial differential equations at the
cost of numerical imprecision. However, we intend our algorithm as a tool for artists and
architects, for which numerical accuracy is usually secondary over aesthetic expression and
applicability.

In the remainder of this paper vectors are written in bold face and the superscript ∗ is used
to denote unit vectors. The paper proceeds as follows: Section 2 reviews related work in the
area of grid generation and force directed algorithms. In Section 3 we outline our proposed
algorithm, whereas in Section 4 results and possible applications are presented. The paper is
concluded in Section 5.

2. Related work

Since grid generation is a necessity for the computational simulation of physical field phe-
nomena and processes, an extensive body of literature is available. Computational Fluid
Dynamics (CFD), which involves the calculation of nonlinear partial differential equations
(PDE), which in generally are not solvable analytically, is one of the major domains driving
the research in this area (cf. [15]). Orthogonal grids — in particular — are preferable, since
the numerical accuracy is highest in such grids. Additionally, as stated by V. Akcelik et
al. [1], an aspect ratio close to one is important for isotropic problems to reduce errors in
derivatives of the approximate solution. Conformal mappings are frequently used to obtain
orthogonal grids in two dimensions (see, e.g., [2]). Conformal mappings, however, are not
suited well for parameterizations of arbitrary surfaces ([2]) and are usually restricted to have
equal scale factors (see, e.g., [1] which also includes a comprehensive list of references on this
topic).

In a related research area Y. Liu et al. [9] introduced the concept of conical meshes1 for
architectural freeform design.

Force-based or force-directed algorithms are usually associated with the drawing of graphs
in an aesthetically pleasing way. Their purpose is to place the nodes in a way such that edges
are more or less of equal length and/or to minimize the number of edge crossings. They were
first introduced to the graph drawing community by P. Eades [4] in 1984 who in turn based
his work on a VLSI technique originally described by N. Quinn and M. Breuer [14] for
layouting of circuit paths. Since then the algorithms have been optimized (e.g., [3, 6]) and

1Conical meshes are quadrilateral meshes with planar faces, which possess a natural offsetting operation
and provide a support structure orthogonal to the mesh.



F. Gruber, G. Wallner, G. Glaeser: Force Directed Grid Generation on Surfaces 137

Figure 1: These examples use grids which are
closed ‘in one direction’. While orthogonality
can be fulfilled reasonably well, the grid size

varies considerably.

Figure 2: If the grid does not need to
follow border rules, the degree of free-
dom allows the algorithm to produce
meshes that almost precisely fulfill
both orthogonality and aspect-ratio-

preservation.

applied to a wide variety of graph related problems (e.g., removing of node overlapping [8] or
the drawing of clustered graphs [5, 16]).

Over the years force based algorithms have been adopted to various other problems as well.
X. Provot [13] introduced a mass and spring system for the simulation of cloth by modeling
it as regular rectangular grid of m×n virtual masses which are connected by massless springs
of natural length non equal to zero. F. Gruber and G. Glaeser [7] used a force directed
approach for the construction of a minimal surface from given boundary curves. Similar to the
work presented here they control the desired (ideal) length of edges by replacing them with
imaginary springs between vertices. Moreover, mass-spring systems are used to overcome the
computational expense of finite elements approaches for the simulation of deformable bodies
(e.g., [10, 11]) at the cost of physical accuracy.

3. Algorithm

Let us assume that the basic surface is given by a differentiable mapping x : R2 → R
3 and a

rectangular grid in parameter space is mapped onto this surface, yielding the initial grid. In
order to obtain orthogonality and local equilaterality our force-directed algorithm uses simple
forces to push the vertices in directions that lead to a more orthogonal and equilateral grid
than in the iteration before.

In the following discussion we will denote a vertex of the grid as p. Edges e connect two
vertices p1 and p2. The grid can either be closed in one direction (u or v, see Fig. 1), in both
directions (Fig. 6) or, the grid can be open in both directions (Fig. 2). Interior vertices refer
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Figure 3: Calculation of the disposition once for a vertex p which lies on the boundary
(right side) and once if the vertex is an interior point (left side). In that case

the disposition Fi is the weighted sum of Fl and Ft.

to vertices which have four neighbors and boundary vertices have three neighbors. In case of
open meshes vertices at the corners of the grid are omitted by the algorithm since no forces
are exerted on them and will therefore be excluded from the discussion.

At the beginning of each iteration the disposition pdisp of each vertex p is set to zero to
sum up the disposing forces for the next iteration.

In a first step, we idealize the orthogonality of the projected incident edges on the tan-
gential plane of each vertex (Fig. 3, Step 1 of Listing 1). In case of interior points pi this is
accomplished by adding small forces to the disposition, which should obtain straight angles
between incident edges in longitudinal and transversal direction. As shown in Fig. 3 the dis-
position of pi is the sum of the angle bisector of ∠ (l0, pi, l1) and ∠ (t0, pi, t1), weighted by a
small factor di:

Fi = di · (Fl + Ft) =

= di · ((l0 − pi)
∗ + (l1 − pi)

∗ + (t0 − pi)
∗ + (t1 − pi)

∗) (1)

To avoid folding at the boundary of the grid, each boundary point is slightly displaced in
the direction of ’the center’ of its neighboring points. To be more specific, let us assume a
boundary point pb with its two neighboring boundary points p1 and p2 and interior point
p3, as depicted in Fig. 3. Furthermore, τ is the plane passing through point pb with normal
(p2−p1)

∗. The resulting disposition of pb is then given by the normal of τ weighted with the
signed distance between τ and p3 and a small constant db, mathematically

Fb = db · SignedDist(p3, τ) · (p2 − p1)
∗ (2)

Afterward, in a second step, we idealize local equilaterality for every edge by calculating the
deviation ~δ of its actual length from a predefined ideal length and add ~δ multiplied by a small
factor de to the disposition of the incident vertices of the edge (see Step 2 of Listing 1 and,
e.g., [3, 4, 6]).

As a side note, we should point out that if the control of edge lengths is completely omitted
the successional process of orthogonalization becomes instable. In the current implementation
we use a constant ideal length for all edges of the grid which automatically considers the
curvature of the surface. In other words, high curvature results in locally small grid size and
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Figure 4: Linear approximation of the normal projection of a point P on the
tangential plane of x(u, v) onto the parametric surface S.

low curvature yields larger grid size. However, we currently experiment with ideal lengths in
analytical relation to the local curvature of the surface.

In a final step we add pdisp to the actual position of p. For the following explanation we
denote p′ = p + pdisp. Since in general p′ does not lie on the surface anymore, p′ has to be
projected back onto the parametric surface S (see Fig. 4 and Step 3 of Listing 1). Furthermore,
let us denote p = x(u, v) and pnew = x(u+du, v+dv), where x is the parametric representation
of S. To find a linear approximation of pnew, we calculate at first the normal projection T of
p′ onto the tangential plane of point p. The step size of u and v result in

du =
dux

‖ẋu‖
dv =

dvx

‖ẋv‖
(3)

where dux and dvx are the coordinates of point T in respect to the basis {ẋu, ẋv}. Secondly, to
improve the numerical accuracy of the linear approximation, p′ is projected onto the tangential
plane of pnew. Although the process can be repeated multiple times to increase to accuracy
we found out that one repetition is sufficient for a stable progress. The pseudocode given in
Listing 1 summarizes the steps explained above.

function IterationStep() {

for(each vertex p)

p.disp = 0;

// step 1: idealize orthogonality

for(each vertex p) {

if (p == inner point} {

p.disp += F
res

i
;

}

else if (p == boundary point) {

p.disp += Fb;

}
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}

// step 2: idealize edge length

for(each edge e) {

ideal = FindIdealLength(e);

∆l = ideal - e.actualLength;

e.p1.disp -= de ·∆l· e.direction;

e.p2.disp += de ·∆l· e.direction;

}

// step 3: disposition and back -projection to surface

for(each vertex p) {

p.pos += p.disp;

p.pos = S.NormalProjection(p.pos);

}

}

Listing 1: Pseudocode for one iteration of the algorithm which calculates the disposition
of each vertex p.

This code is repeated for each iteration until the solution converges to specified thresholds
in regard to orthogonality and equilaterality (as defined in Section 4). Since convergence to
these thresholds can not be guaranteed in all cases the algorithm terminates also if the changes
in disposition are negligeable from one iteration to the next.

The user can change the behavior of the algorithm during runtime by altering the ideal
edge length, di, db and de. These parameters should take on values between 1% and 5% of the
average edge length of the grid. Otherwise the disposition during one iteration may exceed
a critical amount which leads to instability of the process. Modifying de changes the ideal
length preserving force, whereas higher values for di and db enforce the orthogonality of the
mesh. It can be observed that orthogonality and equilaterality typically show inverse behavior

which means increasing one of them decreases the other one. The intermediate results are
displayed so that the user has immediate feedback.

4. Results

To assess the quality of our algorithm with respect to orthogonality the maximum deviation
from orthogonality (MDO) and the average deviation from orthogonality (ADO) is measured.
Following V. Akcelik et al. [1] the former is given by

MDO = max
i,j

(|90◦ − θi,j |) (4)

and the latter is calculated from

ADO =

∑nx−1

i=2

∑ny−1

j=2
|90◦ − θi,j|

(nx − 2) · (ny − 2)
(5)

where the angle θi,j is the maximum angle between longitudinal and transversal edges at grid
position (i, j). These values are not calculated directly on the discretized mesh since the
discretization by itself introduces some error. Instead, grid interpolating spline curves are
used.
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Figure 5: Rendering of a Klein Bottle (from the inside).
The orthogonality of the grid has an aesthetic impact.

Figure 6: Concept renderings of a hall which in fact is a Klein Bottle cut in half. The girders
in the middle and right image where laid out with the presented algorithm. The left image

shows the initial configuration.

Figure 7: A concept for a bridge which consists of a part of a Dupin cyclide which is enclosed
with metallic rings.
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Table 1: Results for the examples shown in Fig. 5 through Fig. 9(b). The subscripts b and a

indicate if the measurements were done before or after the algorithm. The type denotes if a
grid is open (C0), closed in one direction (C1) or is a double closed grid (C2).

Scene Type MDO ADO MDE ADE

Klein Bottleb C2 33.78◦ 11.75◦ 404% 90%

Klein Bottlea C2 5.43◦ 0.48◦ 152% 28%

Towerb C1 40.47◦ 10.55◦ 134% 29%

Towera C1 1.43◦ 0.28◦ 15% 9%

Tower (Rings) C0 5.84◦ 1.73◦ 8% 4%

Bridge C0 5.37◦ 2.28◦ 12% 4%

Function Graph C0 4.30◦ 1.09◦ 9% 3%

Furthermore we measure the maximum deviation from equilaterality (MDE) and the
average deviation from equilaterality (ADE) which are given by

MDE = 100 ·

(

max
k

(

Lk

lk

)

− 1

)

ADE = 100 ·

(

1

nq

nq
∑

k=1

Lk

lk
− 1

) (6)

where nq is the number of quads of the grid. Lk is the maximum and lk the minimum side
length of quad k.

In the current implementation one of these four measurements, depending on the require-
ments concerning orthogonality and equilaterality, is used as break condition of the algorithm
(see Section 3).

4.1. Application in architectural design

Figures 5 through 9(b) show examples from architectural design. Figures 5 and 6 show a
hall which is based on a parametric representation of a Klein Bottle with its double closed
parameter lines as input grid where the result was cut in half afterward. As evident from
Table 1 this type of double closed grid achieves a high degree of orthogonality. If the grid
is closed, however, a given number of u and v lines may not be well suited to achieve local
equilaterality. In contrast, for the tower in Fig. 9(a) a grid, which is open on one side, was
used. This already leads to better local equilateral quadrangles.

Opening the grid on both sides results in almost equilateral quadrangles, which is illus-
trated in Fig. 9(b), by inscribing circles into each quadrangle. Figure 7 is another example
were an open mesh was used. Table 1 shows measurements for those Figures.

As Figs. 7 and 9(b) show, the algorithm of finding ratio-preserving orthogonal quadran-
gular grids turns out to be a good tool for finding circular pavements of general surfaces. To
fulfill the task as good as possible, both degrees of freedom are necessary, i.e., the grid should
be open in both directions. Figure 8 shows how the ‘skin’ of the surface changes (contracts)
from the given grid and finally converges to a visually pleasing (aesthetic) pattern.
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Figure 8: The converging (contracting) grid is perfectly suitable for a circular pattern that
covers the surface. Left: Starting position, right (yellowish): converged grid.

(a) A tower, once with the initial grid (left side) and once after our
algorithm was applied (right side). Since the mesh is only closed
in one direction, the algorithm can more easily obey the equilateral
condition and therefore produces locally square quadrilaterals.

(b) Another tower with a ratio-
preserving orthogonal grid in
which circles were inscribed.

Figure 9: Concept renderings of two different towers

Figure 10: A general ellipsoid (no surface of revolution). Left: the principal curvature lines
calculated with analytical methods. Middle: Approximation of the principal curvature lines
found by our algorithm. Right: altering the parameters leads to a completely different (and

non-trivial) orthogonal net.
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4.2. Application in geometry

Among the infinite number of possible orthogonal grids on a surface, the lines of principal
curvature play an important role both in theoretical and applied geometry. They are usually
found by solving differential equations (see [12]). By the way of example, Fig. 10 shows these
lines for a general ellipsoid. The principal curvature lines of such an ellipsoid form a perfect
mesh, with four ‘problematic points’ (the so-called umbilical points) where the surface is
osculated by a sphere. These points mostly implicate a non-trivial topology of the principal
curvature field. However, the topology of the principal curvature lines usually differs from
the topology of a quadrangular grid and therefore it is impossible for our algorithm to find
them. Nevertheless, we can find alternative solutions to such curvature lines, depending on
the parameters values di, db and de, as shown in Fig. 10.

5. Conclusions

In this paper we described a force-based algorithm for calculating orthogonal quadrangular
grids on arbitrary double-curved parametric surfaces. Our algorithm uses simple forces to
push vertices in directions that lead to a more orthogonal grid than in the iteration before.
The algorithm works with grids which are open or closed in one or two directions. The behav-
ior of the algorithm can be altered via the ideal edge length and the three force parameters
de, di and db. Images and quality indicators throughout the paper showed results which where
achieved with the presented algorithm. Currently our method works only on parametric sur-
faces (function graphs, parametric representations, implicit functions and Bezier and NURBS
surfaces). It would be useful, however, to extend the algorithm to polygonal surfaces since
they are not less common in architecture and design than parametric surfaces.

Local equilaterality can be best achieved if the grid is open in both directions. In case of a
closed grid a suitable number of parameter lines has to be chosen to achieve local equilaterality.
The quality may be improved by adaptively adding u and v parameter lines. We also attempt
to incorporate the local curvature of the surface into the calculation to be able to use individual
ideal edge lengths. This should give a better convergence toward local equilaterality since the
curvature naturally corresponds to the grid size.
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