
Journal for Geometry and Graphics
Volume 14 (2010), No. 2, 147–169.

Flexible Octahedra in the Projective
Extension of the Euclidean 3-Space

Georg Nawratil

Institute of Discrete Mathematics and Geometry, Vienna University of Technology
Wiedner Hauptstrasse 8-10/104, Vienna, A-1040, Austria

email: nawratil@geometrie.tuwien.ac.at

Abstract. In this paper we complete the classification of flexible octahedra in
the projective extension of the Euclidean 3-space. If all vertices are Euclidean
points then we get the well known Bricard octahedra. All flexible octahedra with
one vertex on the plane at infinity were already determined by the author in
the context of self-motions of TSSM manipulators with two parallel rotary axes.
Therefore we are only interested in those cases where at least two vertices are ideal
points. Our approach is based on Kokotsakis meshes and reducible compositions
of two four-bar linkages.
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1. Introduction

A polyhedron is said to be flexible if its spatial shape can be changed continuously due to
changes of its dihedral angles only, i.e., every face remains congruent to itself during the flex.

1.1. Review

In 1897 R. Bricard [5] proved that there are three types of flexible octahedra1 in the
Euclidean 3-space E3. These so-called Bricard octahedra are as follows:

Type 1: All three pairs of opposite vertices are symmetric with respect to a common line.

Type 2: Two pairs of opposite vertices are symmetric with respect to a common plane which
passes through the remaining two vertices.

Type 3: For a detailed discussion of this type we refer to [23]. We only want to mention that
these flexible octahedra possess two flat poses.

1No face degenerates into a line and no two neighboring faces coincide permanently during the flex.
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Due to Cauchy’s theorem [8] all three types are non-convex; they even have self-intersections.

As I.K. Sabitov [20] proved the Bellows Conjecture, every flexible polyhedron in E3

keeps its volume constant during the flex. Especially for Bricard octahedra it was shown by R.

Connelly [9] that all three types have a vanishing volume. Connelly [10] also constructed
the first flexible polygonal embedding of the 2-sphere into E3. A simplified flexing sphere
was presented by K. Steffen [26]. Note that both flexing spheres are compounds of Bricard
octahedra.

R. Alexander [1] has shown that every flexible polyhedron in E3 preserves its total
mean curvature during the flex (see also I. Pak [19, p. 264]). Recently V. Alexandrov [2]
showed that the Dehn invariants (cf. [12]) of any Bricard octahedron remain constant during
the flex and that the Strong Bellows Conjecture (cf. [11]) holds true for the Steffen polyhedron.

H. Stachel [24] proved that all Bricard octahedra are also flexible in the hyperbolic
3-space. Moreover Stachel [22] presented flexible cross-polytopes in the Euclidean 4-space.

1.2. Related work and overview

As already mentioned all types of flexible octahedra in E3 were firstly classified by R.

Bricard [5]. His proof presented in [6] is based on properties of a strophoidal spatial cubic
curve. In 1978 R. Connelly [9] sketched a further algebraic method for the determination
of all flexible octahedra in E3. H. Stachel [21] presented a new proof which uses mainly
arguments from projective geometry beside the converse of Ivory’s Theorem, which limits this
approach to flexible octahedra with finite vertices.

A. Kokotsakis [14] discussed the flexible octahedra as special cases of a sort of meshes
named after him (see Fig. 1). As recognized by the author in [18] Kokotsakis’ very short
and elegant proof for Bricard octahedra is also valid for type 3 in the projective extension E⋆

of E3 if no two opposite vertices are ideal points. Stachel [23] also proved the existence
of flexible octahedra of type 3 with one vertex at infinity and presented their construction.
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Figure 1: A Kokotsakis mesh is a polyhedral structure consisting of a n-sided central
polygon Σ0 ∈ E3 surrounded by a belt of polygons in the following way: Each side Ii0
of Σ0 is shared by an adjacent polygon Σi, and the relative motion between cyclically
consecutive neighbor polygons is a spherical coupler motion. Here a Kokotsakismesh
for n = 3 is given which determines an octahedron. ϕi, χi and ψi denote the angles

enclosed by neighboring faces.
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Moreover the author determined in [18] all flexible octahedra where one vertex is an ideal
point.

Up to recent, there are no proofs for Bricard’s famous statement known to the author
which enclose the projective extension of E3 although these flexible structures attracted many
prominent mathematicians; e.g., G.T. Bennett [3], W. Blaschke [4], O. Bottema [7],
H. Lebesgue [13] and W. Wunderlich [27]. The presented article together with [18] closes
this gap.

Our approach is based on a kinematic analysis of Kokotsakis meshes as the composition of
spherical coupler motions given by Stachel [25], which is repeated in more detail in Section
2. In Section 3 we determine all flexible octahedra where no pair of opposite vertices are ideal
points. The remaining special cases are treated in Section 4.

2. Notation and related results

We inspect a Kokotsakis mesh for n = 3 (see Fig. 1). If we intersect the planes adjacent to
the vertex Vi with a sphere S2 centered at this point, the relative motion Σi/Σi+1 (mod 3) is
a spherical coupler motion.

2.1. Transmission by a spherical four-bar mechanism

We start with the analysis of the first spherical four-bar linkage C with the frame link I10I20
and the coupler A1B1 according to H. Stachel [25] (see Figs. 1 and 2).

We set α1 := I10A1 for the spherical length of the driving arm, β1 := I20B1 for the output
arm, γ1 := A1B1, and δ1 := I10I20. We may suppose 0 < α1, β1, γ1, δ1 < π.

The coupler motion remains unchanged when A1 is replaced by its antipode A1 and at the
same time α1 and γ1 are substituted by π − α1 and π − γ1, respectively. The same holds for
the other vertices. When I10 is replaced by its antipode I10, then also the sense of orientation
changes, when the rotation of the driving bar I10A1 is inspected from outside of S2 either at
I10 or at I10.

We use a cartesian coordinate frame with I10 on the positive x-axis and I10I20 in the xy-
plane such that I20 has a positive y-coordinate (see Fig. 2). The input angle ϕ1 is measured
between I10I20 and the driving arm I10A1 in mathematically positive sense. The output angle
ϕ2 =<) I10I20B1 is the oriented exterior angle at vertex I20. As given in [25] the constant
spherical length γ1 of the coupler implies the following equation

c22t
2

1t
2

2 + c20t
2

1 + c02t
2

2 + c11t1t2 + c00 = 0 (1)

with ti = tan(ϕi/2), c11 = 4 sα1 sβ1 6= 0,

c00 = N1 −K1 + L1 +M1, c02 = N1 +K1 + L1 −M1,

c20 = N1 −K1 − L1 −M1, c22 = N1 +K1 − L1 +M1,
(2)

K1 = cα1 sβ1 sδ1, L1 = sα1 cβ1 sδ1, M1 = sα1 sβ1 cδ1, N1 = cα1 cβ1 cδ1 − cγ1. (3)

In this equation s and c are abbreviations for the sine and cosine function, respectively, and
the spherical lengths α1, β1 and δ1 are signed.

Note that the biquadratic equation Eq. (1) describes a 2-2-correspondence between points
A1 on the circle a1 = (I10;α1) and B1 on b1 = (I20; β1) (see Fig. 2). Moreover, this 2-2-
correspondence only depends on the ratio of the coefficients c22 : · · · : c00 (cf. Lemma 1 of
[16]).
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Figure 2: Composition of the two spherical four-bars I10A1B1I20 and I20A2B2I30 with
spherical side lengths αi, βi, γi, δi, i = 1, 2 (courtesy H. Stachel)

2.2. Composition of two spherical four-bar linkages

Now we use the output angle ϕ2 of the first four-bar linkage C as input angle of a second four-
bar linkage D with vertices I20A2B2I30 and consecutive spherical side lengths α2, γ2, β2 and
δ2 (Fig. 2). The two frame links are assumed in aligned position. In the case <) I10I20I30 = π
the spherical length δ2 is positive, otherwise negative. Analogously, a negative α2 expresses
the fact that the aligned bars I20B1 and I20A2 are pointing to opposite sides. Changing the
sign of β2 means replacing the output angle ϕ3 by ϕ3 − π. The sign of γ2 has no influence on
the transmission and therefore we can assume γ2 > 0 without loss of generality (w.l.o.g.).

Due to (1) the transmission between the angles ϕ1, ϕ2 and the output angle ϕ3 of the
second four-bar with t3 := tan(ϕ3/2) can be expressed by the two biquadratic equations

c22t
2

1t
2

2 + c20t
2

1 + c02t
2

2 + c11t1t2 + c00 = 0, d22t
2

2t
2

3 + d20t
2

2 + d02t
2

3 + d11t2t3 + d00 = 0. (4)

The dik are defined by equations analogue to Eqs. (2) and (3).
The author already determined in [17] all cases where the relation between the input angle

ϕ1 of the arm I10A1 and the output angle ϕ3 of I30B2 is reducible and where additionally at
least one of these components produces a transmission which equals that of a single spherical
four-bar linkage R (= spherical quadrangle I10Ir0B3A3). These so-called reducible composi-
tions with a spherical coupler component can be summarized as follows (cf. Theorem 5 and
6 of [17]):

Theorem 1. If a reducible composition of two spherical four-bar linkages with a spherical
coupler component is given, then it is one of the following cases:
(a) One spherical coupler is a spherical isogram which happens in one of the following four

cases:
c00 = c22 = 0, d00 = d22 = 0, c20 = c02 = 0, d20 = d02 = 0,

(b) the spherical couplers are forming a spherical focal mechanism which is analytically given
for F ∈ R \ {0} by

c00c20 = Fd00d02, c22c02 = Fd22d20,

c211 − 4(c00c22 + c20c02) = F [d211 − 4(d00d22 + d20d02)],
(5)
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(c) c22 = c02 = d00 = d02 = 0 resp. d22 = d20 = c00 = c20 = 0,

(d) c20 = Ad02, c22 = Ad22, c02 = Bd22, c00 = Bd02, d00 = d20 = 0, d02d22 6= 0 resp.
d02 = Ac20, d22 = Ac22, d20 = Bc22, d00 = Bc20, c00 = c02 = 0, c20c22 6= 0 with
A ∈ R \ {0} and B ∈ R.

2.3. Geometric aspects of Theorem 1

Spherical isogram:

Now we point out the geometric difference between the two spherical isograms given by
c00 = c22 = 0 and c20 = c02 = 0, respectively.

(i) It was already shown in [25] that c00 = c22 = 0 is equivalent to the conditions β1 = α1

and δ1 = γ1 which determines a spherical isogram.

(ii) c20 = c02 = 0 is equivalent to the conditions β1 = π−α1 and δ1 = π− γ1 (cf. [17]). Note
that the couplers of both isograms have the same movement because we get item (ii) by
replacing either I10 or I20 of item (i) by its antipode.

Moreover the cosines of opposite angles in spherical isograms (of both types) are equal (cf.
[14, §8]).

Spherical focal mechanism:

Here also two cases can be distinguished:

(i) In [16] it was shown that the characterization of the spherical focal mechanism given in
Theorem 1 is equivalent to the condition

sα1 sγ1 : sβ1 sδ1 : (cα1 cγ1 − cβ1 cδ1) = sβ2 sγ2 : sα2 sδ2 : (cα2 cδ2 − cβ2 cγ2).

Moreover in this case always cχ1 = −cψ2 holds with χ1 =<) I10A1B1 and ψ2 =<) I30B2A2.

(ii) But in the algebraic characterization of the spherical focal mechanism (5) also a second
possibility is hidden, namely:

sα1 sγ1 : sβ1 sδ1 : (cα1 cγ1 − cβ1 cδ1) = sβ2 sγ2 : sα2 sδ2 : (cβ2 cγ2 − cα2 cδ2).

In this case always cχ1 = cψ2 holds. Note that we get this case from the first one by
replacing either I30 or I10 by its antipode.

3. The general case of flexible octahedra in E⋆

In this section we assume that no two opposite vertices of the octahedron are ideal points.
As a consequence there exists at least one face of the octahedron where all three vertices are
in E3. This face corresponds to Σ0 in Fig. 1. Now the Kokotsakis mesh for n = 3 is flexible if
and only if the transmission of the composition of the two spherical four-bar linkages C and
D equals that of a single spherical four-bar linkage R with Ir0 = I30.

It was shown in [18] that the items (c) and (d) of Theorem 1 as well as the spherical
focal mechanism of type (i) do not yield a solution for this problem. Moreover it should
be noted that the composition of two spherical isograms of any type also forms a spherical
focal mechanism as Eq. (5) holds, and then the spherical four-bar linkage R also has to be a
spherical isogram. This implies the following necessary conditions already given in [18]:
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Lemma 1. If an octahedron in the projective extension of E3 is flexible where no two opposite
vertices are ideal points, then its spherical image is a composition of spherical four-bar linkages
C, D and R of the following type:
1. C and D, C and R as well as D and R are forming spherical focal mechanism of type (ii),

2. C and D are forming a spherical focal mechanism of type (ii) and R is a spherical isogram,

3. C, D and hence also R are spherical isograms.

3.1. Flexible octahedra of type 3 with vertices at infinity

In contrast to the proof for type 1 and type 2 A. Kokotsakis showed without any limiting
argumentation with respect to E⋆ that the third case of Lemma 1 corresponds with the Bricard
octahedron of type 3 if no two opposite vertices are ideal points. Therefore the following angle
conditions given in [14] also have to hold in our case:

δi = γi, αi = βi, δ3 + γ3 = π, αi + βi = π for i = 1, 2, (6)

where the angles are denoted according to Fig. 1(b). For β1 + α2 = π and β2 + α3 = π two
of the remaining 3 vertices are ideal points. These conditions already imply β3 + α1 = π
and therefore also the third remaining vertex has to be an ideal point. Moreover all three
vertices are collinear which follows directly from the existence of the two flat poses. This
already yields a contradiction (cf. footnote 1). Together with Theorem 2 of [18] this proves
the following statement:

Theorem 2. A flexible octahedron of type 3 with one finite face can have not more than one
vertex at infinity.

Remark 1. For the construction of these flexible octahedra see H. Stachel [23].

3.2. Flexible octahedra with a face or an edge at infinity

We can even generalize the observation that if three vertices are ideal points then they have
to be collinear in order to get a flexible structure:

Theorem 3. In the projective extension of E3 there do not exist flexible octahedra where one
face is at infinity if the other 3 vertices are finite.

Proof: Given are the finite vertices V1, V2, V3 and the three ideal points U1, U2, U3 (see
Fig. 3(a)). W.l.o.g. we can assume that the face [V1, U2, U3] is fixed. Since [U1, U2, U3] is a
face of the octahedron, also the direction of U1 is fixed.

Now the points V2 and V3 have to move on circles about their footpoints F2 and F3 with
respect to [V1, U3] and [V1, U2], respectively. Note that F2, V2, V3, F3 can also be seen as an
RSSR mechanism (cf. [15]) with intersecting rotary axes in V1. We split up the vector V2V3
in a component u in direction U1 and a component orthogonal to it. Now the octahedron is
flexible if the length of the component u is constant during the RSSR motion. It can easily
be seen that a spherical motion of [V2, V3] with center V1 and this distance property can only
be a composition of a rotation about a parallel to [V2, V3] through V1 and a rotation about
[V1, U1].

Then we consider one of the two possible configurations where V1, V2, V3, U1 are coplanar.
Due to our considerations the velocity vectors of V2 and V3 with respect to the fixed system
are orthogonal to this plane as they can only be a linear combination of the velocity vectors
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Figure 3: Both figures can be seen as a parallel projection of a spatial structure
but on the other hand also as a planar configuration, because such structures has to

possess two flat poses.

implied by the rotation about [V1, U1] or about a parallel to [V2, V3] through V1. In order
to guarantee that these vectors are tangent to the circles of the RSSR mechanism, the two
rotary axes also have to lie within the plane V1, V2, V3, U1. Therefore U1, U2, U3 are collinear
and this again contradicts the definition of an octahedron.

Moreover we can also prove the following theorem:

Theorem 4. In the projective extension of E3 there do not exist flexible octahedra with a
finite face and one edge at infinity.

Proof: We assume that V1, . . . , V4 are finite and that U2, U3 are ideal points. We consider
again V1, U2, U3 as the fixed system. Now we split up the octahedron into two parts: in a
mechanism which consists of V1, U2, V3, V4 and in one which is determined by V1, V2, U3, V4
(see Fig. 3(b)). Note that both mechanisms have the kinematic structure of a serial 2R chain.

We consider the configuration where the 2R chain V1, U2, V3, V4 is singular, i.e., these four
points are coplanar where the carrier plane is denoted by ε. Now this mechanism can only
induce a velocity to V4 which is orthogonal to ε. The other 2R chain also implies a velocity
to V4 and its direction is orthogonal to U3. In order to guarantee that the directions of the
two velocities in V4 are fitting together (which is a necessary condition for the flexibility) the
point U3 has to be located in ε. Therefore the points V1, U2, U3, V3, V4 are within ε which
equals the plane of the fixed system.

In the following we show that also the point V2 has to lie in ε if the octahedron is of type
1 or type 2, respectively:

Type 1: In this case the spherical image of the motion transmission from Σ1 to Σ2 via V3 and
V2 is a spherical focal mechanism of type (ii). Therefore the condition cχ2 = cψ3 (see
Fig. 3(b)) holds which implies that also the other 2R chain has to be in a singular
configuration.

Type 2: We have to distinguish three subcases depending on the vertices Vi (i = 1, 2, 3) in
which the spherical image of the motion transmission corresponds to a spherical
isogram:
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• i = 1: Now the spherical image of the motion transmission from Σ1 to Σ2 via V3
and V2 is a spherical focal mechanism of type (ii) which equals the above discussed
case.

• i = 3: Now the spherical image of the motion transmission from Σ1 to Σ3 via V1
and V2 is a spherical focal mechanism of type (ii) which implies cχ1 = cψ2. As χ1

equals 0 or π this already yields that all 6 vertices are coplanar.

• i = 2: This case can be done analogously as the above one if we start with a
singular configuration of the 2R chain V1, V2, U3, V4.

Moreover, as there always exist two singular configurations of a 2R chain, a flexible octahedron
where one edge is an ideal line has to have two flat poses.

In order to admit two flat poses, either V4 has to be an ideal point (cf. Theorem 3) or
V2, U2, V3, U3 have to be located on a line which again yields a contradiction as U2 coincides
with U3. This already finishes the proof.

Remark 2. The two geometric/kinematic proofs of Theorems 3 and 4 demonstrate the power
of geometry in the context of flexibility because purely algebraic proofs for these statements
seem to be a complicated task.

4. Special cases of flexible octahedra in E⋆

In the first part of this section we determine all flexible octahedra with at least three vertices
on the plane at infinity. These so called trivial flexible octahedra are the content of the next
theorem:

Theorem 5. In the projective extension of E3 any octahedron is flexible where at least two
edges are ideal lines but no face coincides with the plane at infinity.

Proof: Under consideration of footnote 1 there are only two types of octahedra fulfilling the
requirements of this theorem. These two types are as follows:
a. two pairs of opposite vertices are ideal points,
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Figure 4: The degenerated flexible octahedra of type (a) have a 4-parametric self-motion
in contrast to those of type (b) which possess a constrained one
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b. three vertices are ideal points where two of them are opposite ones.
It can immediately be seen from Fig. 4(a) and (b), that these two degenerated cases are
flexible. A detailed proof is left to the reader.

Due to the Theorems 3, 4 and 5 the only open problem is the determination of all flexible
octahedra where only one pair of opposite vertices consists of ideal points. For the discussion
of these octahedra we need some additional considerations which are prepared in the next
two subsections.

4.1. Central triangles with one ideal point

ϕ1
ϕ2

a

b

d

c

Figure 5: Planar four-bar mechanism with driving arm a, follower b, coupler c and base d

Given is an octahedron where two opposite vertices are ideal points and the remaining
four vertices are in E3. The four faces through an ideal point constitute a 4-sided prism where
the motion transmission between opposite faces equals the one of the corresponding planar
four-bar mechanism (orthogonal cross section of the prism). It can easily be seen that the
input angle ϕ1 and the output angle ϕ2 of a planar four-bar linkage (see Fig. 5) are related
by

p22t
2

1t
2

2 + p20t
2

1 + p02t
2

2 + p11t1t2 + p00 = 0 (7)

with ti := tan(ϕi/2), p11 = −8ab and

p22 = (a− b+ c+ d)(a− b− c+ d), p20 = (a+ b+ c+ d)(a+ b− c+ d),

p02 = (a + b+ c− d)(a+ b− c− d), p00 = (a− b+ c− d)(a− b− c− d).
(8)

W.l.o.g. we can assume a, b, c, d > 0. Moreover in [18] the following lemma was proven:

Lemma 2. If a reducible composition of one planar and one spherical four-bar linkage with a
spherical coupler component is given, then one of the algebraic conditions characterizing the
four cases of Theorem 1 is fulfilled.

A closer study of the items (a)–(d) in Theorem 1 with respect to Lemma 2 was also done
in [18], where we assumed that V1 denotes the ideal point. In the following we sum up the
achieved results:
ad (a) The conditions c00 = c22 = 0 imply a = b and c = d, i.e., the planar four-bar

mechanism is a parallelogram or an antiparallelogram. Note that opposite angles in
the parallelogram and in the antiparallelogram are equal.
In contrast, c20 = c02 = 0 has no solution under the assumption a, b, c, d > 0.

ad (b) In this case we only get a solution if the relation

2ac : 2bd : (a2 − b2 + c2 − d2) = sβ2 sγ2 : sα2 sδ2 : (cβ2 cγ2 − cα2 cδ2)

holds. Moreover this condition implies cχ1 = cψ2.
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ad (c) The case d22 = d20 = c00 = c20 = 0 does not yield a solution because c00 = c20 = 0
cannot be fulfilled for a, b, c, d > 0 .
The other case d00 = d02 = c22 = c02 = 0 implies cϕ1 = cψ1 and cχ2 = cϕ3 or as
second possibility cϕ1 = cψ1 and V2, V3, V5, V6 are coplanar.

ad (d) The case c20 = Ad02, c22 = Ad22, c02 = Bd22, c00 = Bd02, d00 = d20 = 0, d02d22 6= 0
does not yield a solution.
The other case d02 = Ac20, d22 = Ac22, d20 = Bc22, d00 = Bc20, c00 = c02 = 0,
c20c22 6= 0 implies the relations cϕ2 = cχ1 and cϕ1 = cχ3.

4.2. Preparatory lemmata

In order to give the proof of the main theorem in Section 4.3 in a compact form we prove the
following two preparatory lemmata:

Lemma 3. A planar base polygon of a 4-sided prism2 remains planar during the flex if and
only if one of the following cases hold:

1. The edges of the prism are orthogonal to the planar base,

2. the planar quadrilateral is a deltoid and the edges are orthogonal to the deltoid’s line of
symmetry,

3. the planar quadrilateral is an antiparallelogram and its plane of symmetry is parallel to
the edges of the prism,

4. the planar quadrilateral is a parallelogram.

Proof: We consider the orthogonal cross section of a prism which is an ordinary four-bar
mechanism as given in Fig. 5. We denote with s and l the shortest and longest bar, respec-
tively, and with p and q the length of the remaining bars. As item 1 is trivial we assume that
the edges of the prism are not orthogonal to the planar base. For the used notation of the
following case study please see Fig. 6:
1. s + l < p + q: Due to Grashof’s theorem we get a double-crank mechanism if we fix the

shortest bar s. Considering all four poses where the sides coincide with the frame link
already implies the contradiction.

2. s + l > p + q: If we fix any of the four bars we always get a double-rocker mechanism.
W.l.o.g. we can assume that d is the longest bar. As a consequence the following inequal-
ities hold:

d+ a > b+ c and d+ b > a+ c. (9)

Therefore there exists a configuration where the edges e1, e2, e5 are coplanar (τ1 = 0 ⇒ e5
is between e1 and e2). This implies that the points V1, V2, V5 have to be collinear which is
the case if λ1 = µ1 and λ5 = µ2 hold. The analogous consideration for the edges e1, e2, e4
yields λ2 = µ2 and λ1 = µ4.
Now λ1 = µ1, λ2 = µ2 and the coplanarity condition of V1, V2, V4, V5 yield that τ1 = 0
implies τ2 = 0. Therefore there exists a flat pose which contradicts our assumption
s+ l > p + q.

3. s + l = p + q: Here we assume that the prism only has one flat position. In this case we
have to distinguish two subcases:

2We exclude those prisms where always two pairs of neighboring sides coincide during the flex, as they are
not of interest for the problem under consideration (cf. footnote 1).
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Figure 6: Perspective view of an orthogonal cross section of the prism (= four-bar
linkage a, b, c, d) and of its four coplanar vertices V1, V2, V4, V5. Note that the dihedral
angles along the prism edges ei are denoted by τi. Moreover the face angles of the

prism at Vi are denoted by µi and λi, respectively.

a. l and s are neighboring bars: W.l.o.g. we set l = d, s = b, p = c and q = a. Due to
the inequalities

l + q > s+ p and p+ q > l − s, (10)

there exist the following two special poses of the prism illustrated in Fig. 7. These two
poses imply λ2 = λ4, µ4 = µ5 and λ2 = µ2, λ1 = µ4, respectively. Together with the
coplanarity condition of V1, V2, V4, V5 these conditions yield one of the following three
cases:

i. V1, V2, V4 are always collinear which contradicts footnote 2,

ii. V2, V4, V5 are always collinear which contradicts footnote 2,

iii. [V1, V2] and [V4, V5] are parallel. This already yields the contradiction as a four-
bar mechanism where two opposite bars are always parallel during the motion
can only be a parallelogram.

b. l and s are opposite bars: W.l.o.g. we set l = d, s = c, p = a and q = b. Due to the
inequalities

l + p > s+ q and l + q > s+ p (11)

there exist the following two special poses of the prism illustrated in Fig. 8. These two
poses imply λ2 = λ4, µ4 = µ5 and λ4 = λ5, µ1 = µ5, respectively. Together with the
coplanarity condition of V1, V2, V4, V5 these conditions yield one of the following three
cases:

i. V2, V4, V5 are always collinear which contradicts footnote 2,

ii. V1, V4, V5 are always collinear which contradicts footnote 2,

iii. [V1, V5] and [V2, V4] are parallel. This yields the same contradiction as the corre-
sponding case given above.

4. s + l = p + q: Now we assume that the prism has two flat positions. Then a, b, c, d can
only form a deltoid, a parallelogram or an antiparallelogram. For these three cases we
show by the following short computation that the base remains planar during the flex if
and only if item 2, 3 or 4 of Lemma 3 holds.
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Figure 7: Special poses of the four-bar linkage (l = 5, s = 1, p = 2, q = 4)
where l and s are neighboring bars
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Figure 8: Special poses of the four-bar linkage (l = 5, s = 1, p = 2, q = 4)
where l and s are opposite bars

W.l.o.g. we can assume that the prism has z-parallel edges and that V1 coincides with the
origin. Then the remaining points have coordinates:

V2 =





d
0
h2



 , V4 =





d+ bcϕ2

bsϕ2

h4



 , V5 =





acϕ1

asϕ1

h5



 (12)

with a, b, c, d > 0. Therefore beside Eq. (7) the coplanarity condition det(V2, V3, V4) = 0
has to hold, which can be written under consideration of ti := tan(ϕi/2) for i = 1, 2 as
follows:

a[dh4 + h2(b− d)]t1t
2

2 + a[dh4 − h2(d+ b)]t1 + b(ah2 − dh5)t2 − b(ah2 + dh5)t
2

1t2 = 0. (13)

Moreover due to footnote 2 we can assume that t1 or t2 is not constant zero during the
flex. In the next step we compute the resultant R of Eq. (7) and Eq. (13) with respect to
t1.

• Deltoid: W.l.o.g. we can set a = d and b = c. Moreover we can assume c 6= d
because otherwise we get a rhombus which is discussed later on as a special case of the
parallelogram case. Now R can only vanish without contradiction for (h5 − h2)[q1(c−
d)t22 + q2(d+ c)] = 0 with

q1 = (h2 + h5)c+ (2h4 − h2 − h5)d, q2 = (h2 + h5)c− (2h4 − h2 − h5)d.

Therefore we have to distinguish two cases:

⋆ q1 = q2 = 0: This factors can only vanish without contradiction for h2 = −h5 and
h4 = 0 which already yields item 2 of Lemma 3.

⋆ h2 = h5: Now Eq. (7) and Eq. (13) have the common factor dt1 6= 0. Then
the resultant of the remaining factors with respect to t1 can only vanish without
contradiction (w.c.) for q1(c− d)t22 + q2(d+ c) = 0 with

q1 = h5c+ (h4 − h5)d, q2 = h5c− (h4 − h5)d.
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q1 = q2 = 0 implies h4 = h5 = 0, a contradiction.

• Parallelogram/antiparallelogram: Now we set a = b and c = d. Then R can only
vanish w.c. for (h5 − h4 + h2)[q̂1(b− d)t22 + q̂2(b+ d)] = 0 with

q̂1 = (h5 − h4 − h2)b+ (h2 − h4 − h5)d, q̂2 = (h5 − h4 − h2)b− (h2 − h4 − h5)d.

Therefore we have to distinguish three cases:

⋆ b = d and q̂2 = 0: This implies h2 = h5. Now Eq. (7) and Eq. (13) have the common
factor d2t1 6= 0. Then the resultant of the remaining factors with respect to t1 can
only vanish w.c. for h4 = 2h2. Then the common factor of Eq. (7) and Eq. (13)
yields t1 − t2 which implies a special solution of item 4 of Lemma 3.

⋆ q̂1 = q̂2 = 0: This two conditions already imply h4 = 0 and h2 = h5. As the common
factor of Eq. (7) and Eq. (13) equals t1(b+ d)− t2(b− d) this case yields item 3 of
Lemma 3.

⋆ h5 − h4 + h2 = 0: If this condition is fulfilled the common factor of Eq. (7) and Eq.
(13) equals t1 − t2 and therefore we get item 4 of Lemma 3.

Lemma 4. A planar four-bar mechanism with l + s ≥ p + q which is no parallelogram or
antiparallelogram always has a configuration with parallel arms if l is one of these arms.
Moreover such a four-bar mechanism has also a configuration where the coupler is parallel to
the base. These two configurations coincide (⇒ folded pose) if and only if the four-bar linkage
is a deltoid.

Proof: We use the notation of the four-bar mechanism from Fig. 5. Now there are the
following two possibilities such that the arms a, b are parallel:

1. They are located on the same side with respect to the base-line d. Therefore ϕ1 = ϕ2

holds and the corresponding equation of Eq. (7) reads as

(a− b− c+ d)(a− b+ c+ d)t21 + (a− b+ c− d)(a− b− c− d) = 0 (14)

As a consequence we get a real solution of the problem if

−(a− b− c+ d) (a− b+ c+ d)
︸ ︷︷ ︸

>0

(a− b+ c− d) (a− b− c− d)
︸ ︷︷ ︸

<0

≥ 0 (15)

holds.3 Therefore we get a solution in one of the following four cases:

(i) a+ d > b+ c and a+ c > b+ d, (iii) a+ d = b+ c, (16)

(ii) a+ d < b+ c and a+ c < b+ d, (iv) a+ c = b+ d. (17)

Now one of the cases (i) or (ii) is fulfilled if one of the arms a, b is the longest bar of the
mechanism. Clearly, we can also assume in the special cases (iii) and (iv) w.l.o.g. that
one of the arms a, b is the longest bar of the mechanism. This proves the first part of
the lemma.

3Note that (a− b+ c+ d)(a− b− c− d) = 0 would yield that the mechanism is rigid.
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2. They are not located on the same side with respect to the base-line d, hence ϕ1 = ϕ2+π.
Now the corresponding equation of Eq. (7) reads as:

(a+ b− c+ d)(a+ b+ c+ d)t21 + (a+ b− c− d)(a+ b+ c− d) = 0 (18)

Therefore we get a real solution of the problem if

− (a+ b− c+ d)
︸ ︷︷ ︸

>0

(a+ b+ c+ d)
︸ ︷︷ ︸

>0

(a+ b− c− d) (a+ b+ c− d)
︸ ︷︷ ︸

>0

≥ 0 (19)

holds. As a consequence we get a solution if a+ b ≤ c+ d holds. As due to case 1, one
of the arms is the longest bar, this is only possible for the special case a + b = c + d.
But on the other hand there exists a pose where the coupler and the base are parallel
for c+ d ≤ a+ b. Now this equation is always fulfilled which proves the second part of
the lemma.

If c + d = a + b and condition (iii) or (iv) are fulfilled we get a folded pose. It can easily be
seen that the solution of the linear system of equations is a deltoid.

4.3. Main theorem

In this section we give the complete classification of flexible octahedra with two opposite
vertices at infinity.

Theorem 6. In the projective extension of E3 any octahedron, where exactly two opposite
vertices (V3, V6) are ideal points, is flexible in one of the following cases:

(I) The remaining two pairs of opposite vertices (V1, V4) and (V2, V5) are symmetric with
respect to a common line as well as the edges of the prisms through V3 and V6, respec-
tively.

(II) (i) One pair of opposite vertices (V2, V5) is symmetric with respect to a plane which
contains the remaining pair of opposite vertices (V1, V4). Moreover also the edges
of the prisms through V3 and V6 are symmetric with respect to this plane.

(ii) The remaining 4 vertices V1, V2, V4, V5 are coplanar and form an antiparallelogram
and its plane of symmetry is parallel to the edges of the prisms through V3 and
V6, respectively.

(III) This type is characterized by the existence of two flat poses and consists of two prisms
where the orthogonal cross sections are congruent antiparallelograms. For the construc-
tion of these octahedra see Fig. 12.

(IV) The remaining 4 vertices V1, V2, V4, V5 are coplanar and form

(i) a deltoid and the edges of the prisms through V3 and V6 are orthogonal to the
deltoids line of symmetry,

(ii) a parallelogram.

Proof: For the notation used in this proof we refer to Fig. 9. Moreover the corresponding
prisms through the points V3 and V6 are denoted by Π3 and Π6, respectively. The faces
through the remaining vertices Vi in E

3 always form 4-sided pyramids Λi for i = 1, 2, 4, 5.
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Figure 9: Schematic sketch of the octahedron V1, . . . , V6
with dihedral angles ϕi, ψi, χi, κi, i = 1, 2, 3

We can stop the discussion of cases if the points V1, V2, V4, V5 are permanently coplanar
during the flex because then by Lemma 3 we can only get a solution of type (II,ii) and (IV)
or special cases of them. The following proof is split into three parts:

1st Part:
In this part we apply the conditions of case (d) of Theorem 1 over the octahedron in such a
way that the corresponding two cosine equalities hold if any of the 8 faces is considered as
central triangle. Up to the relabeling of vertices this yields the following case:

cϕ3 = cχ2, cϕ1 = cχ3, cκ3 = cψ3, cκ1 = cψ1. (20)

If additionally cχ2 = cκ3 holds we get a special case of item (A) of the 3rd part treated later.

Therefore we can assume w.l.o.g. that the orthogonal cross section of Π3 and Π6 are
deltoids (and not parallelograms or antiparallelograms). Moreover it can easily be seen that
a flat pose of Π3 or Π6 implies a flat pose of the whole octahedron. Therefore the spherical
image of Λ1,Λ2,Λ4,Λ5 are spherical deltoids or isograms.

1. If Λ1 or Λ4 are of isogram type then cχ3 = cκ1 holds, which already implies that the
orthogonal cross sections of Π3 and Π6 are similar deltoids. Now we distinguish two cases:

a. In the first case we assume that in both flat poses V3 6= V6 holds. Due to the similarity
the intersection points V1, V2, V4, V5 of corresponding prism edges are located on a line.
As two such flat poses exist the line can only be orthogonal to the edges of the prism.
Therefore V1, V2, V4, V5 are coplanar during the flex and we are done due to Lemma 3.

b. If in one of the flat poses V3 = V6 holds then the deltoids are congruent. As a
consequence there exists an Euclidean motion such that Π3 and Π6 coincides. Moreover
we can assume w.l.o.g. that this is a rotation about [V2, V5]. Due to the rotational
symmetry and the symmetry of the deltoid the line spanned by the intersection points
V1 and V4 of the other edges has to intersect the rotational axis [V2, V5] (see Fig. 10(a)).
Therefore V1, V2, V4, V5 are coplanar during the flex and we are done due to Lemma 3.

2. If Λ1 and Λ4 are of deltoid type then cψ2 = cκ2 and cχ1 = cϕ2 hold. We distinguish two
cases:
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a. If cψ2 = cϕ2 holds, then Λ2 and Λ5 are of isogram type. In the flat poses V2 = V5 holds
and we see that the corresponding faces of the pyramids Λ2 and Λ5 are congruent. This
already implies with cψ2 = cϕ2 that the orthogonal cross sections of Π3 and Π6 are
parallelograms/antiparallelograms which yields the contradiction.

b. In the other case Λ2 and Λ5 are of deltoid type. This already implies that in the
flat poses V3 = V6 holds. Therefore the orthogonal cross sections of Π3 and Π6 are
congruent deltoids (⇒ cχ3 = cκ1). This yields a contradiction as Λ1 and Λ4 are of
isogram type.

V 1

1

V 2
1

V3

V 2
4

V 1

4

V6

V2
V5

V6

V2

V3 V5

V1

V4

Figure 10: (a) Rotation of Π3 about the projecting line [V2, V5]. The connecting
lines [V 1

1 , V
1
4 ] or [V

2
1 , V

2
4 ] of possible intersection points intersect [V2, V5].

(b) Flat pose of the octahedron where Λ1 and Λ4 are congruent.

2nd Part:
As for the one case of item (c) of Theorem 1 the four points ∈ E3 are already coplanar during
the flex, we are done due to Lemma 3.

Therefore we apply the conditions of the other case of item (c) of Theorem 1 over the
octahedron in such a way that the corresponding two cosine equalities hold if any of the 8
faces is considered as central triangle. Up to the relabeling of vertices this yields the following
case:

cϕ2 = cψ2, cϕ1 = cχ3, cκ2 = cχ1, cκ1 = cψ1. (21)

Moreover as the cosines of the dihedral angles through V1 and V4 are pairwise the same we can
apply Kokotsakis’ theorem (Satz über zwei Vierkante) given in [14, §12] which implies that
the pyramids Λ1 and Λ4 are congruent. Now we have to distinguish two cases because they
can be congruent with respect to an orientation preserving or a non-orientation preserving
isometry:
1. Orientation preserving isometry: As [V1, V6] ‖ [V4, V6] and [V1, V3] ‖ [V4, V3] has to hold

the rigid body motion can only be a composition of a half-turn about a line l orthogonal
to the plane [X, V3, V6] plus a translation along the axis, where X stands for any point
of E3. Moreover l has to be located within the plane [V1, V2, V5] because otherwise there
does not exist a translation such that the remaining pairs of corresponding edges intersect
in V2 and V5, respectively. This already yields that V1, V2, V4, V5 are coplanar during the
flex and we are done due to Lemma 3.

2. Non-orientation preserving isometry: Here we are left with three possibilities:

a. The Euclidean motion is a composition of a reflection in ε := [X, V3, V6] and a trans-
lation parallel to this plane. If [V1, V2, V5] is orthogonal to ε then V1, V2, V4, V5 are
coplanar during the flex and we are done due to Lemma 3.
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In any other case the translation vector has to be the zero vector (⇒ V2 and V5
are located on ε) such that the other corresponding edges intersect in V2 and V5,
respectively. As the orthogonal cross section of Π3 is at least a deltoid, the flat poses
of this prism imply flat poses of the whole structure as all vertices are located on ε.
Therefore the spherical images of Λ1 and Λ4 have to be spherical deltoids:

i. Under cψ2 = cκ2 the flat poses immediately imply that V1, V2, V4, V5 have to be
coplanar during the flex and we are done due to Lemma 3.

ii. For the other possibility cχ3 = cκ1 the points V3 and V6 coincide in the flat poses
and therefore the deltoidal cross sections of Π3 and Π6 are congruent. This case
was already discussed in item (1b) of the 1st part.

b. The Euclidean motion is a composition of a reflection in ε := [X, V3, V6] and a half-
turn about a line l orthogonal to ε. Applying such a transformation all pairs of
corresponding edges of the pyramids are parallel. Therefore V2 and V5 are also ideal
points which contradicts our assumptions.4

c. Under the assumption that <) V3XV6 is constant π/2 during the flex the Euclidean
motion could also be composed of a reflection in one of the planes ε1 := [l, V3] or
ε2 := [l, V6] plus a translation parallel to it. This case cannot yield a solution as any
octahedron with <) V3XV6 = const. 6= 0 has to be rigid. The proof is left to the reader.

Kokotsakis’ theorem cannot be applied if the spherical images of Λ1 and Λ4 are isograms. In
this case (cψ2 = cκ2, cχ3 = cκ1) such an octahedron already has two flat poses. Now the
orthogonal cross sections of Π3 and Π6 are deltoids, parallelograms or antiparallelograms and
the spherical images of Λ2 and Λ5 are spherical isograms or spherical deltoids. As not both
spherical images of Λ2 and Λ5 can be isograms (otherwise we get item (B) of the 3rd part)
we can assume w.l.o.g. that Λ2 has a deltoidal spherical image.
1. If at least one further structure of Π3 and Π6 is of deltoid type then V1 has to coincide

with V4 in the flat pose (see Fig. 10(b)). This already shows that also in this case Λ1 and
Λ4 are congruent and therefore we can apply the same argumentation as given above.

2. If the orthogonal cross sections of Π3 and Π6 are parallelograms or antiparallelograms
then we can only get a special case of item (A) of the following 3rd part.

3rd Part:
We are left with the possibilities given in item (a) and (b) of Theorem 1. W.l.o.g. we take
V1, V2, V3 as representative triangle. Then the motion transmission from Σ3 to Σ2 via V3 and
V1 is reducible if

• the orthogonal cross section of Π3 is a parallelogram or an antiparallelogram,

• the spherical image of Λ1 is an isogram,

• case (b) holds.

Analogous possibilities hold for the motion transmission from Σ1 to Σ2 via V3 and V2. Now
combinatorial aspects show that one of the following cases has to hold:

A. the orthogonal cross section of Π3 is a parallelogram or an antiparallelogram,

B. the spherical image of Λ1 and Λ2 are isograms,

C. both motion transmissions are reducible due to case (b),

4We get a special case of a flexible octahedron of Theorem 5.
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D. the motion transmission from Σ1 to Σ2 (or Σ3 to Σ2) is reducible due to case (b) and the
spherical image of Λ1 (or Λ2) is an isogram.5

Therefore the remaining flexible octahedra with opposite vertices on the plane at infinity can
only belong to one of these four cases. As a consequence the reducible composition implied
by these flexible octahedra has to be of the same type independent of the choice of the central
triangle. This yields the following conditions:

ad A. cϕ1 = cχ3, cϕ3 = cψ3, cψ1 = cκ1, cχ2 = cκ3.

ad B. cϕ1 = cψ1, cϕ3 = cχ2, cκ1 = cχ3, cκ3 = cψ3, cϕ2 = cψ2 = cκ2 = cχ1.

ad C. cϕ1 = cκ1, cϕ3 = cκ3, cψ3 = cχ2, cχ3 = cψ1.

ad D. cϕ1 = cψ1, cϕ3 = cκ3, cψ3 = cχ2, cχ3 = cκ1, cκ2 = cψ2, cχ1 = cϕ2.

In the following these four cases are discussed in detail:

ad (C) If the orthogonal cross sections of Π3 and Π6 are parallelograms or antiparallelograms
then we get a special case of item (A). Therefore we can assume that this is not the case.

This assumption together with the property that the cosines of the dihedral angles of
Π3 and Π6 are equal, already imply that these prisms are related by an Euclidean similarity
transform. Now we consider the orthogonal cross section (four-bar mechanism a, b, c, d) of
one of these prisms:

1. l + s < p + q: If we choose s as base then Grashof’s theorem is fulfilled and we get a
double-crank mechanism. Such a mechanism has two poses where the coupler is parallel
to the base.

a. If in one of these two poses the parallel planes of both prisms do not coincide or if
V3 = V6 holds then the condition that the corresponding edges of the prisms intersect
each other in this pose, already yields that the coupler and the base must have the
same length. But this already contradicts l + s < p+ q.

b. If in one of the two flat poses the parallel planes of both prisms coincide (but V3 6=
V6), then this already implies that V1, V2, V4, V5, V3 and V4, V5, V1, V2, V6 are congruent.
Moreover it can be seen from this pose that the pyramids Λ1 and Λ4 are congruent with
respect to an orientation preserving isometry. Due to cχ3 = cψ1 and cκ1 = cϕ1 this
property has to hold during the whole flex.6 As the corresponding rigid body motion
also has to interchange the ideal points V3 and V6 we are left with two possibilities:

i. The rigid body motion is a composition of a half-turn about one of the two
bisectors of <) V3XV6 plus a translation along this axis. If the axis is located
within the plane [V1, V2, V5] the points V1, V2, V4, V5 are coplanar during the flex
and we are done due to Lemma 3. In any other case the translation vector has
to be the zero vector such that the other corresponding edges intersect in V2 and
V5, respectively. This yields solution (I).

ii. The angle <) V3XV6 is constant π/2 during the flex. Then a 90◦-rotation about
a line orthogonal to [X, V3, V6] plus a translation along the axis yields a further
possibility. This case cannot yield a solution for the same reason as case (2c) of
the 2nd part.

5Note that we get the case in the parentheses from the other one just by a relabeling.
6The same holds for the pyramids Λ2 and Λ5.
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2. l+s ≥ p+q: Now there exist the two special poses of Lemma 4. Analogous considerations
as in the case l + s < p+ q yield one of the following cases:

a. a = b, c = d: Now the four-bar mechanism a, b, c, d is a parallelogram or an antipar-
allelogram. We get a special case of item (A).

b. We get the above discussed item (1b) and therefore solution (I).

c. The orthogonal cross sections of Π3 and Π6 are similar deltoids. This can only yield
a case discussed in item (1) of the 1st part.

ad (D) If the spherical images of Λ2 and Λ5 are isograms we get item (B). Therefore we can
assume w.l.o.g. that this is not the case and we can apply Kokotsakis’ theorem which yields
that Λ2 and Λ5 are congruent. Again we have to distinguish two cases:

1. Non-orientation preserving isometry: We can transform the two pyramids into each other
by a reflection in one of the bisecting planes εi (i = 1, 2) of <) V3XV6 plus a translation
parallel to εi.

7

If [V2, V1, V4] is orthogonal to εi then V1, V2, V4, V5 are coplanar during the flex (cf.
Lemma 3).
In any other case the translation vector has to be the zero vector (⇒ V1 and V4 are located
on εi) such that the other corresponding edges intersect in V1 and V4. We get solution
(II,i).

2. Orientation preserving isometry: As the corresponding rigid body motion also has to
interchange the ideal points V3 and V6 we are left with two possibilities:

a. The rigid body motion is a composition of a half-turn about one of the two bisectors
of <) V3XV6 plus a translation along this rotary axis. In order to guarantee that the
remaining vertices V2 and V5 exist, the corresponding edges have to intersect the axis
of rotation. This already shows that all vertices of E3 are coplanar during the flex (cf.
Lemma 3).

b. The angle <) V3XV6 is constant π/2 during the flex. Then the 90◦-rotation about a
line l orthogonal to [X, V3, V6] plus a translation along l yields a further possibility.
This case cannot yield a solution for the same reason as case (2c) of the 2nd part.

ad (B) In this case the spherical images of the faces through each vertex ∈ E3 constitute
an isogram. Now the conditions cϕ2 = cψ2 = cκ2 = cχ1 yield for ϕ2 equal 0 or π that the
octahedron has two flat poses. Therefore the orthogonal cross section of the prisms Π3 and
Π6 can only be a deltoid, a parallelogram or an antiparallelogram.

It can easily be seen that the deltoid case does not fit with both folded positions of the
spherical focal mechanism composed of two spherical isograms. Therefore Π3 and Π6 have to
be of parallelogram type or antiparallelogram type.

Note that opposite edges of a pyramid with an isogram as spherical image are symmetric
with respect to a common line in a flat pose. The same holds for the flat pose of a prisms with
a parallelogram or antiparallelogram as orthogonal cross section. Beside the scaling factor
these two properties already determine the octahedron in the flat pose up to 3 parameters,
namely the angles ζ, η, ν (see Fig. 11). Now this structure is flexible if we flex one of the
prisms out of the flat pose in such a way that the orthogonal cross section is a parallelogram
because then we get a special case of type (IV,ii).

7The only possible rotation is a half-turn about a line orthogonal to [X,V3, V6]. But this rotation is only
the transition between the two possible reflections.
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Figure 11: Illustration of the 3 free design parameters ζ, η, ν beside the scaling factor

In the other case (antiparallelogram) the octahedron is not even infinitesimally flexible.
According to Kokotsakis (cf. [14, §3 and §13]) this condition is fulfilled if the bisectors σi
i = 1, 2, 3 have a point in common.8 It can easily be seen (cf. Fig. 11) that this is the case
if ν is zero. This already implies the construction of type (III) octahedra which equals the
construction of Bricard’s type 3 octahedra with two opposite vertices at infinity (see Fig. 12).

Remark 3. Note that in each flat pose of a type-(III)-octahedron flex a bifurcation is possible
into a type-(IV,ii)-octahedron flex.

ad (A) In the first case we assume that the orthogonal cross section of Π3 is a parallelogram.
Then we consider one of the two possible configurations where Π6 is in a flat pose. In this
pose it can immediately be seen that V1, V2, V4, V5 is a parallelogram.9 Then the flex of Π3

already implies type (IV,ii).

Therefore we can assume for the last case that the orthogonal cross section of both prisms
are antiparallelograms. We have to distinguish two cases:

1. In both flat poses of Π3, Π6 is also flat and has the same carrier plane ε as the folded prism
Π3. Therefore this is an octahedron with two flat poses. As a consequence the spherical
images of the pyramids Λ1,Λ2,Λ4,Λ5 can only be spherical isograms or spherical deltoids.

Assume the triangle V1, V2, V3 as central triangle. If Λ1 is of isogram type then we have a
focal mechanism composed of Λ1 and Π3 as Eq. (5) holds.10 Moreover, this is a reducible
composition with a spherical coupler component. The corresponding spherical coupler can
only be of isogram type because the deltoid case does not fit with both folded positions
of the focal mechanism.

As a consequence of this consideration all pyramids Λ1,Λ2,Λ4,Λ5 are either isograms
(which yields case (B)) or they are all of deltoid type. For the latter case we have to
distinguish two principal cases:

a. cκ2 = cχ1 = cϕ2 = cψ2: In this case the points V1, V2, V4, V5 have to be collinear in
both flat poses which already yield that these points are coplanar during the flex.

8The σi’s are the limit of the intersection of two opposite faces of the respective pyramids and prism,
respectively.

9This parallelogram can even degenerate into a folded one.
10The orthogonal cross section of Π3 (an antiparallelogram) cannot have the additional property of a deltoid

as then we get a flipped over rhombus which contradicts footnote 1.
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Figure 12: Construction of flexible octahedra of type (III): In the above given con-
struction four flexible octahedra V i

1 , . . . , V
i
6 (i = 1, 2, 3, 4) are hidden, where those

with indices i = 1, 2 are of type (III): The sides of the three quadrangles spanned by
two pairs of opposite vertices touch three concentric circles (which cannot degener-
ate into the midpoint).
The octahedra with indices i = 3, 4 cannot be of type (III) because in the second flat
pose the points V i

1 , V
i
2 , V

i
4 , V

i
5 also have to form a rhombus. This is only possible if

the orthogonal cross sections of Π3 and Π6 are flipped-over rhombi which contradicts
footnote 1. Therefore the octahedra i = 3, 4 can only have a trivial flex (the relative
motion of Π3 and Π6 is a rotation with axis [V i

1 , V
i
2 , V

i
4 , V

i
5 ]; cf. footnote 1) beside

the flexibility of type (IV,ii).

b. cχ3 = cκ1, cψ2 = cϕ2, cχ1 = cκ2: This case can only yield special cases of the 2nd
part as Eq. (21) holds under consideration of cϕ1 = cχ3, cϕ3 = cψ3, cχ2 = cκ3, and
cψ1 = cκ1.

11

2. Assuming there exists a flat pose of Π3 while Π6 is not in a flat pose sharing the same
carrier plane ε of the folded Π3. Then we can reflect Π6 on ε and we get Π′

6 with the
ideal point V ′

6 . If Π6 = Π′

6 holds then this already implies that the points V1, V2, V4, V5 are
coplanar during the flex.

Therefore we can assume w.l.o.g. Π6 6= Π′

6. If V1, . . . , V6 is a flexible octahedron then also
the octahedron V1, V2, V4, V5, V6, V

′

6 has to be flexible due to the symmetry. For the same
reason the pyramids Λ1,Λ2,Λ4,Λ5 of the octahedron V1, V2, V4, V5, V6, V

′

6 are of deltoid
type, which already implies that the points V1, V2, V4, V5 are coplanar during the flex.

This finishes the proof of the necessity of the conditions given in Theorem 6.

The sufficiency for the flexibility of both types of item (IV) as well as of type (II,ii)
follows directly from Lemma 3. As the types (I), (II) and (III) can be constructed from the
corresponding types of Bricard flexible octahedra by a limiting process, the sufficiency for
these types follows immediately from the flexibility of Bricard’s octahedra. This finishes the
proof of Theorem 6.

11The remaining possibility cχ2 = cϕ3, cψ2 = cκ2, cχ1 = cϕ2 can be done analogously because it can be
obtained from this case by an appropriate relabeling.
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5. Conclusion and future research

In this paper we completed the classification of flexible octahedra in the projective extension
of the Euclidean 3-space. If all vertices are finite we get the well known Bricard flexible
octahedra. There exist flexible octahedra of type 1 (cf. [18, Theorem 2]) and type 3 (cf. [18,
Theorem 4]) with one vertex at infinity. Moreover there do not exist further flexible octahedra
with one vertex in the plane at infinity (cf. [18, Theorem 3]).

All flexible octahedra with at least three vertices at infinity are trivially flexible and listed
in Theorem 5 (see also Theorem 3).

Finally we presented in Theorem 6 all types of flexible octahedra with two vertices at
infinity (see also Theorem 4). The types (I), (II) and (III) of this theorem can be generated
from the corresponding Bricard octahedra by a limiting process. The remaining octahedra of
type (IV) do not have a flexible analogue in E3; they are flexible without self-intersection.

For a practical application one can think of an open serial chain composed of prisms
Π0, . . .Πn where each pair of neighboring prisms Πi,Πi+1 (i = 0, . . . , n − 1) forms a flexible
octahedron of Theorem 6. Note that such a structure admits a constrained motion. More-
over, if we additionally assume that Π0 = Πn holds, we get a closed serial chain which is in
general rigid. It would be interesting under which geometric conditions such structures are
still flexible. Clearly, some aspects of this question are connected with the problem of nR
overconstrained linkages (e.g. the spatial 4R overconstrained linkage is the Bennett mecha-
nism). Finally, it should be noted that the Renault style polyhedron presented by I. Pak [19]
can be seen as a trivial example for the case n = 4.
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