
Journal for Geometry and Graphics
Volume 14 (2010), No. 2, 171–180.

Discrete Gliding Along Principal Curves∗

Hans-Peter Schröcker
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Abstract. We consider n-dimensional discrete motions such that any two neigh-
bouring positions correspond in a pure rotation (“rotating motions”). In the Study
quadric model of Euclidean displacements these motions correspond to quadrilat-
eral nets with edges contained in the Study quadric (“rotation nets”). The main
focus of our investigation lies on the relation between rotation nets and discrete
principal contact element nets. We show that every principal contact element net
occurs in infinitely many ways as trajectory of a discrete rotating motion (a dis-
crete gliding motion on the underlying surface). Moreover, we construct discrete
rotating motions with two non-parallel principal contact element net trajectories.
Rotation nets with this property can be consistently extended to higher dimen-
sions.
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1. Introduction

Discrete differential geometry is an active field of geometrical research. Its aim is the devel-
opment of discrete notions for well-known concepts from differential geometry. The resulting
theories are often more elementary and concrete when compared to their smooth counter-
parts. While classic differential geometry is largely based on analysis, elementary geometric
incidence or closure theorems are at the core of discrete differential geometry. It is a discipline
that naturally lends itself to applications that require numeric simulation, visualization, or
the building of real world objects. An excellent introduction to the current state of research
is the monograph [3].

In this article we relate recent progress in the theory of discrete curvature line parametriza-
tions to spatial kinematics in R

3. We study discrete nets of proper (orientation-preserving)
Euclidean displacements such that neighbouring positions correspond in a relative rotation
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Figure 1: Elementary quadrilateral in a principal contact element net:
Points on a circle (left), planes tangent to a cone of revolution (middle),

normal lines on a hyperboloid of revolution (right)

(“discrete rotating motions”). Smooth motions with this property naturally arise as glid-
ing motions along principally parametrized surfaces. Their discrete counterparts, rotating
motions with discrete curvature line trajectories, are the main topic of this article.

In Section 2 we recall the notion of principal contact element nets— families of contact
elements (point plus oriented tangent plane), indexed by Z

n, such that neighbouring contact
elements have a common tangent sphere. Principal contact element nets have been intro-
duced in [2] as a comprehensive concept that captures different notions of discrete principal
parametrizations (circular nets and conical nets, see [3, Section 3.1] and [8]). Indeed, the
points of a principal contact element net form a circular net (the elementary quadrilaterals
are circular; Fig. 1, left), while its planes form a conical net (four planes meeting in a vertex
are tangent to a cone of revolution; Fig. 1, center).

A concise formulation of all calculations and formulas in this article is possible within the
dual quaternion calculus of spatial kinematics (Section 2.2). In Section 2.3 we recall funda-
mental results on “rotation quadrilaterals” [10], the elementary building blocks of rotation
nets.

The major contributions of this article are presented in Section 3. Just as a smooth
surface gives rise to many gliding motions, parametrized by principal lines and the rotation
angle about surface normals, a principal contact element net occurs in many ways as trajectory
of a discrete rotating motion. The main result is a proof of the multidimensional consistency
of discrete rotating motions with two independent principal contact element trajectories. The
two trajectory surface are related by discrete version of the classic Bäcklund transform for
pseudospherical surfaces.

2. Preliminaries

2.1. Curvature line discretizations

A parametrization of a smooth surface in R
3 is called a curvature line parametrization or prin-

cipal parametrization if infinitesimally neighbouring surface normals along both families of pa-
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rameter lines intersect. Generically, this parametrization is unique (up to re-parametrization
of the individual parameter lines). The property of concurrent neighbouring normals is pre-
served in its usual discretizations. The most prominent example of discrete curvature lines are
circular nets—quadrilateral nets such that any elementary quadrilateral has a circumcircle,
see for example [3, Section 3.1]. An alternative discretization are conical nets—quadrilateral
nets such that the planes meeting in a vertex are tangent to a cone of revolution [8]. Neigh-
boring circle axis and neighbouring cone axis in circular and conical nets intersect and can
serve as discrete surface normals. In [2] principal contact element nets were introduced as a
generalization of both, circular and conical nets.

Definition 1. An oriented contact element is a pair (p, ν) consisting of a point p and an
oriented plane ν incident with p. The oriented line N orthogonal to ν and incident with p is
called the axis or normal of the contact element, p is its vertex and ν its tangent plane.

Contact element nets are quadrilateral nets of oriented contact elements, that is, they are
maps from Z

n to the space of oriented contact elements. The image of i ∈ Z
n is denoted by

(pi, νi). In Definition 2 below we adopt the notation of [3] where τi indicates a shift of indices
in the i-th coordinate direction. For example τ1p120 = p220, τ2p120 = p130, etc.

Definition 2. A contact element net is a map i 7→ (pi, νi) from Z
n to the space of oriented

contact elements. A principal contact element net (Fig. 1) is a contact element net such
that any two neighbouring contact elements (pi, νi), τi(pi, νi) have a common oriented tangent
sphere.

In other words, neighbouring normals Ni and τiNi in a principal contact element net
intersect in a point zi

i
= Ni ∩ τiNi which is at the same oriented distance from pi and τipi.

The points pi in a principal contact element net constitute the vertices of a circular net,
the oriented planes νi are the face planes of a conical net. The contact element axes Ni

form a discrete line congruence [3, Section 2.2] such that any elementary quadrilateral lies
on a hyperboloid of revolution (Fig. 1, right). Discrete line congruences of this type have
interesting properties but have not yet been discussed in literature.

In this article we consider a kinematic generation of principal contact element nets in R
3.

A concise analytic description can be obtained by means of the dual quaternion calculus of
spatial kinematics which shall be introduced now.

2.2. Kinematics and dual quaternions

Quaternions and dual quaternions are important tools in theoretical and applied kinematics,
see for example the description in [5], [6, Section 4.5] or [11, Chapter 9]. In our study they
turn out to be a versatile tool as well. Equations in dual quaternion form are concise, of
low degree, accessible to geometric interpretations and free of the need of case distinctions.
We assume that the reader is familiar with quaternion algebra (see for example [5] or [6,
Chapter 4]) and describe only the extension to dual quaternions and its application to spatial
kinematics.

A dual quaternion is an object of the form a = ã + εâ where primal part ã and scalar
part â are ordinary quaternions and ε is the dual unit satisfying ε2 = 0. The addition of
dual quaternions is performed component-wise for primal and dual parts. The dual quater-
nion multiplication ⋆ extends the multiplication of ordinary quaternions. It is associative,
distributive and the quaternion units 1, i, j, k commute with ε. These properties define the
dual quaternion multiplication uniquely.
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A dual quaternion a = ã + εâ can be identified with a vector a = (ã, â) = (a0, . . . , a7) in
R

8. Vector part and dual part of a are

V a = (0, a1, a2, a3, 0, a5, a6, a7) = V ã + εV â,

S a = (a0, 0, 0, 0, a4, 0, 0, 0) = S ã+ ε S â.
(1)

A normalized dual quaternion a = ã+ εâ satisfies two conditions:

‖ã‖2 = a20 + a21 + a22 + a23 = 1 and 〈a, a〉 = 0 (2)

where

〈a, b〉 :=
3∑

i=0

(aibi+4 + ai+4bi). (3)

The second equation in (2) is the well-known Study condition.
Plücker coordinate vectors P = (p0, . . . , p5) for straight lines (see for example [7, Chap-

ter 2]) can be embedded in the space of dual quaternions as

P →֒ (0, p0, p1, p2, 0, p3, p4, p5). (4)

In this case the Study condition (2) reduces to the Plücker condition such that normalized
Plücker coordinates (characterized by p20 + p21 + p22 = 1) become normalized dual quaternions
of vanishing scalar part. In this article we do not distinguish between a straight line and its
Plücker coordinates, embedded in the space of dual quaternions.

Normalized dual quaternions with non-vanishing primal part constitute a two-fold cov-
ering of the group of proper Euclidean displacements. The action of a normalized dual
quaternion a on a point with coordinate vector (x1, x2, x3) and a line P (both in the moving
space) is given by

1 + εx′ = aε ⋆ (1 + εx) ⋆ a−1, P ′ = aε ⋆ P ⋆ a−1
ε , (5)

where x = (0, x1, x2, x3) is a vector valued ordinary quaternion, aε := ã− εâ, and the prime
indicates coordinates in the fixed space. The inverse displacement is described by the inverse
dual quaternion a−1 defined by the equation a ⋆ a−1 = 1. It is uniquely defined for all dual
quaternions with non-vanishing primal part.

Since a and −a describe the same displacement, it is natural to identify proportional dual-
quaternions, thus arriving at Study’s kinematic mapping which associates proper Euclidean
displacements with points of the Study quadric

S : 〈x, x〉 = 0. (6)

The Study quadric is a hyperquadric in the seven-dimensional projective space P 7 over R
8.

Only points of an exceptional three-space E with equation x̃ = (0, 0, 0, 0) do not occur as
images of proper Euclidean displacements. We always identify Euclidean displacements with
homogeneous coordinate vectors that describe points on the Study quadric (minus E).

2.3. Rotation quadrilaterals

In Section 3 we will consider special quadrilateral nets in the Study quadric. The geometry
of an elementary quadrilateral

[ai, τiai, τjai, τiτjai] = [a0, a1, a2, a3] (7)

of a net of this type is discussed in this section. It follows the presentation of [10].
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Definition 3. A quadrilateral [a0, a1, a2, a3] on the Study quadric is called a rotation quadri-
lateral if its vertices and edges are contained in the Study quadric S in P 7.

The name “rotation quadrilateral” is justified by the observation that the edge through
ai and ai+1 is contained in S if and only if the relative displacement ri,i+1 := ai+1 ⋆ a

−1
i is a

pure rotation (indices modulo four; see [12, Satz 19] or [5]). (We will frequently use results
and formulas of [12] but, occasionally, adapt them to match our convention of quaternion
multiplication which is slightly different from that used in [12].) The algebraic characterization
of relative rotations is

π5(ri,i+1) = π5(ai+1 ⋆ a
−1
i ) = 0 (8)

where π5(x) is the projection onto the fifth coordinate (the dual scalar part) of a dual quater-
nion [12, Satz 13]. We denote the relative revolute axis of ri,i+1 in the moving space by Ri,i+1.

The main result of [10] characterizes contact elements whose homologous images form an
elementary quadrilateral in a principal contact element net.

Proposition 4 ([10]). The only contact elements in the moving space whose homologous
images with respect to a generic rotation quadrilateral form a non-degenerate elementary
quadrilateral of a principal contact element net are those whose axes are transversal to the
four relative revolute axes R01, R12, R23, and R30.

Further elementary quadrilaterals of principal contact element nets have the normal Ri,i+1.
Since their ai and ai+1 images are identical, these quadrilaterals are degenerate. For a generic
rotation quadrilateral there exist two (possibly complex or coinciding) transversals M and N
of the four relative revolute axis. An important property of rotation quadrilaterals is stated
in the following completion theorem:

Theorem 5. Consider two skew lines M , N in the moving space and two displacements a0, a2
of a rotation quadrilateral. Generically, there exist two positions a1, a3 (possibly complex) such
that [a0, a1, a2, a3] is a rotation quadrilateral with relative revolute axes Ri,i+1 that intersect
M and N .

Proof: We consider a (yet undetermined) position x such that the relative displacements
x ⋆ a−1

0 , x ⋆ a−1
2 are rotations whose axes X0, X2 intersects M and N . It turns out that this

problem amounts to solving a quadratic equation from which the Theorem’s claim follows.
The Plücker line coordinate vector of the relative rotation axis X ′

i in the fixed space is

X ′

i = V(xi)ε (9)

(adapted from [12, Satz 13]). According to (5), the Plücker coordinate vector of the relative
revolute axis Xi in the moving space is

Xi = (ai)
−1
ε ⋆ X ′

i ⋆ (ai)ε. (10)

Hence, the sought position x has to satisfy the six linear equations

〈(ai)ε ⋆ V(x ⋆ a−1
i )ε ⋆ (ai)

−1
ε , T 〉 = 0, π5(x ⋆ a−1

i ) = 0 (11)

with i ∈ {0, 2} and T ∈ {M,N}, and the quadratic equation 〈x, x〉 = 0. The solutions are
the intersection points of a straight line with the Study quadric (6).

We will actually need the result of Theorem 5 in the following form:
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Corollary 6. It is possible to complete a rotation quadrilateral whose relative revolute axes
intersect two skew lines M , N in the moving space from three admissible input positions a0,
a1, a2. The input data is admissible if the two relative displacements a1 ⋆ a

−1
0 and a2 ⋆ a

−1
1 are

rotations whose axes intersect M and N . In this case, the missing position a3 is unique and
real (if the input positions are real).

3. Discrete rotating motions

Now we are ready to introduce the central concept of this article:

Definition 7. A rotation net (or a discrete rotating motion) is a quadrilateral net whose
vertices and edges are contained in the Study quadric S in .

The elementary quadrilaterals of rotation nets are rotation quadrilaterals. Rotation nets
of dimension two discretize two-parameter motions x(t1, t2) with parameter lines ti = const.
whose instantaneous screws have vanishing pitch, that is, they are actually rotations. The
geometric interpretation in terms of the Study quadric is that not only the point x(t1, t2)
but also the tangents to the parameter lines are contained in the Study quadric. We call
parametrized motions of this type rotating as well. The extension of this concept to more-
dimensional motions is obvious.

Important examples of two-dimensional rotating motions are obtained from a princi-
pal parametrization f(t1, t2) of a surface Φ ⊂ R

3. The Darboux frame associated with this
parametrization is the trihedron with base f and legs u1, u2, and n where

ui =
∂f/∂ti

‖∂f/∂ti‖
, n = u1 × u2. (12)

The Darboux frame is orthonormal. As t1 and t2 vary in their respective domains, it moves
along the surface Φ. The thus defined motion x(t1, t2) is rotating and we may call it the
Darboux motion of the principal parametrization. If we add the rotation angle w about the
surface normal n(t1, t2) as a third parameter the motion x(t1, t2, w) is still rotating (see [7,
Section 7.1.5], in particular Remark 7.1.16). It is called a gliding motion along Φ. Similar
results hold true for more-parameter motions. These observations motivate our study of the
relation between discrete rotating motions and discrete principal curvature parametrizations.

3.1. Principal contact element nets and rotating motions

We are going to discuss possibilities for generating a principal contact element net (pi, νi) as
trajectory of a discrete rotating motion. Any two neighbouring contact elements (pi, νi) and
τi(pi, νi) have a plane of symmetry βi

i
and, starting from one contact element, the complete

net can be generated by successive reflections in the planes βi
i
. The sequence of reflections

between two contact elements is not unique but never leads to contradictions.
Sometimes (as for example in [4]) it is useful to assign an orthonormal frame (Xi, Yi, Zi) to

every element of a principal contact element net such that the origin coincides with pi, Zi is the
normal line and the Xi- and Yi-axes correspond in the reflections at the planes βi

i
. The thus

obtained discrete line congruences Xi and Yi can be regarded as discretizations of one family
of principal curvature lines. It is obvious that by a simple change of orientation of certain Xi-
and Yi-axes the reflection at βi

i
can be replaced by a rotation about an axis perpendicular to

Ni and τiNi and incident with zi
i
= Ni ∩ τiNi ∈ βi

i
. The thus obtained rotation net can be
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considered as discretization of a Darboux motion. If we perturb every frame by a rotation
through a certain angle about its Zi-axis, neighbouring frames still correspond in a rotation
about an axis through zi

i
and in βi

i
. This rotation net can be considered as a n-dimensional

discrete gliding motion along a principal parametrization.
These considerations show that every principal contact element net occurs in multiple ways

as trajectory of a rotation net —just as any principal parametrization gives rise to infinitely
many gliding motions. The rotation angle about the Zi-axis gives one degree of freedom per
vertex.

3.2. Pairs of principal contact element nets

By Proposition 4, rotation nets with principal contact element nets as trajectories are char-
acterized by the fact that all relative rotation axis in the moving space intersect a fixed line
N whose images constitute the set of contact element normals. Clearly, every point p ∈ N
and the plane ν through p and orthogonal to N define a contact element (p, ν) whose trajec-
tory is a principal contact element as well. In other words, principal contact element nets as
trajectories of discrete rotating motions come in one-parameter families of parallel nets.

Calling two principal contact element nets independent if there exists a pair of contact
elements with the same index i ∈ Z

n but different normals, we aim at a kinematic generation
of independent principal contact element nets as trajectories of rotation nets. In view of
Proposition 4 we can hope at most for two independent trajectories. The characteristic
property is that all relative rotation axes in the moving space intersect two fixed lines M
and N . We will show that such rotation nets exist for arbitrary dimension of the underlying
motion. This result is rather surprising since a naive counting of free parameters suggest only
existence of 2-dimensional motions with this property.

Theorem 8. A discrete n-dimensional rotating motion with two independent principal contact
element nets as trajectories is uniquely defined by two skew axes M , N of the contact elements
in the moving space and the values along the coordinate axes in Z

n.

For n = 2 this result follows directly from Corollary 6. Starting with a00, a10, and a01,
the position a11 is uniquely defined. From a10, a20, and a11 we can construct a21, and so on.
Two independent principal contact element net trajectories of a discrete rotating motion of

Figure 2: Two independent principal contact
element net trajectories of a rotating motion

p0

p1

p2

p3

q0

q1
q2

q3

Figure 3: The figures formed by
corresponding contact elements

are congruent
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dimension n = 2 are depicted in Fig. 2. The figures formed by corresponding points and face
normals are congruent. Neighbouring figures correspond in a pure rotation (Fig. 3).

In case of n ≥ 3 it is not immediately clear that this inductive construction works. We
describe the situation only for n = 3; the problems in higher dimensions are similar. Consider
the elementary cube aijk with i, j, k ∈ {0, 1} (Fig. 4). The input data consists of a000, a100,
a010, and a001. According to Corollary 6, it defines a110, a101, and a011. Now there are three
possibilities to construct the missing vertex a111, from the three positions a100, a110, a101, from
the three positions a010, a110, a011, or from the three positions a001, a101, a011. We have to
show that all thus constructed positions are actually identical. In the terminology of [3] this is
called 3D-consistency of rotation nets with two independent principal curvature trajectories.
In Theorem 9, below, we will show that these nets are actually nD-consistent. This is a
fundamental property in the discretization of differential geometric concepts and immediately
implies Theorem 8.

Theorem 9. Generic discrete rotation nets with two independent curvature line trajectories
are nD-consistent.

Proof: We have to show that a generic n-dimensional cube can be constructed from one
vertex a(0,...,0) and n-adjacent vertices τia(0,...,0), i ∈ {1, . . . , n}. Using the notation of the last
paragraph before the Theorem we proof 3D-consistency at first. We already know that there
exist points a1, a2 and a3 such that

[a100, a110, a101, a1], [a010, a110, a011, a2], [a001, a101, a011, a3] (13)

are rotation quadrilaterals with all required properties. We have to show that these points
coincide whereupon we may set a111 := a1 = a2 = a3.

If we require only one principal contact element net trajectory (for example with normal
M and plane µ ⊥ M), only six linear equations remain. They define a straight line K ⊂ P 7

which, in the sense of algebraic geometry, has at least two intersection points k1, k2 with the
Study quadric. Since principal contact element nets are known to be nD-consistent [2], the
k1- and k2-images of the contact element (p, µ) coincide. We denote this contact element by
(pK , µK) and conclude that the relative displacement between k1 and k2 is a pure rotation.
This implies that the line K is actually contained in the Study quadric S.

Denote by L ⊂ S the straight line of positions obtained in the same way but with M
replaced by N and by (pL, νL) the corresponding contact element. The proof of 3D-consistency
will be finished if we can show that K and L have a point in common. Assume conversely
that K and L are skew. Then they span a three-space whose intersection with S is a ruled
quadric. We conclude that every position k ∈ K can be rotated to a unique position l ∈ L.
In other words, the contact element (pK , νK) can be rotated in infinitely many ways into
the contact element (pL, νL). By elementary geometric reasoning this is only possible if both
contact elements have a common tangent sphere. This contradicts the skewness of M and N .
Hence, k and l intersect in a unique position a111 which implies the Theorem’s statement for
n = 3.

Now we consider 4D-consistency (see Fig. 5 which displays the projection of a 4D-cube).
According to Corollary 6, the input data a0000, a1000, a0100, a0010, a0001 defines the positions
a1100, a1010, a1001, a0110, a0101, a0011. By the previous discussion, we can construct the position
a1110, a1101, a1011, a0111 without a contradiction. Now we have four ways to construct the
missing position a1111 by completing a 3D-cube. In Fig. 5 two of these cubes are highlighted.
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Figure 4: 3D-consistency
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Figure 5: 4D-consistency

They share the common quadrilateral [a0111, a0011, a1011, a1111]. Thus, by Corollary 6, com-
pleting the 3D-cubes leads to the same position for a1111. This situation does not change if
we consider other pairs of 3D-cubes.

The same argument yield nD-consistency: Inductively it can be shown that the input
data defines all positions uniquely with exception of one position a1. This position can be
constructed by completing n cubes of dimension n − 1. But any two of these cubes share a
face of dimension n− 2 ≥ 2 which already uniquely determines a1.

The construction of n-dimensional rotation nets as in Theorem 8 from the given input
data is inductive. At every step it requires solving the equation system (11) augmented with
the Study condition (2). The solution is generically unique and can be computed linearly.
When prescribing the positions on the coordinate axes only a subset of (11) needs to be
fulfilled.

4. Conclusion and future research

In an attempt to relate recent progress in the field of discrete differential geometry to kine-
matics this article introduces discrete rotating motions and studies possibilities to obtain
curvature line discretizations as trajectories.

We are already in a position to present some of the implications of our study. Assume that
(xi, νi) and (yi, µi) are independent principal contact elements obtained as trajectory surfaces
of a discrete rotating motion. The figures formed by corresponding contact elements are
congruent (Fig. 3) and clearly we can find two families of parallel trajectory surfaces with the
same properties. Distinguished examples are obtained by choosing the contact points x and y
on the common perpendicular of the contact element normals M and N in the moving space.
In this case xi ∈ µi and yi ∈ νi and the trajectory surfaces satisfy all geometric properties
of the classic Bäcklund transform for pseudospherical surfaces (surfaces of constant Gaussian
curvature):

• Corresponding points are at constant distance (independent of i ∈ Z
n),
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• corresponding tangent planes intersect in a constant angle (independent of i ∈ Z
n), and

• the connecting line of corresponding points lies in both tangent planes.
This observation leads to the conjecture that the trajectory surfaces are discrete surfaces

of constant Gaussian curvature in the sense of [1]. Indeed, we have a proof for this which
shall be published elsewhere. By a result of [1], this implies that the parallel trajectory
surfaces are linear Weingarten surfaces. An analytic description of a Bäcklund transform but
for a different discrete curvature line parametrization (“discrete O-surfaces”) can be found
in [9]. Our main results, the existence of discrete rotating motions with two independent
principal contact element net trajectories and their multidimensional consistency, are meant
to provide the basis for the description of Bäcklund transforms of pseudospherical principal
contact element nets— in a forthcoming publication.
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