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Abstract. We consider surfaces of revolution in the three-dimensional Euclidean
space which are of coordinate finite type with respect to the third fundamental
form II1, i.e., their position vector x satisfies the relation A = Az, where A
is a square matrix of order 3. We show that a surface of revolution satisfying the
preceding relation is a catenoid or part of a sphere.
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1. Introduction

Let = x(u',u?) be a regular parametric representation of a surface S in the Euclidean
space R? which does not contain parabolic points. For two sufficient differentiable functions
f(u',u?) and g(u', u?) the first Beltrami operator with respect to the third fundamental form
IIT = e;;du’du’ of S is defined by
VHI(fa g) = €Z]f|l g\ja
where f; = g—f and e denote the components of the inverse tensor of e;;. The second
u'L

Beltrami differential operator with respect to IIIis defined by!

AIHf _ \_/_é (\/Eeijf\i)u (1)

(e := det(e;;)). In [5] we showed the relation

2H 2H
Nlg =V _pn|-""n 2
) - 2n )
Lwith sign convention such that A = 788,—; — 8‘?—; for the metric ds? = dx? + dy?
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where n is the unit normal vectorfield, H the mean curvature and K the Gaussian curvature
of S. Moreover we proved that a surface satisfying the condition

Al =)z, \eR,

i.e., a surface S: x = x(ul,u?) for which all coordinate functions are eigenfunctions of A
with the same eigenvalue A, is part of a sphere (A = 2) or a minimal surface (A = 0). Using
terms of B.-Y. CHEN’s theory of finite type surfaces [1] the above result can be expressed as
follows: A surface S in R3 is of Ill-type 1 (or of null III-type 1) if and only if S is part of a
sphere (or a minimal surface).

In general a surface S is said to be of finite type with respect to the fundamental form
111 or, briefly, of finite I1l-type, if the position vector @ of S can be written as a finite sum of
nonconstant eigenvectors of the operator A, that is if

r=cH+xi+To+...+x,, ANx,=N\x;, i=1,....m, (3)
where ¢ is a constant vector and \i, ..., \,, are eigenvalues of A/, When there are exactly k
nonconstant eigenvectors 1, ..., x; appearing in (3) which all belong to different eigenvalues

A1, ..., Mg, then S is said to be of I1I-type k; when \; = 0 for some ¢ = 1,... k, then S is said
to be of null III-type k.

The only known surfaces of finite III-type are parts of spheres, the minimal surfaces and
the parallel of the minimal surfaces (which are actually of null II-type 2, see [5]).

In this paper we want to determine the connected surfaces of revolution S in R® which
are of coordinate finite I1I-type, i.e., their position vectorfield x(u', u?) satisfies the condition

ANy = Az, Ac M(3,3), (4)

where M (m,n) denotes the set of all matrices of the type (m,n).

Coordinate finite type surfaces with respect to the first fundamental form I were studied in
2] and [3]. In the last paper O. GARAY showed that the only complete surfaces of revolution
in R3, whose component functions are eigenfunctions of their Laplacian are the catenoids, the
spheres and the circular cylinders, while F'. DILLEN, J. PAS and L. VERSTRAELEN proved
in [2] that the only surfaces in R? satisfying

Nx=Az+B, AeM(3,3), BeM(@3,1),

are the minimal surfaces, the spheres and the circular cylinders.
Our main result is the following

Proposition 1. A surface of revolution S satisfies (4) if and only if S is a catenoid or part
of a sphere.

We first show that the mentioned surfaces indeed satisfy the condition (4).

A. On a catenoid the mean curvature vanishes, so, by virtue of (2), Az = 0. Therefore a
catenoid satisfies (4), where A is the null matrix in M(3, 3).

B. Let S be part of a sphere of radius r centered at the origin. Then

1 1 1
H=- K=—-, n=--w
r r r
So, by (2), it is Az = 2. Therefore S satisfies (4) with A = 2I3, where I3 is the identity
matrix in M(3, 3).
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2. Proof of the main theorem

Let C be the profile curve of a surface of revolution S of the differentiation class C3. We
suppose that

(a) C lies on the (xy, z3)-plane,

(b) the axis of revolution of S is the xz-axis and

(c) C is parametrized by its arclength s.
Then C admits the parametric representation

r(s) = (F(s), 0, g(s)), seJ
(J C R open interval), where f(s),g(s) € C3(J). The position vector of S is given by
x(s,0) = (f(s)cosb, f(s)sinb, g(s)), se€J, 6€]|0,2m).
Putting f(s) := df( ) we have because of (¢)

f244¢%=1 VseJ (5)

Furthermore it is f' - ¢’ # 0, because otherwise f = const. or ¢ = const. and S would be
a circular cylinder or part of a plane, respectively. Hence S would consist only of parabolic
points, which has been excluded. In view of (5) we can put

['=cosp, g =singp, (6)
where ¢ is a function of s. Then the unit normal vector of S is given by
n = (—singpcosf, —sinysinf, cosyp).

The components h;; and e;; of the the second and the third fundamental tensors in (local)
coordinates are the following

hll = QOI, h12 = O, hzg = fSil’l @,

€11 = <P,2, e12 = 0, €2 = sin’ 2 (7)
hence [4]
2H 1 f
— = hye? = — . 8
K i @' * sin ¢ (®)
From (1) and (7) we find for a sufficiently differentiable function v = wu(s,#) defined on
J x [2m,0)
u” ¢’ cosp\ U )9
o () o 0
Y Y sing / ¢ sin®p
Considering the following functions of s
Py = Rsinp — COS,(p R', Py=—Rcosyp— smapR’ (10)
¥ ol
where we have put for simplicity R := K , and applying (9) on the coordinate functions z;,
1 =1,2,3, of the position vector  we find
Ay = Picost, AMgy=Pising, AMzy=P,. (11)

So we have:
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(a) The coordinate functions x1,xs are both eigenfunctions of AU belonging to the same
eigenvalue if and only if for some real constant A holds

COS
/

Af = Rsinp — ’R.

(b) The coordinate function xs is an eigenfunction of A™ if and only if for some real
constant p holds

sin ¢ I

/

ng = —Rcosp —

We denote by a;;, i,j = 1,2, 3, the entries of the matrix A. By using (11) condition (4)
is found to be equivalent to the following system

Pycos = a1 fcost +appfsind +azg
Py sin@ = ag; fcosO + ass fsinh + ass g (12)
PQ = a31f0089+a32fsin9+a33g

Since sin#, cos@ and 1 are linearly independent functions of 6, we obtain from (123) as; =
asze = 0. On differentiating (12;) and (12;) twice with respect to 6 we have

Py cos® = ay1 fcosf + asfsinf
Py sinf = ag; fcost + axnfsind

Thus a139 = aszg = 0, so that a3 and ass vanish. The system (12) is equivalent to the
following
(P —aj1f)cos® —ayppfsingd = 0
(P, — agaf)sin® — ag fcosl =
Py —azgg = 0

o

But sin # and cos 0 are linearly independent functions of 6, so we finally obtain a5 = as; = 0,
a;1 = agy and P; = ajyf. Putting a3 = age = A and agz = pu we see that the system (12)
reduces now to the following equations

Pr=AXf, Py=pyg. (13)

On account of (10) and (13) we are left with the system

R = \fsiny — ugcosy (14)
R = —¢'(Mf cosp + pgsin )
On differentiating (14;) with respect to s we find, by virtue of (6),
N\ —
R = 5 P sin © COS . (15)

We distinguish the following cases:
Case I. Let A = p.
Then (15) reduces to R’ = 0.

Subcase la. Let A = p = 0. From (141) we obtain R = 0, i.e., H = 0. Consequently S,
being a minimal surface of revolution, is a catenoid.

Subcase Ib. Let A = pu # 0.
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Then from (6), (145) and R’ = 0 we have f - f'+g-¢ =0, i.e., (f>+ g?)’ = 0. Therefore

f? + ¢g? = const. and S is obviously part of a sphere.

Case II. Let \ # p.
From (145), (15) we find firstly

1 2(Afcosp+ pgsin )

vl (1 — A)singcos ¢
From this and (8) we obtain
A 24
R =
(i—Nsing’ " (i—Acos?
Hence, by virtue of (14;),
af +bg=0,
where Nt 5
- u p
—\ AR S A o ,
¢ Sm(p—ip(/\—u)sincp’ (A — ) cos peosy

We note that p # 0, since for u = 0 we have
Asin? ¢ + 1
o= —"

. b=0,
sin
and relation (17) becomes
)\sin.2<p—|—1fzo’
sin

whence it follows Asin? ¢ + 1 = 0, a contradiction.

On differentiating (17) with respect to s and taking into account (16) we obtain

/ vh 9,

sin ¢ cos

a1

where

ar = A\ = p)?sin® g + (A = ) (A = X 43X + p) sin® o — (A + 1) (3X — ),

bi = [(A = p)?sin o+ (A — ) (= A +4)sin® p — 2 (X + )] .

(16)

(17)

(18)

(19)

(20)
(21)

By eliminating now the functions f and g from (17) and (19) and taking into account (18),

(20) and (21) we find

AMA = p)?sint o+ (A — p) A — A + 5N+ — 2)sin® o + (A + p)(u — 3A +4) = 0.

Consequently

AA—p)?=0, A=) A =X 4+5x4+p—2) =0, (A+p)(p—31+4)=0.

From the first equation we have A = 0. Then, the other two become as follows

,LL—2:0, ,Lt—f-4:0,

which is a contradiction.
So the proof of the theorem is completed.
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