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Surfaces of revolution
satisfying △III

x = Ax
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Abstract. We consider surfaces of revolution in the three-dimensional Euclidean
space which are of coordinate finite type with respect to the third fundamental
form III, i.e., their position vector x satisfies the relation △III

x = Ax, where A

is a square matrix of order 3. We show that a surface of revolution satisfying the
preceding relation is a catenoid or part of a sphere.
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1. Introduction

Let x = x(u1, u2) be a regular parametric representation of a surface S in the Euclidean
space R

3 which does not contain parabolic points. For two sufficient differentiable functions
f(u1, u2) and g(u1, u2) the first Beltrami operator with respect to the third fundamental form
III = eijdu

iduj of S is defined by

∇III(f, g) = eijf|i g|j,

where f|i :=
∂f

∂ui
and eij denote the components of the inverse tensor of eij . The second

Beltrami differential operator with respect to III is defined by1

△IIIf =
−1√
e

(√
e eijf|i

)

|j
(1)

(e := det(eij)). In [5] we showed the relation

△III
x = ∇III

(

2H

K
n

)

− 2H

K
n, (2)

1with sign convention such that △ = − ∂2

∂x2 − ∂2

∂y2 for the metric ds2 = dx2 + dy2
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where n is the unit normal vectorfield, H the mean curvature and K the Gaussian curvature
of S. Moreover we proved that a surface satisfying the condition

△III
x = λx, λ ∈ R,

i.e., a surface S : x = x(u1, u2) for which all coordinate functions are eigenfunctions of △III

with the same eigenvalue λ, is part of a sphere (λ = 2) or a minimal surface (λ = 0). Using
terms of B.-Y. Chen’s theory of finite type surfaces [1] the above result can be expressed as
follows: A surface S in R

3 is of III-type 1 (or of null III-type 1) if and only if S is part of a
sphere (or a minimal surface).

In general a surface S is said to be of finite type with respect to the fundamental form
III or, briefly, of finite III-type, if the position vector x of S can be written as a finite sum of
nonconstant eigenvectors of the operator △III, that is if

x = c+ x1 + x2 + . . .+ xm, △III
xi = λixi, i = 1, . . . , m, (3)

where c is a constant vector and λ1, . . . , λm are eigenvalues of △III. When there are exactly k

nonconstant eigenvectors x1, . . . ,xk appearing in (3) which all belong to different eigenvalues
λ1, . . . , λk, then S is said to be of III-type k; when λi = 0 for some i = 1, . . . , k, then S is said
to be of null III-type k.

The only known surfaces of finite III-type are parts of spheres, the minimal surfaces and
the parallel of the minimal surfaces (which are actually of null III-type 2, see [5]).

In this paper we want to determine the connected surfaces of revolution S in R
3 which

are of coordinate finite III-type, i.e., their position vectorfield x(u1, u2) satisfies the condition

△III
x = Ax, A ∈ M(3, 3), (4)

where M(m,n) denotes the set of all matrices of the type (m,n).
Coordinate finite type surfaces with respect to the first fundamental form I were studied in

[2] and [3]. In the last paper O. Garay showed that the only complete surfaces of revolution
in R

3, whose component functions are eigenfunctions of their Laplacian are the catenoids, the
spheres and the circular cylinders, while F. Dillen, J. Pas and L. Verstraelen proved
in [2] that the only surfaces in R

3 satisfying

△I
x = Ax+B, A ∈ M(3, 3), B ∈ M(3, 1),

are the minimal surfaces, the spheres and the circular cylinders.
Our main result is the following

Proposition 1. A surface of revolution S satisfies (4) if and only if S is a catenoid or part
of a sphere.

We first show that the mentioned surfaces indeed satisfy the condition (4).

A. On a catenoid the mean curvature vanishes, so, by virtue of (2), △III
x = 0. Therefore a

catenoid satisfies (4), where A is the null matrix in M(3, 3).

B. Let S be part of a sphere of radius r centered at the origin. Then

H =
1

r
, K =

1

r2
, n = −1

r
x.

So, by (2), it is △III
x = 2x. Therefore S satisfies (4) with A = 2I3, where I3 is the identity

matrix in M(3, 3).
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2. Proof of the main theorem

Let C be the profile curve of a surface of revolution S of the differentiation class C3. We
suppose that
(a) C lies on the (x1, x3)-plane,

(b) the axis of revolution of S is the x3-axis and

(c) C is parametrized by its arclength s.
Then C admits the parametric representation

r(s) = (f(s), 0, g(s)) , s ∈ J

(J ⊂ R open interval), where f(s), g(s) ∈ C3(J). The position vector of S is given by

x(s, θ) = (f(s) cos θ, f(s) sin θ, g(s)) , s ∈ J, θ ∈ [0, 2π).

Putting f(s)′ :=
df(s)

ds
we have because of (c)

f ′ 2 + g′ 2 = 1 ∀s ∈ J. (5)

Furthermore it is f ′ · g′ 6= 0, because otherwise f = const. or g = const. and S would be
a circular cylinder or part of a plane, respectively. Hence S would consist only of parabolic
points, which has been excluded. In view of (5) we can put

f ′ = cosϕ, g′ = sinϕ, (6)

where ϕ is a function of s. Then the unit normal vector of S is given by

n = (− sinϕ cos θ, − sinϕ sin θ, cosϕ).

The components hij and eij of the the second and the third fundamental tensors in (local)
coordinates are the following

h11 = ϕ′, h12 = 0, h22 = f sinϕ,

e11 = ϕ′ 2, e12 = 0, e22 = sin2 ϕ, (7)

hence [4]
2H

K
= hije

ij =
1

ϕ′
+

f

sinϕ
. (8)

From (1) and (7) we find for a sufficiently differentiable function u = u(s, θ) defined on
J × [2π, 0)

△III = − u′′

ϕ′ 2
+

(

ϕ′′

ϕ′ 2
− cosϕ

sinϕ

)

u′

ϕ′
− u|θθ

sin2 ϕ
. (9)

Considering the following functions of s

P1 = R sinϕ− cosϕ

ϕ′
R′, P2 = −R cosϕ− sinϕ

ϕ′
R′, (10)

where we have put for simplicity R := 2H
K
, and applying (9) on the coordinate functions xi,

i = 1, 2, 3, of the position vector x we find

△IIIx1 = P1 cos θ, △IIIx2 = P1 sin θ, △IIIx3 = P2 . (11)

So we have:
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(a) The coordinate functions x1, x2 are both eigenfunctions of △III belonging to the same
eigenvalue if and only if for some real constant λ holds

λf = R sinϕ− cosϕ

ϕ′
R′.

(b) The coordinate function x3 is an eigenfunction of △III if and only if for some real
constant µ holds

µg = −R cosϕ− sinϕ

ϕ′
R′.

We denote by aij, i, j = 1, 2, 3, the entries of the matrix A. By using (11) condition (4)
is found to be equivalent to the following system







P1 cos θ = a11f cos θ + a12f sin θ + a13 g

P1 sin θ = a21f cos θ + a22f sin θ + a23 g

P2 = a31f cos θ + a32f sin θ + a33 g

(12)

Since sin θ, cos θ and 1 are linearly independent functions of θ, we obtain from (123) a31 =
a32 = 0. On differentiating (121) and (122) twice with respect to θ we have

{

P1 cos θ = a11f cos θ + a12f sin θ
P1 sin θ = a21f cos θ + a22f sin θ

Thus a13g = a23g = 0, so that a13 and a23 vanish. The system (12) is equivalent to the
following







(P1 − a11f) cos θ − a12f sin θ = 0
(P1 − a22f) sin θ − a21f cos θ = 0

P2 − a33g = 0

But sin θ and cos θ are linearly independent functions of θ, so we finally obtain a12 = a21 = 0,
a11 = a22 and P1 = a11f . Putting a11 = a22 = λ and a33 = µ we see that the system (12)
reduces now to the following equations

P1 = λf, P2 = µg. (13)

On account of (10) and (13) we are left with the system

{

R = λf sinϕ− µg cosϕ

R′ = −ϕ′(λf cosϕ + µg sinϕ)
(14)

On differentiating (141) with respect to s we find, by virtue of (6),

R′ =
λ− µ

2
sinϕ cosϕ. (15)

We distinguish the following cases:

Case I. Let λ = µ.
Then (15) reduces to R′ = 0.

Subcase Ia. Let λ = µ = 0. From (141) we obtain R = 0, i.e., H = 0. Consequently S,
being a minimal surface of revolution, is a catenoid.

Subcase Ib. Let λ = µ 6= 0.
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Then from (6), (142) and R′ = 0 we have f · f ′ + g · g′ = 0, i.e., (f 2 + g2)
′
= 0. Therefore

f 2 + g2 = const. and S is obviously part of a sphere.

Case II. Let λ 6= µ.
From (142), (15) we find firstly

1

ϕ′
=

2 (λf cosϕ+ µg sinϕ)

(µ− λ) sinϕ cosϕ
. (16)

From this and (8) we obtain

R =
λ+ µ

(µ− λ) sinϕ
f +

2µ

(µ− λ) cosϕ
g.

Hence, by virtue of (141),
af + bg = 0, (17)

where

a = λ sinϕ+
λ+ µ

(λ− µ) sinϕ
, b =

2µ

(λ− µ) cosϕ
− µ cosϕ. (18)

We note that µ 6= 0, since for µ = 0 we have

a =
λ sin2 ϕ+ 1

sinϕ
, b = 0,

and relation (17) becomes
λ sin2 ϕ + 1

sinϕ
f = 0,

whence it follows λ sin2 ϕ+ 1 = 0, a contradiction.
On differentiating (17) with respect to s and taking into account (16) we obtain

a1
f

sinϕ
+ b1

g

cosϕ
= 0, (19)

where

a1 = λ(λ− µ)2 sin4 ϕ+ (λ− µ)(λµ− λ2 + 3λ+ µ) sin2 ϕ− (λ+ µ)(3λ− µ), (20)

b1 = µ
[

(λ− µ)2 sin4 ϕ+ (λ− µ) (µ− λ+ 4) sin2 ϕ− 2 (λ+ µ)
]

. (21)

By eliminating now the functions f and g from (17) and (19) and taking into account (18),
(20) and (21) we find

λ(λ− µ)2 sin4 ϕ+ (λ− µ)(λµ− λ2 + 5λ+ µ− 2) sin2 ϕ+ (λ+ µ)(µ− 3λ+ 4) = 0.

Consequently

λ (λ− µ)2 = 0, (λ− µ)
(

λµ− λ2 + 5λ+ µ− 2
)

= 0, (λ+ µ) (µ− 3λ+ 4) = 0.

From the first equation we have λ = 0. Then, the other two become as follows

µ− 2 = 0, µ+ 4 = 0,

which is a contradiction.
So the proof of the theorem is completed.
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