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Abstract. A rational parameterization of an algebraic curve yields a rational
correspondence between this curve and the affine or projective line. One of the
parameterization methods is based on finding all singular points and d− 3 simple
points of an implicitly given curve of degree d (see [17]). In this paper, we study
some modifications of this well-known algorithm, which are then verified on several
examples.
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1. Introduction

The choice of a suitable representation of geometric shapes (explicit, parametric, or implicit)
is essential among others for the study and development of subsequent algorithms. Whereas
for example Computer Graphics uses all aforementioned representations, Computer Aided
Geometric Design (CAGD) focuses mainly on the piecewise rational parametric representa-
tion such as NURBS (Non-uniform B-spline) curves and surfaces, because they are used in
many applications in Computer Aided Design and Manufacturing (CAD and CAM) — let us
recall plotting and displaying curves and surfaces, computing transformations, finding offsets,
determining curvatures, e.g., for shading, etc. (see [6]).

It is well-known, that for general curves and surfaces exact rational parametric representa-
tions do not exist and approximate techniques are therefore needed. Moreover, the existence
of a rational parametrization of a geometric shape still does not guarantee the rationality of
derived objects (like, e.g., classical or general offsets). In what follows, we will focus solely on
planar algebraic curves and their exact rational parameterizations. The zero genus is a nec-
essary and sufficient condition for the rationality. A rational parameterization of an algebraic
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2 M. Bizzarri, M. Lávička: Algorithm for the parameterization of rational curves revisited

curve yields a rational correspondence between this curve and the affine or projective line.
A parameterization algorithm decides whether a parameterization exists and in the positive
case produces one particular result. This paper recalls one of the fundamental methods pre-
sented in [13] which computes a rational parameterization by intersecting a generic element
of a certain 1-parameter pencil of associated curves with the original curve. The algorithm
is based on finding all singular points and d − 3 simple points of an implicitly given curve
of degree d; the geometric fundamentals can be found in [17]. We discuss related theoreti-
cal results and suggest some particular modifications simplifying the computation. All the
theoretical improvements have been implemented and the adapted algorithm was tested on
several examples.

Of course, there exist other parameterization algorithms using for instance integral basis
computation, canonical divisor or birational transformation of the curve into curve of degree
two or one. Reader interested in these techniques can find more details e.g. in [8, 10, 13, 14,
15, 16, 19]. There are also algorithms devoted to turning an arbitrary parameterization into a
proper (i.e., birational) one (cf., e.g., [11]). It is a subject for our further research to implement
(some of) improvements presented in this paper also to these alternative algorithms.

The main contribution of the paper is a formulation of several improvements of one of the
most often applied parameterization algorithm. All the gained results emphasize the indis-
pensable role of classical geometric methods for modern applications. We strongly believe that
further thorough analysis of classical geometric fundamentals may lead to next modifications
and improvements and thus to offer more effective algorithms.

2. Preliminaries

We start with recalling some fundamental properties of rational curves and Cremona trans-
formations. More details can be found, e.g., in [2, 4, 5, 13, 17, 18].

2.1. Algebraic curves and rational parameterizations

Let K be an algebraically closed field of characteristic zero. The affine or projective space
of dimension n over the field K will be denoted by An or Pn, respectively. An affine plane
algebraic curve Ca in A2 is the set of zeros of a square-free polynomial f(x, y) ∈ K[x, y], i.e.,

Ca = {(a1, a2) ∈ A2 | f(a1, a2) = 0},

where f is the so-called defining polynomial of Ca. The algebraic degree d of f is called the
degree of Ca. In case f is irreducible, we speak about the irreducible curve Ca.

Analogously, a projective plane algebraic curve C in P2 is the set of zeros of a homogenous
defining polynomial F (x, y, z) ∈ K[x, y, z], i.e.,

C = {(a1 : a2 : a3) ∈ P2 | F (a1, a2, a3) = 0}.

Clearly, for the defining polynomial f(x, y) of some affine algebraic curve Ca we can construct
the associated homogenous polynomial F (x, y, z) describing the associated projective curve C
just by multiplying each term of degree k by zd−k, where d is the degree of Ca.

An irreducible affine curve Ca is called rational if there exist rational functions φ(t), χ(t) ∈
K(t) such that
(i) for almost all t0 ∈ K, (φ(t0), χ(t0)) is a point on Ca, and
(ii) for almost all (x0, y0) ∈ Ca there exists t0 ∈ K such that (x0, y0) = (φ(t0), χ(t0)).
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Then, (φ, χ)(t) is called a rational parameterization of Ca. Similarly we speak about a rational
parameterization (φ, χ, ψ)(t) of a projective curve C, where φ(t), χ(t), ψ(t) are polynomials
from K[t].

The point P on C is called a singular point or a singularity of C iff

∂F

∂x
(P ) =

∂F

∂y
(P ) =

∂F

∂z
(P ) = 0.

If P ∈ C is not singular then it is called simple or regular on C. Consider a number mP such
that for all i+ j + k < mP the partial derivatives

∂i+j+kF

∂xi∂yj∂zk
(P )

vanish at P but at least one of the partial derivatives of order mP does not vanish at P . Then
mP is called the multiplicity of P on C.

Furthermore, an m-fold singular point P on C is called ordinary iff all m tangent lines (see
for instance [13] for a standard definition of tangent lines) of C at P are distinct. Otherwise,
i.e., if at least two of them are coincident, the singularity is called non-ordinary.

One of the most important invariants associated with a singular point P is its delta
invariant δP measuring the number of double points concentrated at this point — in other
words, a singular point with delta invariant δP concentrates δP ordinary double points at P
(for more details see [2]). Then, the genus of an algebraic curve C of degree d is defined as

genus(C) = 1

2
(d− 1)(d− 2)−

n
∑

i=1

δPi
,

where P1, . . . , Pn are singularities of C possessing the delta invariants δP1
, . . . , δPn

, respectively.
The genus of the affine curve Ca is equal to the genus of its associated projective curve C.

The main difficulty in computing genera of algebraic curves consists in determining delta
invariants of all singular points. Nevertheless, the situation becomes considerably simpler for
ordinary singularities — in this case, the delta invariant is given by δP = mP (mP − 1)/2.
Hence for curves with only ordinary singularities (ordinary curves) we can use the formula

genus(C) = 1

2

(

(d− 1)(d− 2)−
n
∑

i=1

mPi
(mPi

− 1)

)

.

Finally, we recall the fundamental theorem for the theory of rational curves (cf. [18,
p. 229].

Theorem 2.1. An algebraic curve C is rationally parameterizable if and only if its genus is
equal to zero.

2.2. Cremona transformations and neighbourhood graphs

Birational transformations of the projective plane P2, forming the so-called Cremona group,
are called Cremona transformations. By Noether’s theorem (see [7]) each Cremona transfor-
mation of P2 can be expressed as a composition of quadratic transformations. A standard
quadratic transformation Q is a Cremona transformation defined as

Q : P2 → P2 : (x : y : z) 7→ (yz : xz : xy). (1)

The points (1 : 0 : 0), (0 : 1 : 0) and (0 : 0 : 1) are the fundamental points of the quadratic
transformation Q. The lines x = 0, y = 0, z = 0 are the irregular lines of Q. It holds:
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1. Every point of P2 except the fundamental points of Q is transformed into a unique
point. The transformation Q is not defined for the fundamental points.

2. An arbitrary non-fundamental point (i.e., any point different from the fundamental
points) lying on one of the irregular lines (x = 0, y = 0, z = 0) of the transformation Q
is transformed to the point (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), respectively.

3. A point P not lying on any irregular line of Q is mapped to P ′ = Q(P ) which is not a
point of any irregular line of Q−1. It holds P = Q−1(P ′).

A quadratic transform of F (x, y, z) is an irreducible factor F ′(x, y, z) of the polynomial
F (yz, xz, xy) which is not an irregular line. Curves defined by the polynomials F and F ′ are
in the birational correspondence (except finitely many points). For the later use, we state the
theorem whose proof can be found in [17, pp. 77–80].

Theorem 2.2. Let C be a projective curve of degree d defined by the polynomial F (x, y, z)
containing the points (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1) of multiplicities m1, m2 and m3,
respectively. Next, let F ′(x, y, z) be the quadratic transform of F (x, y, z) and C′ the curve
defined by F ′(x, y, z). If none of the tangent lines at these three points is irregular then

1. F ′(x, y, z) =
F (yz, xz, xy)

xm1ym2zm3

is of degree 2d−m1 −m2 −m3.

2. There exists a one to one correspondence between the tangent lines to C at the points
(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1) and the non-fundamental intersections of C′ with the
irregular lines x = 0, y = 0, z = 0, which preserves multiplicities.

3. The points (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1) of the curve C′ have multiplicities d−m2−m3,
d−m1 −m3, d−m1 −m2, respectively. The associated tangent lines are different from
irregular lines and they are in the correspondence with non-fundamental intersections
of the curve C with the lines x = 0, y = 0, z = 0.

4. The character of an m-fold point not lying on any of irregular lines is preserved.

One of the most fruitful techniques in the theory of singularities of algebraic curves is
involving so-called neighbouring graphs, introduced in [13]. Let P be a point on an irreducible
curve C. Using a suitable projective transformation T we can map P to the fundamental
point O = (0 : 0 : 1) and guarantee that none of the tangent lines of C′ is an irregular line.

Then, the first neighbourhood Pα of P with respect to T is the set of all intersections of
the quadratic transform Q(C′) of the curve C′ with the line z = 0, which are not fundamental
points. The multiplicity and character of the neighbouring points Pα of P in its first neigh-
bourhood are defined as the multiplicity and character of points Pα on the curve Q(C′). The
second neighbourhood of P is defined as the union of all the first neighbourhoods of Pα. In
a similar way, we can consider the neighbourhoods of any arbitrary order. A neighbourhood
tree of P with respect to a sequence of transformations T = {T1, T2, . . . , Tn} is such tree that
has P as its root and the neighbourhood trees of Pα as its subtrees, where Pα are singular
neighbouring points at the first neighbourhood of P . A neighbourhood graph of C with respect
to T is the union of all the neighbourhood trees of singular points of C (cf. [13, 17]).

In particular, the neighbouring point of any simple point is again a simple point and the
first neighbourhood of an ordinary m-fold point contains m simple points (see Table 1).

The delta invariant of a given singularity P ∈ C can be efficiently computed using the
associated neighbouring points, in particular δP =

∑

P∈M
mP (mP − 1)/2, where M is the
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Table 1: Properties of the neighbouring points

Point P Neighbouring points Pα

Simple point Simple point

Ordinary m-fold point m simple points

Non-ordinary m-fold point with tangent lines Points {Pi = (ai : bi : 0)}i=1,...,s

(a1x− b1y)
m1 = 0, . . . , (asx− bsy)

ms = 0 of multiplicities mi

neighbouring tree of P with respect to some sequence of transformations T (see [13, pp. 613–
614]). Hence, we can compute the genus using the formula

genus(C) = 1

2

(

(d− 1)(d− 2)−
∑

P∈N

mP (mP − 1)

)

,

where N is the neighbourhood graph of C with respect to a sequence of transformations T .

3. The classical parameterization algorithm

In this section, we recall the algorithm for computing rational parameterizations of algebraic
curves which is based on the theory from [17] and then studied in more details and modified in
[13]. The next sections are devoted to some partial improvements of this classical algorithm.

Definition 3.1. Let C be a curve of degree d. We consider a linear system of curves Ln of
degree n such that:
(1) Every curve from the system Ln is of the degree n ∈ {d− 2, d− 1, d}.
(2) Every m-fold singular point of C is (m− 1)-fold point Ln.

(3) Every s-fold neighbouring point of C is an (s− 1)-fold neighbouring point of each curve
from Ln.

(4) All curves from Ln do not have common component with C.
Then, Ln is called a system of adjoint curves of degree n to the given curve C.
The system of adjoint curves fulfilling the condition
(5) There exist nd− (d− 1)(d− 2)− 1 simple points of C being simple points of each curve

from Ln

is called 1-parameter system of adjoint curves of degree n to C. Such system of curves will be
denoted by Ln(t) (since it depends on one parameter t).

The introduced system Ln(t) fulfills the following property (cf. [13] for the proof), which
is efficiently used in the parameterization process.

Theorem 3.2. Let C be an irreducible rational curve of degree d and Ln(t) be the 1-parameter
system of adjoint curves to C. Then the coefficients of Ln(t) are polynomials in t. Almost
every curve from this system intersects C in one additional point and for almost every simple
point on C, which is not fixed, there exists a curve from Ln(t) passing through that point.

The algorithm for parameterizing curves with arbitrary singularities is summarized in
Algorithm 1 (cf. [13] and references therein for further details).
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Algorithm 1 Parameterization of irreducible plane curves

1. Input: A curve C defined by a polynomial F (x, y, z).

2. Find all singular points P1, . . . , Ps ∈ C having multiplicities mP1
, . . . , mPn

.

3. Find the neighbouring graph N of C with respect to a sequence of suitable transforma-
tions T .

4. Compute the genus of C. If genus(C) = 0 then C is rational. Otherwise a rational
parameterization of C does not exist.

5. Choose n ∈ {d− 2, d− 1, d} and construct the system of adjoint curves Ln to C.
6. Find nd − (d − 1)(d− 2)− 1 simple points and guarantee that the curves from Ln are

passing through those simple points — obtain 1-parameter system Ln(t).

7. Compute the coordinates of the intersection point R = (x(t), y(t)) of Ca and Ln
a(t),

where Ca and Ln
a(t) are the affine versions of C and Ln(t), respectively.

8. Output: Pair of functions (x(t), y(t)) represents the rational parameterization of Ca.

Remark 3.3. In the following sections, we will present some improvements of the classical
algorithm. Namely, we show the improvements of the steps 2 and 6 of Algorithm 1.

Example 3.4. Let us consider a curve C (see Fig. 1, left) defined by the polynomial

F (x, y, z) = 2x4 − 2yx3 + y2x2 − z2x2 + 2yz2x− y2z2.

Solving the system of equations ∂F/∂x = 0, ∂F/∂y = 0, ∂F/∂z = 0, we arrive at one ordinary
double point P1 = (0 : 1 : 0) and one non-ordinary double point P2 = (0 : 0 : 1), where the
double tangent line of C at P2 has the equation x− y = 0. The intersection of Q(C) with the
line z = 0 yields one neighbouring double point P3 = (1 : 1 : 0) in the first neighbourhood of
P2. This point is ordinary and therefore another neighbouring point does not exist. Hence,
the neighbouring graph contains only points P1, P2 and P3.

We have to find one simple point on C to be able to construct a 1-parameter system L2(t)
of adjoint curves to C; we choose the point P3 = (−168 : −744 : 175). Thus, we arrive at

H(x, y, z, t) = 31tx2 − 25x2 − 7tyx+ 7zx− 7yz.

Finally, the coordinates of the “free” intersection point of Ca and L2
a(t) yield

x(t) =
2 (12t2 − 25t+ 12)

25t2 − 48t+ 25
, y(t) =

2 (372t4 − 1375t3 + 1826t2 − 1025t+ 204)

7 (25t4 − 48t3 + 48t− 25)
, t ∈ R.

A simplified version of Algorithm 1 (only for ordinary curves) can be found in [1] or [18].
In this case, it is not necessary to construct the neighbouring graph N of C — the system of
adjoint curves is given only by the singularities and by suitable simple point(s).

However there exist special curves that can be parameterized by this simplified algorithm
despite containing non-ordinary singular points — see Corollary 3.5. This idea is based on
the following relation, whose proof is omitted here for the sake of brevity

genus(C) ≤ 1

2

(

(d− 1)(d− 2)−
n
∑

i=1

mPi
(mPi

− 1)

)

,

where P1, . . . , Pn are singularities of C possessing the multiplicities mP1
, . . . , mPn

.
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Figure 1: The curve from Example 3.4 (left) and the cardioid from Example 3.6

(right), both with the corresponding 1-parameter systems of adjoint curves.

Corollary 3.5. Let C be an irreducible curve of degree d in P2 having arbitrary singular points
P1, . . . , Pn with the multiplicities mP1

, . . . , mPn
. Then C is rational if

(d− 1)(d− 2) =
n
∑

i=1

mPi
(mPi

− 1).

Example 3.6. Let C be the cardioid (see Fig. 1, right) given by F (x, y, z)

C : F (x, y, z) = (x2 + y2 + rxz)2 − r2z2(x2 + y2).

This cardioid C contains one real double point O = (0 : 0 : 1) and two complex conjugate
double points P1 = (i : 1 : 0) and P2 = (−i : 1 : 0). There is one double tangent line y = 0 at
O and x = r/2 at P1 and P2.

All of these three singularities are non-ordinary and have multiplicity 2. We use Corol-
lary 3.5 for determining the rationality of C.

(d− 1)(d− 2) = 3 · 2 = 6 = 2 + 2 + 2 =

n
∑

i=1

mi(mi − 1).

Hence, the curve C is parameterizable (the detailed description of the parameterization of
cardioid can be found in [1]) and their parameteric expression is, e.g.,

x(t) =
−2r5t4 + 2r3t2

r4t4 + 2r2t2 + 1
, y(t) =

−4r4t3

r4t4 + 2r2t2 + 1
, t ∈ R.

In [18], the authors parameterize the cardioid using the simplified algorithm for ordinary
curves without checking their character. It must be emphasized that this approach does not
work generally — for the cardiod, it gives the right solution only because of the fact that the
first neighbourhood of each singular point contains only two simple points !
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4. Birationally equivalent curve of lower degree

The complexity of the parameterization process depends significantly on the degree of the
given curve. Thus, it seems to be more convenient to find a birationally equivalent curve of
lower degree, which will be subsequently taken as the input of Algorithm 1. In what follows,
we will present a method for the reduction of the degree using quadratic transformations.

The quadratic transformation was used in [17] solely for resolving non-ordinary singular-
ities of an algebraic curve C, specially for finding its neighbouring graph (cf. Section 2.2).
During the process of resolving non-ordinary singularities, the degree of the curve became in
most cases higher. Nonetheless, we show that the quadratic transformation can be used also
for decreasing the algebraic degree.

Let us emphasize that the quadratic transform of a curve C has the degree 2d − m1 −
m2 − m3, where d is the degree of C and m1, m2, m3 are the multiplicities of the points
(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1) on C, respectively.

Proposition 4.1. Let C be an algebraic curve containing singular points P1, . . . , Pk of mul-
tiplicities mP1

, . . . , mPk
, respectively. Then we can decrease the degree of C and preserve the

field of its coefficients if there exist i1, i2, i3 ∈ {1, . . . , k} such, that
1. Pi1, Pi2 , Pi3 have rational coordinates;

2. Pi1, Pi2 , Pi3 do not lie on a common line;

3. mPi1
+mPi2

+mPi3
> d.

Proof: We transform the points Pi1 , Pi2, Pi3 of C to the points (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1)
(this is always possible for linearly independent points) and obtain a curve C′. Then, we apply
the quadratic transformation on C′ and get C′′. The curve C′′ has rational coordinates since
both used transformations are rational and it possesses the degree 2d− (mPi1

+mPi2
+mPi3

)
which is lower than d as mi1 +mi2 +mi3 > d.

A rational parameterization of an algebraic curve yields a rational correspondence be-
tween this curve and the affine or projective line, which is the most prominent curve among
birationally equivalent curves. The following proposition deals with a special class of curves
having only one singular point (of course, these curves can be parameterized also using a
pencil of lines with vertex at the singularity — see the classical parameterization algorithm).

Proposition 4.2. Let C be an algebraic curve of degree d containing one (d − 1)-fold point
P = (p1 : p2 : p3) with rational coordinates. Then C can be transformed to a line by a certain
sequence of projective and quadratic transformations.

Proof: Every curve C of degree d with one (d − 1)-fold rational point P contains infinitely
many simple points with rational coordinates. We can obtain them by intersecting C with the
line going through P . By this method, we obtain two simple points with rational coordinates,
say P1 and P2. Next, we construct a projective transformation which sends the points P , P1

and P2 to the points (0 : 0 : 1), (0 : 1 : 0) and (1 : 0 : 0), respectively. We obtain C′ by
applying such projective transformation and finally we apply the quadratic transformation to
C′. The degree of Q(C′) is 2d− (d− 1)− 1− 1 = d− 1 and Q(C′) contains the point (0 : 0 : 1)
possessing the multiplicity d− 1− 1 = d− 2. Hence, we have got a curve of degree d− 1 with
one rational (d − 2)-fold point (0 : 0 : 1). Clearly, we can repeat this process until we arrive
at a line. Let us note that 1-fold point is a regular point.



M. Bizzarri, M. Lávička: Algorithm for the parameterization of rational curves revisited 9

Analogously, we can deal with curves containing only two rational singular points. We
will show that curves of this kind whose degree can be decreased by the previous approach
exist. For instance, let us consider a curve with one (d− 2)-fold rational point — such curve
can have in the best case another singular point with the multiplicity ⌊1

2

(√
8d− 15 + 1

)

⌋
(from the definition of genus and rationality). We have only to guarantee that it holds

d+
1

2

(√
8d− 15 + 1

)

− 2 > d. (2)

It is obvious that (2) is fulfilled only for d ≥ 4. This result was expectable since the rational
curves of degree four are the curves of the lowest degree containing more than one singularity.

Example 4.3. Let us consider a curve C given by the polynomial

F (x, y, z) = −x2y2 + x2z2 + 2xy2z − 2xz3 + z4.

The curve C is of degree 4 and contains three double points P1 = (1 : 0 : 0), P2 = (0 : 1 : 0),
P3 = (1 : 0 : 1). Thus, we can find a birational equivalent of C with lower degree, see
Proposition 4.1. We construct a transformation, which sends point P3 to the point (0 : 0 : 1)
and obtain the curve C′ with the defining polynomial F ′(x, y, z) = x2z2 + y2z2 − x2y2. Now,
we apply the quadratic transformation and get the curve C′′ defined by

F ′′(x, y, z) = x2 + y2 − z2.

In addition, one could even find a line, which would be in birational correspondence with
C′′ by finding three simple points with rational coordinates on C′′, then sending them to the
fundamental points and finally applying the standard quadratic transformation.

5. Computing singular points

An efficient method for constructing a special family of singular points of a given curve was
presented in [13]. This approach is based on describing all singular points of the given curve
without giving their explicit expression. Clearly, this is very suitable especially for curves
with many or complicated singularities. In this section, we recall a classical approach and
then give some possible improvements or simplifications of the computational process.

Definition 5.1. Let C be an irreducible curve defined by F (x, y, z). We say that the set

F = {(p1(α) : p2(α) : p3(α))h(α)=0},

where p1, p2, p3, h ∈ K[α] with gcd(p1, p2, p3) = 1 and h is squarefree, is a family of conjugate
points of C if

F (p1(α), p2(α), p3(α)) ≡ 0 mod h(α).

To be able to construct such family of singular points we must have guaranteed that
all singularities possess different x-coordinates. Hence, we must first examine this necessary
condition.
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5.1. Construction of a special affine transformation

In case the given curve Ca contains at least two singularities with the same x-coordinates we
have to apply a special affine transformation

(x, y) 7→ (x+my, y), m 6= 0,

which gives a curve of the required quality. Clearly, we can choose an arbitrary m; we only
have to check that the image curve fulfils the constrain. In [9], the authors describe a method
based on subresultants (cf. Section 5.1.1). We present two further techniques applying the
methods of automatic proving (cf. Section 5.1.2), or a numerical approach (cf. Section 5.1.3).

5.1.1. The Farouki-Sakkalis method

We consider a curve (an affine image of the original curve) defined by the polynomial f(x, y) =
f(x+my, y) which satisfies the following two extra conditions:
(a) f is regular in y, i.e., f contains a monomial yd, where d is the degree of f ;

(b) if the points (x, y1) and (x, y2) fulfil the condition f = ∂f/∂x = 0 then y1 = y2.

We denote by

w(x,m) = Resy

(

f(x+my, y),
∂f

∂x
(x+my, y)

)

,

where Resα(f, g) denotes the resultant of the polynomials f and g with respect to α. Next
we denote by sk(m) the k-th subresultant of the polynomials w and ∂w/∂x with respect to
x. Then the following theorem can be used for verifying the above mentioned conditions (a)
and (b); see [9] for the proof and further details.

Theorem 5.2. If m is such that fd(m, 1)sk(m) 6= 0, where fd(x, y) is the monomial of the
highest degree d of the polynomial f(x, y), then f(x + my, y) satisfies the above mentioned
conditions (a) and (b).

5.1.2. Symbolic method based on automatic proving

Methods of automatic proving are suitable for such problems where the premises and con-
clusions are expressible through polynomials (which is our case). Subsequently, a suitable
elimination technique, for example Gröbner bases, is applied. We recall that the system of
polynomial equations f1 = 0, . . . , fs = 0 does not have any solution over algebraically closed
field K if and only if the reduced Gröbner basis of the ideal 〈f1, . . . , fs〉 is equal to {1} (cf.
[3]).

Clearly, this can be immediately used for checking whether the polynomial f(x, y) =
f(x + my, y) possesses the required feature or not. In other words, we want to find out if
there exist singular points (x, y1), (x, y2), where y1 6= y2. Such points do not exist if and only
if the reduced Gröbner basis of the ideal

I =

〈

f(x, y1), f(x, y2),
∂f

∂x
(x, y1),

∂f

∂x
(x, y2),

∂f

∂y
(x, y1),

∂f

∂y
(x, y2), 1− w(y2 − y1)

〉

is equal to {1}.
This method gives us a very compact condition on deciding the required quality of the

singularities of the curve having the equation f(x+my, y) = 0. On the other hand, the main
drawback is its complexity and hence speed (see Table 4).
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5.1.3. A numerical method

Application of Gröbner bases computations is very elegant from the theoretical point of view
but quite slow for particular practical implementations. Thus, we formulate another alterna-
tive simple method more suitable for including into algorithms.

First, we construct a polynomial in one variable whose roots give us the x-coordinates of
all singular points of Ca

h(x) =
g

gcd(g, g′)
, where g(x) = gcd

(

Resy

(

f,
∂f

∂x

)

, Resy

(

f,
∂f

∂y

))

.

Now, we apply a suitable numerical method and find all roots x̄1, . . . , x̄k of the polynomial
h(x). Next, we repeat the same approach for the y-coordinates of all singular points of Ca
— we obtain ȳ1, . . . , ȳs. Finally, we choose ε > 0 and check whether there exist at least two
different roots ȳi, ȳj of the polynomial h(y) satisfying

f(x̄ℓ, ȳi) < ε and f(x̄ℓ, ȳj) < ε.

5.2. Symbolic determination of singular points

A symbolic determination of singular points can be applied on any input curve having solely
singularities with different x-coordinates. The main idea lies in a suitable decomposition of
the set of all singularities into a union of special families of conjugate singular points. Such
decomposition is called a standard decomposition of singularities (see [13] for more details).

5.2.1. Classical Sendra-Winkler method

As any projective plane is covered by three affine planes we may work w.l.o.g. only with affine
curves. Then, all projective singular points of C can be found as the union of all singularities
of the three associated affine curves. According to [13], we define the polynomials

Ci = gcd

(

Resy

(

f,
∂if

∂xi

)

, Resy

(

f,
∂if

∂xi−1y

)

, . . . , Resy

(

f,
∂if

∂yi

))

. (3)

Any polynomial of degree n contains at most an (n− 1)-fold singular point and thus we can
take i = 1, . . . , deg(f)− 1.

Each polynomial Ci should have the property that its roots give the x-coordinates of all
singular points having multiplicity at least i+ 1 (cf. [13]). However, the polynomial (3) does
not fulfil this requirement. If P is a singular point of the multiplicity i on the curve defined
by f then all the partial derivatives of f of all orders less then i have to vanish at P . Hence,
it is necessary to modify the definition of Ci from [13], i.e., in what follows we consider

Ci = gcd

(

Resy

(

f,
∂f

∂x

)

, Resy

(

f,
∂f

∂y

)

, . . . , Resy

(

f,
∂if

∂xi

)

, Resy

(

f,
∂if

∂yi

))

.

Next, we define polynomials Bi with the same roots as Ci but not containing multiple roots

Bi =
Ci

gcd(Ci, C ′
i)
,

where C ′
i denotes the derivative of Ci. Then, the polynomials Ai = Bi/Bi+1 give the x-

coordinates of all (i+ 1)-fold singular points of the curve defined by f .
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Finally, we express the y-coordinates of all singularities depending on their x-coordinates.
Using a suitable elimination technique, e.g., computing the reduced Gröbner basis of the ideal

〈

f(x, y),
∂f(x, y)

∂x
,
∂f(x, y)

∂y
, Ai(x)

〉

,

we arrive at the family of the conjugate singular points in the form

F =

{

(

α :
ai(α)

bi(α)
: 1

)

Ai(α)=0

}

, where ai(α), bi(α), Ai(α) ∈ K[α].

5.2.2. The improvement of the classical Sendra-Winkler method

In this part we design a modification based on determining all singular points at once without
former computing their multiplicities. We define the polynomial

h(x) =
g

gcd(g, g′)
, where g(x) = gcd

(

Resy

(

f,
∂f

∂x

)

, Resy

(

f,
∂f

∂y

))

.

The roots of h are the x-coordinates of all singular points of Ca. We factorize h over Q

h = h1 · · ·hk
and find the y-coordinates of singular points depending on hi. Hence, we obtain several
different families of singular points such that each family contains singularities of the same
multiplicity and character (for more details cf. [13]). All singularities of C are then given by

F =
⋃

j

{

(aj(α) : bj(α) : cj(α))hj(α)=0

}

, where aj(α), bj(α), cj(α), hj(α) ∈ K[α].

The multiplicities are determined by the following theorem (cf. [13]).

Theorem 5.3. Let F =
{

(m1(α) : m2(α) : m3(α))p(α)=0

}

be a family of conjugate points,
where m1, m2, m3, p ∈ K[x] and F (x, y, z) ∈ K[x, y, z]. Then F (x, y, z) vanishes at all points
of the set F if and only if p(α) divides F (m1(α), m2(α), m3(α)).

Example 5.4. We determine the families of affine singularities of the astroid C given by

f(x, y) =
(

x2 + y2 − 25
)3

+ 675x2y2.

Using any method from Section 5.1, we certify that the curve given by f(x+ 2y, y) possesses
only singularities with the different x-coordinates. Thus, we will continue with the polynomial

f(x, y) =
(

(x+ 2y)2 + y2 − 25
)3

+ 675y2(x+ 2y)2.

Then, the polynomial h has the form

h(x) = (x− 10)(x− 5)(x+ 5)(x+ 10)
(

x2 + 25
) (

x2 + 225
)

.

Hence, we can find the corresponding y-coordinates. Finally, we apply the inverse affine
transformation and find the families of the conjugate singular points of C in the form

F = (0 : −5 : 1) ∪ (5 : 0 : 1) ∪ (−5 : 0 : 1) ∪ (0 : 5 : 1)∪
∪ {(−α : −α : 1)α2+25=0 } ∪

{

(

α

3
, −α

3
, 1
)

α2+225=0

}

.

Using Theorem 5.3, we arrive at the multiplicity 2 of all singular points.
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6. Determining simple points

One of the main computational drawbacks of Algorithm 1 is the necessity of determin-
ing a high number of simple points on a given curve C. Generally, we have to determine
nd− (d− 1)(d− 2)− 1 simple points to parameterize a given curve of degree d using a 1-
parameter system of adjoint curves of degree n ∈ {d− 2, d− 1, d} (cf. Table 2).

The authors of [12] overcame significantly this limitation as they proved that it is enough
to determine only one point for a 1-parameter system of adjoint curves of degree d, two points
for a 1-parameter system of adjoint curves of degree d− 1 and three points for a 1-parameter
system of adjoint curves of degree d− 2. This result is summarized again in Table 2.

Table 2: Number of necessary simple points depending on the degree of a chosen
1-parameter system of adjoint curves — original approach and improvement from [12]

System of adjoint Number of simple points Number of simple points
curves for classical method for Sendra-Winkler method

Ld−2(t) d− 3 3

Ld−1(t) 2d− 3 2

Ld(t) 3d− 3 1

We show that only one simple point for determining a 1-parameter system of adjoint curves
of any degree n ∈ {d− 2, d− 1, d} is sufficient. The presented approach is based again on the
construction of a special family of points — we show how a family of nd− (d− 1)(d− 2)− 1
simple points can be determined by only one particular simple point on C.

Let F define an algebraic curve C of degree d, P = (p1 : p2 : p3) be a simple point on C
and Ln be a system of adjoint curves to C of degree n ∈ {d− 2, d− 1, d}. Next, we guarantee
that the curves from Ln are passing through P . This system will be denoted by Ln

∗ . Then, we
choose one particular curve M from Ln

∗ (given by H(x, y, z)) and complete the computation
by determining the system of simple intersections of Ma and Ca. Such system should contain
nd− (d−1)(d−2) simple points for p3 6= 0 and nd− (d−1)(d−2)−1 for p3 = 0 (by Bezout’s
Theorem and the rationality of C). First, we construct a polynomial A(x) whose roots are
exactly the common points of Ca and Ma, i.e.,

A(x) =
B

gcd(B,B′)
, where B(x) = Resy(f(x, y), h(x, y)),

with f(x, y) = F (x, y, 1) and h(x, y) = H(x, y, 1). Now, we construct a polynomial whose
roots give the x-coordinates of all singular points of Ca

C(x) =
D

gcd(D,D′)
, where D(x) = gcd

(

Resy

(

f,
∂f

∂x

)

, Resy

(

f,
∂f

∂y

))

.

Hence, we can construct a polynomial whose roots are exactly the x-coordinates of simple
intersection points of Ca and Ma

E(x) = A(x)/C(x).

Finally, we introduce the polynomial g to guarantee that the intersection of Ca and Ma does
not contain the point P
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g(x) =







E(x)

x− p1/p3
for p3 6= 0,

E(x) for p3 = 0.

Let us note that some of the new intersection points of C and M can lie on the line at
infinity or two simple points can have the same x-coordinate. In this case, the polynomial
g(x) is not of degree nd− (d− 1)(d− 2)− 1 and thus we have to choose a different curve M
from the system Ln

∗ and repeat the process.
We have the polynomial g(x) with roots giving the x-coordinates of affine simple inter-

section points of C with M and our goal is to find the corresponding y-coordinates. Hence,
we compute the reduced Gröbner basis of the ideal

〈f(x, y), h(x, y), g(x)〉.

Since there exists exactly one common intersection point for every root of the polynomial
g(x), the computed basis contains a polynomial being linear in y, say a(x)− yb(x). From this
polynomial we determine a family of nd− (d− 1)(d− 2)− 1 simple points on Ca

F =

{

(

α :
a(α)

b(α)
: 1

)

g(α)=0

}

, where a(α), b(α), g(α) ∈ K[α].

Finally, applying Theorem 5.3 we ensure that every point from this family is lying on each
curve from Ln — and obtain Ln(t). Thus we arrive at the following theorem

Theorem 6.1. Let C be a rational curve. Then only one simple point for determining a
1-parameter system of adjoint curves of any degree n ∈ {d− 2, d− 1, d} to C is sufficient.

At the end of this section, we demonstrate our method on a particular example for n =
d− 2 (for which it is necessary to find 3 simple points in the original approach).

Example 6.2. Let Ca be an algebraic curve defined by

f(x, y) = x4 + 2x2y2 + 10x3y2 − 25x4y2 + y4 + 10xy4.

We start with constructing the system of adjoint curves L4
a

L4 : x2ya1 + y3a1 + x3a2 + xy2a2 + xy3a3 + x2y2a4 + x3ya5.

We find a simple point on Ca, e.g., P =
(

5
6
, 5
8

)

, and guarantee that the curves from L4 are
going through P . It gives us the following condition a1 = −4a2/3− 3a3/10− 2a4/5− 8a5/15.
Next, we choose one particular curve Ma from such system curves, e.g., for a2 = a3 = 30,
a4 = a5 = 0

h(x, y) = 30x3 − 49x2y + 30xy2 − 49y3 + 30xy3.

Using the above given steps, we compute the simple intersection points of Ca and Ma having
the x-coordinates described as the roots of the polynomial

A(x) = −810000x5 + 3618000x4 − 4450464x3 + 925500x2 + 616225x.

The polynomial C(x) = x gives us the x-coordinates of all singular points of Ca. Hence, the
x-coordinates of all simple intersections of Ca and Ma without the point P are given by

g(x) =
A(x)

C(x)
(

x− 5
6

) = 135000x3 − 490500x2 + 332994x+ 123245.
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The reduced Gröbner basis of the ideal 〈f(x, y), h(x, y), g(x)〉 contains the polynomial
42682500x2 − 67403160x+ 14365728y − 18363505. So, we obtain

{(

α, −5
(

8536500α2 − 13480632α − 3672701
)

14365728
, 1

)

135000α3−490500α2+332994α+123245=0

}

.

7. Final examples and conclusion

In this section, we will test2 our modifications of the classical parameterization algorithm on
several random curves of different degrees and complexities (the lower indices in the following
list of polynomials denote the algebraic degree of the studied curves). First, we will study
the possibility to reduce the degree using the standard quadratic transformation. Next, we
will study the computation times of all presented methods for determining singular points.
We present the computation times of the three given methods for finding a suitable affine
transformation and of the two methods for the symbolic determination of singularities (the
computations of a suitable affine transformation via Farouki-Sakkalis and the Automatic
proving method was interrupted after 1000 s for the polynomials p14, p15 and p20). All gained
results are summarized in Tables 3, 4, and 5.

p4 = x4 + 10x3 + 2y2x2 + 10y2x+ y4 − 25y2.

p6 = x6 + 3y2x4 − 75x4 + 3y4x2 + 525y2x2 + 1875x2 + y6 − 75y4 + 1875y2 − 15625.

p7 = 160x4y−115x4+13824x3y4−17472x3y3+5424x3y2−22080x2y4+22496x2y3−5354x2y2+
9552xy4 − 5184xy3 − 1251y4.

p8 = x6y2+4x6y− 8x6+8x5y2− 60x5+14x4y2− 96x4y− 155x4− 32x3y2− 294x3y− 170x3−
138x2y2 − 336x2y − 68x2 − 166xy2 − 136xy − 68y2.

p9 = 12x5y4+24x5y2+12x5+12x4y5+39x4y3+27x4y+52x3y4+48x3y2+72x2y5+108x2y3+
48xy4 + 108y5.

p10 = x5y5 + 21x5y4 − 19x5y3 + x5y2 + x5y + x5 + 10x4y6 + 174x4y5 − 178x4y4 + 11x4y3 +
10x4y2 + 10x4y + 40x3y7 + 552x3y6 − 607x3y5 − 5x3y4 + 83x3y3 + 25x3y2 + 80x2y8 +
816x2y7 − 890x2y6 − 233x2y5 + 338x2y4 − 9x2y3 +80xy9 +528xy8 − 452xy7 − 600xy6 +
597xy5 − 95xy4 + 32y10 + 96y9 + 40y8 − 452y7 + 378y6 − 81y5.

p11 = 115x7y4−160x7y3−70x7y2+160x7y−45x7+300x6y4−780x6y3−5084x6y2+12428x6y−
6864x6−20x5y4−11608x5y3+26636x5y2+2464x5y−19392x5−5904x4y4+15168x4y3+
43152x4y2 − 60096x4y − 13824x4 + 1120x3y4 + 51296x3y3 − 63936x3y2 − 55296x3y +
17472x2y4 − 25152x2y3 − 82944x2y2 − 1920xy4 − 55296xy3 − 13824y4.

p12 = 64x8y4 − 512x8y3 + 1776x8y2 − 3040x8y + 2032x8 − 256x7y4 + 1504x7y3 − 1760x7y2 −
5088x7y+9184x7+112x6y4+2528x6y3−15968x6y2+15064x6y+15608x6+1504x5y4−
10592x5y3 − 1912x5y2 + 46576x5y + 11784x5 − 1680x4y4 − 12792x4y3 + 48176x4y2 +
42776x4y + 3327x4 − 5000x3y4 + 19056x3y3 + 57624x3y2 + 13308x3y + 1848x2y4 +
34056x2y3 + 19962x2y2 + 7424xy4 + 13308xy3 + 3327y4.

2The methods were tested on the computer with processor AMD Phenom II X4 955, 3.2 GHz.
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p14 = 12x9y5 + 27x9y4 + 72x9y3 + 147x9y2 + 112x9y + 192x9 + 87x8y5 + 252x8y4 +705x8y3 +
820x8y2 + 1224x8y + 192x8 + 300x7y5 + 1131x7y4 + 2172x7y3 + 3318x7y2 + 1236x7y +
144x7+693x6y5+2440x6y4+4818x6y3+3180x6y2+892x6y+48x6+1036x5y5+3645x5y4+
4164x5y3 + 2167x5y2 + 300x5y + 12x5 + 1125x4y5 + 2772x4y4 + 2613x4y3 + 720x4y2 +
72x4y+744x3y5+1573x3y4+840x3y3+168x3y2+379x2y5+480x2y4+192x2y3+108xy5+
108xy4 + 24y5.

p15 = x10y5+x10y4− 14x10y3+26x10y2− 19x10y+5x10+6x9y5− 23x9y4+38x9y3− 36x9y2+
20x9y−5x9+x8y5+8x8y4−29x8y3−24x8y2+98x8y−54x8+6x7y5−16x7y4−147x7y3+
299x7y2−65x7y−77x7+x6y5−162x6y4+264x6y3+186x6y2−268x6y−31x6−53x5y5+
49x5y4 + 409x5y3 − 321x5y2 − 134x5y + x5 − 19x4y5 + 270x4y4 − 125x4y3 − 226x4y2 +
5x4y+58x3y5+26x3y4−184x3y3+10x3y2+21x2y5−71x2y4+10x2y3−10xy5+5xy4+y5.

p20 = x10y10 + 11x10y9 + 36x10y8 + 66x10y7 + 81x10y6 − 149x10y5 − 550x10y4 − 48x10y3 +
648x10y2+176x10y+32x10+16x9y10+117x9y9+318x9y8+504x9y7−786x9y6−4289x9y5−
1020x9y4+6484x9y3+2272x9y2+400x9y+91x8y10+508x8y9+1171x8y8− 1538x8y7−
13730x8y6 − 6112x8y5 + 28070x8y4 + 12776x8y3 + 2240x8y2 + 266x7y10 + 1204x7y9 −
1313x7y8 − 23093x7y7 − 17447x7y6 + 68643x7y5 + 41192x7y4 + 7400x7y3 + 461x6y10 −
396x6y9 − 21524x6y8 − 27472x6y7 + 103672x6y6 + 84091x6y5 + 15970x6y4 + 17x5y10 −
10543x5y9−24561x5y8+98987x5y7+112892x5y6+23525x5y5−2121x4y10−11718x4y9+
58329x4y8+99786x4y7+23955x4y6−2322x3y10+19386x3y9+56052x3y8+16650x3y7+
2781x2y10 + 18171x2y9 + 7560x2y8 + 2592xy10 + 2025xy9 + 243y10.

To sum up, we presented the classical algorithm for the rational parameterization of
algebraic curves with zero genus, introduced in [13], and designed some of its possible modi-
fications and improvements. Namely, the method for reducing the degree of algebraic curves
using the standard quadratic transformation was presented and novel approaches to the sym-
bolic determination of singular and simple points of a given curve were studied and discussed.
All modifications were implemented in CAS Mathematicar and then tested on several
examples which proved the functionality and effectiveness of the introduced methods.

Table 3: The degrees of birationally equivalent curves to given curves after one
iteration step and after maximum iteration steps decreasing the degree

using the quadratic transformation

Polynomials Initial degree Degree after 1 step Final degree after (•) steps

p4 4 4 4 (0)

p6 6 6 6 (0)

p7 7 4 1 (3)

p8 8 6 1 (4)

p9 9 5 5 (1)

p10 10 5 1 (5)

p11 11 7 1 (5)

p12 12 8 4 (3)

p14 14 9 9 (1)

p15 15 10 10 (1)

p20 20 10 1 (6)



M. Bizzarri, M. Lávička: Algorithm for the parameterization of rational curves revisited 17

Table 4: The computation times (in seconds) of three presented methods
for determining a suitable affine transformation

Polynomials Farouki-Sakkalis Automatic proving Numerical method

p4 0.016 0.001 0.015

p6 1.28 0.046 0.093

p7 1.124 0.624 0.016

p8 0.015 0.078 0.001

p9 0.967 0.093 0.016

p10 122.57 24.663 0.109

p11 57.689 116.86 0.046

p12 240.819 636.937 3.728

p14 — — 0.14

p15 — — 0.156

p20 — — 4.212

Table 5: The computation times (in seconds) of two presented methods
for determining singular points on the given curves

Polynomials Sendra-Winkler Improvement of Sendra-Winkler

p4 0.001 0.016

p6 0.031 0.031

p7 0.063 0.046

p8 0.188 0.093

p9 0.078 0.063

p10 0.67 0.266

p11 1.123 0.296

p12 2.728 0.452

p14 5.07 0.811

p15 7.988 1.185

p20 32.745 4.103
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