
Journal for Geometry and Graphics
Volume 15 (2011), No. 1, 79–91.

The Reconstruction Problem: Integrating
Different Approaches into a Systematic

Procedure for Pseudo Wireframe Retrieval

Rocco Furferi, Lapo Governi, Matteo Palai, Yary Volpe

Dept. of Mechanics and Industrial Technologies, Università degli Studi di Firenze

Via di Santa Marta 3, 50139 Firenze, Italy

emails: {rocco.furferi, lapo.governi, matteo.palai, yary.volpe}@unifi.it

Abstract. Nowadays three-dimensional Computer Aided modeling is of out-
standing importance in the mechanical design process since it impacts on several
issues like visualization, simulation, machining, etc. Anyway, multi orthographic
view engineering drawings have been widely used up to latest decade and still are,
so they play an essential role in traditional engineering. The conversion from 2D
drawings to 3D CAD models is still a key task in a wide range of applications. In
order to cope with this issue a number of works have been proposed in the last
decades, providing a series of methodologies for solving the reconstruction prob-
lem. On the basis of such methodologies the main aim of the present paper is to
suggest a comprehensive, orderly, unambiguous and automatic procedure meant
to help researchers and practitioners who want to deal with the reconstruction
problem. The procedure, by using an appropriate formal mathematic language,
systematize and integrates some of the methods proposed so far.

Key Words: Pseudo-wireframe, 3D Reconstruction, Engineering Drawings, Or-
thographic Projections, Computer Aided Design, Computational Geometry

MSC 2010: 51N05, 68U05

1. Introduction

Nowadays, 3D CAD modelers are commonly used by designers. Both solid and surface CAD
models have become crucial for a large number of CAE techniques (e.g. visualization, simula-
tion, CNC machining, . . .). Nevertheless, multi orthographic view engineering drawings have
been widely used up to latest decade and still are, so they play an essential role in traditional
engineering. As a matter of fact, many products are still designed by means of orthographic
views. Moreover, many engineering tasks involve modification of existing design, thus an
automatic tool for reconstructing a 3D CAD model, starting from multi orthographic view

ISSN 1433-8157/$ 2.50 c© 2011 Heldermann Verlag

80 R. Furferi et al.: The Reconstruction problem for Pseudo Wireframe Retrieval

engineering drawings, would prove to be particularly useful in many applications. In addition
to its research significance, this kind of tool would ease a number of practical issues, mostly
in the field of automatic conversion of digitized engineering drawings into 3D CAD models.

In order to develop such a procedure, the interpretation of engineering drawings by com-
puters is a key prerequisite. In the past three decades many scientific studies have been
carried out confronting this issue, that has come to be known as geometrical reconstruction

or simply reconstruction problem [2, 4, 7, 9]. A dramatic boost to the research on geometrical

reconstruction was provided by Wesley and Markowsky in their studies [14, 15] which
are probably the best known work among the researchers working on this subject. Wesley

and Markowsky provided a comprehensive set of guide lines for reconstructing a 3D CAD
model starting from orthographic projections. Their procedure is, still today, a milestone for
almost every B-rep based reconstruction study. Since then, many works have been presented
dealing with the reconstruction problem using B-rep approaches [12, 6, 1, 10, 13, 8, 17, 5].

In spite of the huge literature on the reconstruction problem, almost all methods, proposed
by several different authors, are mainly described by a conceptual point of view, so that
deriving an orderly procedure which covers the necessary steps from 2D data to a pseudo-

wireframe model requires always a great effort and a considerable amount of work. The
most challenging tasks that are to be faced when trying to derive such a procedure are
related to the presence of ambiguities in the methodology description and to the lack in
enumerating all possible cases that can be found when having to deal with real-life drawings.
For instance, Yan et al. [16] describe a conceptually flawless method to detect 3D edges on the
basis of a table of possible configurations. Nevertheless such a method has to be improved
by adding more new configurations in order to derive a comprehensive and unambiguous
operative procedure.

The aim of the present work is to provide researchers and practitioners with an orderly
and automatic procedure enabling a straightforward implementation of the pseudo-wireframe

model reconstruction. The works proposed by the scientific literature, which confront the
reconstruction problem for curvilinear objects usually present, quite “tricky” approaches,
generally involving heavy user interaction [5, 17, 8, 10]. At the moment, though very inter-
esting and promising, such approaches are not well established in the scientific community.
Since existing approaches are certainly better recognized in the case of polyhedrical objects,
the authors decided to confront the reconstruction problem for this kind of geometric en-
tities. The proposed method integrates the approaches presented in a number of studies
[14, 15, 16, 6], and — making use of an appropriate formal language — presents a compre-
hensive implementation-oriented procedure.

2. Method

According to [11], a representation of a drawing can be generated in some neutral file formats
such as DXF (Drawing Exchange Format) developed by Autodeskr.

Given three projections of an object in the DXF format, it is immediate to detect each
entity (line, circle, etc.) composing it. Unfortunately such a file format does not provide
topological information, i.e., the entities in a DXF file are in no logical order so that no
explicit information regarding their connectivity is accessible. For such a reason, a method
for separating the drawing into three views is needed before further processing can take place.
If Πi is defined as the ith projection (i = 1, 2, 3) in the orthographic view system, several
approaches for separating the three views can be used (e.g., [11]). By using one of these

R. Furferi et al.: The Reconstruction problem for Pseudo Wireframe Retrieval 81

Figure 1: 3D projected object

approaches, the result is the creation of two families of sets:

1. V i, with i = 1, 2, 3, represent the three sets of vertices, each one corresponding to
a projection in the orthographic view system (i.e., V i is the set of vertices of Πi —
metrical data).

2. Ei, with i = 1, 2, 3, represent the three sets of edges, each one corresponding to a pro-
jection in the orthographic view system (i.e., Ei is the set of edges of Πi — geometrical

data).

On the basis of the six sets described above, V i(j) = vi
j = [xi

j , y
i
j, z

i
j] represents the jth

vertex in the ith orthographic view. By definition, each vertex lies on one of the coordinate
planes. Consequently, one of the elements of vi

j is always equal to zero (see Fig. 1).

The jth edge in the ith orthographic view is identified by its two vertices vi
h and vi

k as
follows:

ei
j =

[

vi
h

vi
k

]

2×3

(1)

The three standard views (top, front and side) can be expressed as follows:

Π1 = [e1

1
, e1

2
, . . . , e1

a]
T
a

Π2 = [e2

1
, e2

2
, . . . , e2

b]
T
b

Π3 = [e3

1
, e3

2
, . . . , e3

c]
T
c

(2)

where a, b and c are, respectively, the number of edges in Π1, Π2 and Π3. Finally the set of
orthographic projections (standard views) is defined as:

OBJ = [Π1,Π2,Π3]T (3)

where the size of matrix OBJ is (2a+ 2b+ 2c)× 3.

82 R. Furferi et al.: The Reconstruction problem for Pseudo Wireframe Retrieval

For each projection, the coordinates of the projection vertices are:

V 1 = [v1

1
, v1

2
, . . . , v1

β]
T
β×3

V 2 = [v2

1
, v2

2
, . . . , v1

γ]
T
γ×3

V 3 = [v3

1
, v3

2
, . . . , v3

ϕ]
T
ϕ×3

(4)

where β, γ and ϕ are respectively the numbers of vertices in Π1 , Π2 and Π3.

2.1. 3D reconstruction of edges and vertices

As described in the section above pre-processing data may be manipulated in order to generate
a mathematical 3D pseudo-wireframe model. With the aim of obtaining such a model, the
following tasks have to be carried out.

2.1.1. Labeling of vertices

Once the set of orthographic projections (standard views) is known, it is possible to perform a
reconstruction of vertices and edges in the 3D space, i.e., it is possible to create a topological
data structure starting by labeling each vertex of each projection with a progressive number.
As a result we obtain:

vi
1
= [xi

1
, yi

1
, zi

1
] ⇒ vi

1
= 1

vi
2
= [xi

2
, yi

2
, zi

2
] ⇒ vi

2
= 2

...
vi
n = [xi

n, y
i
n, z

i
n] ⇒ vi

n = n

(5)

2.1.2. Labeling of edges

As depicted in Fig. 2, each edge may be defined by means of the set of labels of its vertices.
As a consequence each edge ei

j can be rewritten as follows:

ei
j =

[

xi
h, y

i
h, z

i
h

xi
k, y

i
k, z

i
k

]

2×3

=⇒ ei
j = [hi, ki]1×2 (6)

Accordingly, only 3 parameters (h, k, i) are now used to identify each edge properly instead
of 7 parameters previously used (xi

h, y
i
h, z

i
h, x

i
k, y

i
k, z

i
k, i).

2.1.3. Check for intermediate vertices and collinear edges

Though an object is represented by a univocal set of projections, these can be drawn by using
different combination of geometric entities: the segment highlighted in Fig. 3b (as shown, for
instance, in a printed copy of the drawing) in the DXF file can be made up of a number of
straight vectors (from 1 to 8 as shown in Fig. 4a). Note that such combination of vectors
may be different from the one which would be generated by the projection of the object’s 3D
edges lying on the plane orthogonal to the view and whose trace contains the original segment
(Fig. 3a).

Therefore, an approach for the processing of different DXF files of the same drawn object
is provided, in order to obtain a univocally defined vectorial representation, comprising all
the possible configurations.

First, for each edge, an iterative procedure checks for the possible existence of intermediate
vertices. If any intermediate vertex is found, the procedure stops. Otherwise the found

R. Furferi et al.: The Reconstruction problem for Pseudo Wireframe Retrieval 83

Figure 2: Labeling of edges

(a) Plane of projection (b) Projected view

Figure 3: Projection on an orthogonal view

intermediate vertex causes the creation of two new edges (unless one of them already exists).
This task, called “segmentation”, is performed for each set of edges belonging to a projection,
thus adding new edges to the original set. Referring to Fig. 3b, supposing that the portion of
projection highlighted is represented by the configuration “B” of Fig. 4a, the “segmentation”
process produces the results shown in Fig. 4b. Particularly, it is important to note that two
new edges, highlighted in Fig. 4b, have been generated in the projection.

From the mathematical point of view, the segmentation task can be accomplished as
follows. According to the notation described in (5) and (6), the following definitions can be
provided referring, for instance, to Π3 (where processing Π1 the variable y has to be replaced
by the variable z, in the case of Π2 the variable x has to be replaced by the variable z):

1.

f i
j(x, y) = 0 (7)

equation of the curve on which the edge ei
j lies;

2.

Bi
j =

[

B1,1 B1,2

B2,1 B2,2

]

2×2

(8)

84 R. Furferi et al.: The Reconstruction problem for Pseudo Wireframe Retrieval

(a) Possible combinations of edges (b) “Segmentation” procedure

Figure 4: “Segmentation”

bounding box of the edge ei
j whose components are

B1,1 = max {xi
h, x

i
k} B1,2 = max {yih, y

i
k}

B2,1 = min {xi
h, x

i
k} B2,2 = min {yih, y

i
k}

(9)

For each projection Πi, for each edge ei
j, for each vertex vi

d, the performed procedure check
the existence of the two edges defined as follows:

ei
s = [vi

h, v
i
d]

ei
t = [vi

d, v
i
k]

with
0 < s ≤ a, b, c

0 < t ≤ a, b, c
(10)

where the choice among a or b or c is determined by the index i (a if i = 1, b if i = 2, c if
i = 3). Let’s define:

l1 = 1 if f i
j(x

i
d, y

i
d) = 0 and l1 = 0 else;

l2 = 1 if B1,1 ≤ xi
d ≤ B2,1 and l2 = 0 else;

l3 = 1 if B1,2 ≤ yid ≤ B2,2 and l3 = 0 else;
l4 = 1 if xi

h = xi
d and l4 = 0 else;

l5 = 1 if yih = yid and l5 = 0 else;
l6 = 1 if xi

k = xi
d and l6 = 0 else;

l7 = 1 if yik = yid and l7 = 0 else;

(11)

When one or both of the edges described in (10) do not exist, the following logical equation
is evaluated:

l1 ∧ l2 ∧ l3 ∧ [(l4 ⊕ l5) + l4 ∧ l5] ∧ [(l6 ⊕ l7) + l6 ∧ l7] = 1 (12)

If the equation (12) is verified, then:
1. If both edges do not exist, both, ei

s and ei
t, have to be added to Πi.

2. If one of the edges does not exist, e.g., ei
s , only the missing one, ei

s, have to be added
to Πi.

3. If both edges exist, the procedure progresses with the following vertex.
When no more vertices have to be checked, the procedure progresses with the following edge.
When all the edges lying on a projection have been processed, the method switches to another
projection. The procedure stops when all the three projections have been analyzed.

The results of the segmentation task applied to the highlighted part of the projection in
Fig. 3b, are shown in Fig. 4b. Thus, the two highlighted edges in Fig. 4b have been added to
the set of edge.

R. Furferi et al.: The Reconstruction problem for Pseudo Wireframe Retrieval 85

After the “segmentation” task, a check of collinearity of edges is performed. As shown
in Fig. 5, this phase is crucial when two non contiguous vertices are linked by two or more
collinear edges. If this check is neglected or inaccurate it could happen that two visually
identical projections are described by two different datasets. When a collinearity of edges is
detected, a new set of edges is added to the original one as described below. The collinearity
can be detected as the logical product of concatenation (two edges sharing the same vertex)
and parallelism.

Figure 5: “Collinearity” procedure

In order to describe the concatenation and parallelism relationship among the edges, the
following two matrices has been defined:

1. the concatenation matrix CMi of the projection Πi ;

2. the parallelism matrix PMi of the projection Πi.
Since a single projection can be considered as a planar graph [3], matrices CMi are defined
similarly to the adjacency matrix in graph theory.

Accordingly, each matrix CMi is a logical matrix whose elements CMi
s,t are equal to 1

when the sth and the tth edges of Πi are concatenated and equal to 0 elsewhere. Matrices PMi

are also logical and their elements PMi
s,t are equal to 1 when parallelism subsists between the

sth and the tth edges of Πi and 0 elsewhere.
In order to further clarify the structure of these matrices an example is provided in Fig. 6a.
The collinearity between edges may be defined by the matrices Ci (Fig. 6d) obtained

as the element by element product between matrices CMi and PMi, as illustrated in the
example of Fig. 6. Obviously, the collinearity between the sth and the tth edges in the Πi

projection subsists only when the entry of the matrix Ci (i.e., C i
s,t) is equal to 1.

It is important to remark that the elements of the matrices Ci represent the collinearity
relationship only for a couple of adjacent edges. If matrices Ci are all zero matrices, no
collinear edges exists in the three projections. Otherwise each non zero matrix Ci has to be
checked column by column, starting from the top of the matrix, in order to detect all the
collinear set of edges. This task is performed according to the following procedure for each
projection Πi:
Step 1: set to zero all diagonal element of Ci;

Step 2: find the first column Ci(k) containing at least a nonzero value;

Step 3: find the position of all the nonzero values in column Ci(k);

Step 4: store these positions in a column vector γ ;

86 R. Furferi et al.: The Reconstruction problem for Pseudo Wireframe Retrieval

Step 5: for each value γ ∈ γ find the position of all the nonzero values in the γth row, except
for the kth position of the row;

Step 6: store these position in a row vector δ;

Step 7: for each value δ ∈ δ replace the kth column of Ci with the logical sum (OR) of the
δth and the kth columns of Ci;

Step 8: replace the δth column of Ci with a zero column vector;

Step 9: find the next column k containing at least a nonzero value; then repeat from Step 2

until no more column has to be processed.

The final result of this procedure is to redefine the matrices Ci so that the position of nonzero
elements in each column represent the collinear edges. All the permutations of the collinear
edges that are not already stored in the matrices Πi are then appended as new edges.

“Segmentation” and “collinearity” tasks, performed on the highlighted part of the pro-

(a) Input data (b) CM matrix

(c) CP matrix (d) C matrix

Figure 6: Collinearity datasets

R. Furferi et al.: The Reconstruction problem for Pseudo Wireframe Retrieval 87

(a) “Segmentation” and
“collinearity” results

(b) “Collinearity” sample

Figure 7: “Segmentation” and “collinearity” tasks

jection in Fig. 3b, allow to obtain the finally set of edges as shown in Fig. 7a.

The described procedure allows to correctly extend the edge set in each projection. For
example, referring to Fig. 7b, the collinearity task produces, as a result, the set of edges
{e1, e2, e3, e4}; by excluding edge e8 from the set, the collinearity task prevents the generation
of new pathological features in the projections (i.e., edges between e4 and e8).

2.1.4. Construction of vertices and edges in the 3D space

Once a database of edges and vertices for each view is obtained, it is possible to build a pseudo
vertex skeleton.

Let ω = [∅] and σ = [∅] be two auxiliary vectors and Λ = [∅] the matrix of 3D vertices:

Step 1: for each vertex v1

n = [x1

n, 0, z
1

n] store in the vector ω all the vertex labels ω so that
v3ω,1 = v1n,1;

Step 2: for each vertex v1

n = [x1

n, 0, z
1

n] store in the vector σ all the vertex labels σ so that
v2σ,3 = v1n,3;

Step 3: for each element ω ∈ ω, for each element σ ∈ σ, if v2σ,2 = v3ω,2 then append to the
3D matrix of vertices Λ the row vector λ = [x1

n, y
2

σ, z
1

n, n, σ, ω] and reset to the initial
values vectors ω and σ.

Step 4: for each vertex v2

n = [0, y2n, z
2

n] store in the vector ω all the vertex labels ω so that
v3ω,2 = v3n,2;

Step 5: for each vertex v2

n = [0, y2n, z
2

n] store in the vector σ all the vertex labels σ so that
v1σ,3 = v2n,3;

Step 6: for each element ω ∈ ω, for each element σ ∈ σ, if v1σ,1 = v3ω,1 then append to the
3D matrix of vertices Λ the row vector λ = [x1

n, y
2

σ, z
1

n, σ, n, ω] and reset to the initial
values vectors ω and σ.

Step 7: for each vertex v3

n = [x3

n, y
3

n, 0] store in the vector ω all the vertex labels ω so that
v1ω,1 = v3n,1;

Step 8: for each vertex v3

n = [x3

n, y
3

n, 0] store in the vector σ all the vertex labels σ so that
v2σ,2 = v3n,2;

88 R. Furferi et al.: The Reconstruction problem for Pseudo Wireframe Retrieval

Step 9: for each element ω ∈ ω, for each element σ ∈ σ, if v2σ,3 = v1ω,3 then append to the
3D matrix of vertices Λ the row vector λ = [x1

n, y
2

σ, z
1

n, ω, σ, n] and reset to the initial
values vectors ω and σ.

At the end of the above procedure, an additional check verifies the possible presence of
multiple identical rows in Λ; these possible row groups are so simplified and only one of them
is preserved inside the matrix Λ. The result of this task, called pseudo-vertex skeleton, is a
new dataset structured as follows:

Λ =

x1 y1 z1 v1 v2 v3
...

...
...

...
...

...
xǫ yǫ zǫ vǫ vǫ vǫ

ǫ×6

(13)

Once the matrix Λ has been compiled, four additional phases are required to accomplish the
3D edges construction task:

1. Construction of 3D edges that are not orthogonal to any projection (Steps 1 to 4 de-
scribed below);

2. Construction of 3D edges that are orthogonal to Π1(Steps 6 to 9);

3. Construction of 3D edges that are orthogonal to Π2 (according to Steps 6 to 9);

4. Construction of 3D edges that are orthogonal to Π3 (according to Steps 6 to 9).
If we define:
ω = [∅] and σ = [∅] two auxiliary vectors;

ρ = 0 an auxiliary variable;

Θ = [∅] the matrix of the 3D edges,
the above mentioned steps can be detailed with the following procedure:
Step 1: for each row vector λs ∈ Λ, set ρ = s and store in the vector ω all the labels ω of

the edges e1ω lying on Π1 that share the 2D vertex v1n = λ4 .

Step 2: for each element ω ∈ ω store in the vector σ the label σ of the 2D vertex v1σ so that
e1

ω = [v1

σ
, v1

ω
] or e1

ω = [v1

ω
, v1

σ
]

Step 3: for each element σ ∈ σ extract all the rows of Λ such as Λs,4 = σ and store them in
the Ξ matrix as follows:

Ξ =

s1 x1 y1 z1 σ µ1 ζ1
...

...
...

...
...

...
...

sη xη yη zη σ µη ζη

η×7

(14)

Step 4: for each row ξm ∈ Ξ , if:
{

∃e2

h|e
2

h = [ξm,6, λs,5] ∨ e2

h = [λs,5, ξm,6]
}

∧
{

∃e3

k|e
3

k = [ξm,7, λs,5] ∨ e3

k = [λs,5, ξm,7]
}

= 1
(15)

then append the 3D edge θ = [ρ, ξm,1] to the 3D edges list Θ.

Step 5: repeat steps from 1 to 5 until no row λs ∈ Λ remains.

Step 6: reset to the initial values the vectors ω, σ and the matrix Ξ.

Step 7: for each row vector λs ∈ Λ search all the rows λt ∈ Λ (including λs) so that
λt,4 = λs,4 and store them in the Ξ matrix as follows:

Ξ =

t1 x1 y1 z1 λt,4 µ1 ζ1
...

...
...

...
...

...
...

tη xη yη zη λt,4 µη ζη

η×7

(16)

R. Furferi et al.: The Reconstruction problem for Pseudo Wireframe Retrieval 89

Step 8: let the vector τ be the 1st column of Ξ; for each combination of two elements of τ ,
{τh, τk}, with h 6= k, if:

{

∃e2

i = [ξh,6, ξk,6] ∨ e2

i = [ξk,6, ξh,6]
}

∧
{

∃e3

i = [ξh,7, ξk,7] ∨ e3

i = [ξk,7, ξh,7]
}

= 1 (17)

then append θ = [h, k] to the list Θ of 3D edges.

The result of these phases consists of two sets. One of them, Λ represents the list of 3D
vertices, while the second one, Θ, represent the list of 3D edges. Such sets mathematically
represent, eventually, the pseudo-wireframe model (or the set of pseudo-wireframe models if
the three views are not sufficient for defining a spatial object uniquely) of the object.

3. Results

The mathematical procedure provided in Section 2 has been implemented in the MatLabr

environment. The resulting software has been thoroughly tested with a large number of case
studies. The test process has been carried out as follows:
Step 1: development of a 3D model for each object selected for the test;

Step 2: extraction of the orthographic projections from the 3D model (in the form of a DXF
file);

Step 3: processing of the DXF file by means of the presented reconstruction procedure
thereby obtaining the test object’s pseudo-wireframe;

Step 4: comparison between the test object’s actual wireframe model and its pseudo-wireframe
one.

(a) 3D model (b) Orthographic projections

(c) Pseudo-wireframe model (d) Wireframe model

Figure 8: Reconstruction example — case A

90 R. Furferi et al.: The Reconstruction problem for Pseudo Wireframe Retrieval

(a) 3D model (b) Orthographic projections

(c) Pseudo-wireframe model (d) Wireframe model

Figure 9: Reconstruction example — case B

More in detail, in Step 4 it is necessary to prove that

• the actual wireframe model is a subset of the obtained pseudo-wireframe one;

• the exceeding edges (which can be found in the second model, but not in the first) can
be projected on segments actually existing in the orthographic projections obtained in
Step 2.

In Figures 8 and 9, the results of pseudo-wireframe model reconstruction for a small selection
of examples are presented.

In particular, in Fig. 8d segments which are not parallel to at least one coordinate plane
are properly reconstructed. As described above, if the three views are not sufficient for defining
a spatial object uniquely, the proposed algorithm allows the reconstruction of all the possible
wireframes coherent with the provided orthographic views. In this case the result consists of
a set of wireframe models rather than a single wireframe.

4. Conclusions

In this work an orderly, unambiguous and automatic procedure to cope with the reconstruc-
tion problem from the implementation point of view is provided. Particularly, the proposed
method allows the reconstruction of the pseudo-wireframe starting from 2D vectorial data.
The presented procedure has been designed like a support tool for researchers who want to
deal with the reconstruction problem in order to facilitate their work.

In order to assess its effectiveness, the procedure has been implemented using Matlabr

programming language and tested on a number of case studies. The presented results demon-
strate the functionality and the reliability of the provided method. Future work will be
addressed to the second phase of the reconstruction problem; accordingly it will deal with
the reconstruction of 3D solid (or surface) model(s) starting from the pseudo-wireframe ones,
obtained by means of the presented procedure.

R. Furferi et al.: The Reconstruction problem for Pseudo Wireframe Retrieval 91

References

[1] Z. Chen, D. Perng, C. Chen, C. Wu: Fast reconstruction of 3D mechanical parts

from 2D orthographic views with rules. Internat. Journal of Computer Integrated Manu-
facturing 5 (1), 2–9 (1992).

[2] P. Company, A. Piquer, M. Contero, F. Mnaya: A survey on geometrical recon-

struction as a core technology to sketch-based modeling. Computers & Graphics 29 (6),
892–904 (2005).

[3] R. Diestel: Graph theory. Graduate texts in mathematics, Springer, Berlin 2006.

[4] M.A. Fahiem, S.a. Haq, F. Saleemi: A Review of 3D Reconstruction Techniques

from 2D Orthographic Line Drawings. Geometric Modeling and Imaging (GMAI ’07),
60–66, (2007).

[5] J. Gong, G. Zhang, H. Zhang, J. Sun: Reconstruction of 3D curvilinear wire-frame

from three orthographic views. Computers & Graphics 30 (2), 213–224 (2006).

[6] U.G. Gujar, I. Nagendra: Construction of 3D solid objects from orthographic views.
Computers & Graphics 13 (4), 505–521 (1989).

[7] M. Idesawa: A System to Generate a Solid Figure from Three View. Bulletin of JSME
16 (92), 216–225 (1973).

[8] K. Inoue, K. Shimada, K. Chilaka: Solid Model Reconstruction of Wireframe CAD

Models Based on Topological Embeddings of Planar Graphs. Journal of Mechanical Design
125 (3), 434–442 (2003).

[9] G. Lafue: Recognition of Three-Dimensional Objects from Orthographic Views. Proc.
3rd Annual Conference on Computer Graphics, Interactive Techniques, and Image Pro-
cessing, ACWSIGGRAPH 1976, pp. 103–108.

[10] S. Liu: Reconstruction of curved solids from engineering drawings. Computer-Aided
Design 33 (14), 1059–1072 (2001).

[11] S. Meeran, M. Pratt: Automated feature recognition from 2D drawings. Computer-
Aided Design 25 (1), 7–17 (1993).

[12] H. Sakurai, D. Gossard: Solid model input through orthographic views. ACM SIG-
GRAPH Computer Graphics 17 (3) (1983).

[13] L. Shixia, H. Shimin, S. Jiaguang: Two accelerating techniques for 3D reconstruc-

tion. Journal of Computer Science and Technology 17 (3), 2002.

[14] M. Wesley, G. Markowsky: Fleshing out wire frames. IBM Journal of Research and
Development 24 (5), 582–597 (1980).

[15] M. Wesley, G. Markowsky: Fleshing out projections. IBM Journal of Research and
Development 25 (6), 934–954 (1981).

[16] Q. Yan, C. Chen, Z. Tang: Efficient algorithm for the reconstruction of 3D objects

from orthographic projections. Computer-Aided Design 26 (9), 699–717 (1994).

[17] A. Zhang, Y. Xue, X. Sun, Y. Hu, Y. Luo, Y. Wang, S. Zhong, J. Wang,

J. Tang, G. Cai: Reconstruction of 3D Curvilinear Wireframe Model from 2D Ortho-

graphic Views. Lecture Notes in Computer Science, In: 4th International Conference on
Computational Science – ICCS, June 2004, pp. 404–412.

Received September 30, 2010; final form April 22, 2011

