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Abstract. The one-parameter family of triangles with common incircle and
circumcircle is called a porisitic! system of triangles. The triangles of a poristic
system can be rotated freely about the common incircle. However this motion
is not a rigid body motion for the sidelengths of the triangle are changing. Sur-
prisingly many triangle centers associated with the triangles of the poristic family
trace circles while the triangle traverses the poristic family. Other points move
on conic sections, some points trace more complicated curves. We shall describe
the orbits of centers and some other points. Thereby we are able to answer open
questions and verify some older results.
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1. Introduction

The family of poristic triangles has marginally attracted geometers interest. There are only
a few articles contributing to this particular topic of triangle geometry: [3] is dedicated
to perspective poristic triangles, [12] deals with the existence of triangles with prescribed
circumcircle, incircle, and an additional element. Some more general appearances of porisms
are investigated in [2, 4, 6, 9, 16] and especially [7] provides an overview on PONCELET’s
theorem which is the projective version and thus more general notion of porism.
Nevertheless there are some results on poristic loci, i.e., the traces of triangle centers
and other points related to the triangle while the triangle is traversing the poristic family.
In [14] some invariant lines, circles, and conic sections have been determined. Also triangles
with common circumecircle and nine-point circle have been studied by R. CRANE in [5]. The
poristic loci of triangle centers have not undergone sincere study. For some centers the loci

I'The word poristic is deduced from the greek word porisma, which could be translated by deduced theorem,
cf. L. MACKENSEN: Neues Worterbuch der deutschen Sprache. 13. Auflage, Manuscriptum Verlag, Miinchen,
2006.
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are given in [11], especially the trace of the GERGONNE point is treated in [1]. In [13] a result
by WEILL is reproduced showing that the centroid X354 of the intouch triangle is fixed while
A traces its poristic family.

For most of the centers listed in [10] the respective poristic locus is unknown. In the
following we shall derive these loci, at least for some centers that can easily be accessed with
our method. For that purpose we impose a Cartesian coordinate system in Sec. 2 which will
henceforth be the system of reference. Subsequently we derive paths of points which are not
centers in Sec. 3. Afterwards we pay our attention to triangle centers in Sec. 4. First we
focus on the centers on the line £; 3, connecting the incenter X; with the circumcenter Xs.
It carries a lot of centers, some of them stay fixed others do not. We only look at the fixed
ones. Triangle centers which are located on the incircle or circumcircle naturally trace these
circles. None of these remains fixed, except those on £; 3. Then we shall derive poristic loci of
some triangle centers and focus on those that traverse circles and conic sections. The centers
and radii or semiaxes of these poristic orbits are given explicitly.

At this point we shall say a few words about techniques used in this work. Computations
are done with Maple. Equations of poristic loci mainly use the framework of resultants.
The computation of parametrizations of centers is restricted somehow. This will be clear
when we see parametrizations of the circumcircle and incircle describing the vertices of A and
its intouch triangle, respectively. Deriving paths of orthocenters, centroids, circumcenters,
midpoints of a pair of triangle centers, as well as paths of triangle centers which appear
as intersections of central lines seems to be a very simple task at first glance. But, however,
parametrizations become larger and larger and the computation of equations exceeds memory
capacity and cannot be done in an acceptable amount of time. Therefore centers like the
incenter of the intouch triangle (which is X7 for the base triangle) cannot be reached with
our method.

2. Prerequisites

Let A be a triangle with vertices A, B, C. We denote its circumcircle and incircle by u and 4,
respectively. The circumcenter and the incenter shall be denoted by X3 and X7, see [10, 11].
The circumradius R, the radius of the incircle r, and the distance d of X; and X3 are related
by

d* = R* - 2rR, (1)

see for example [11, p. 40]. The incircle and the circumcircle are circles in a special position.
To the best of the author’s knowledge there is no english word for that. In german we would
say: “Kreise in Schlieffungslage”.

Any two circles v and i define a one-parameter family of triangles all of them having u
for the circumcircle and i for the incircle provided that Eq. (1) is fulfilled, cf. Fig. 1. Any two
triangles out of this family are said to form a poristic pair of triangles.

In the following we want to study the traces of centers and other points related to a
triangle traversing its poristic family. For that purpose we use Cartesian coordinates in order
to represent points in the Euclidean plane. Without loss of generality we can assume that
X3 =10,0] and X; = [d,0]. The equations of the circumcircle and the incircle are thus

u: B +y =R i (x—d)P+yP =17 (2)

2Triangle centers are labelled according to C. KIMBERLINGS list [10, 11]. Central lines, i.e., lines joining
two centers with Kimberling number ¢ and j shall be denoted by L; ;.
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C

Figure 1: Triangle A with incircle i, circumcircle u, and the Cartesian
coordinate system imposed on it

Aiming at parametrizations of the traces of centers and other points related to the triangle
we assume that the line carrying A and B is given by

g: xcost+ysint =r+dcost with ¢ € [0,2m) (3)

since [A, B] has to be tangent to i. This allows to parametrize the circular path of points A
and B in a proper way. Note that these points are the intersections of g and u and therefore
they are given by

A= [rcost+dcos*t+ Wsint,rsint + dcostsint — W cost], n

B = [rcost+ dcos®t — Wsint,rsint + dcostsint + W cost],

where W = \/R? — (r + d cost)2.3
Finally the two tangents from A and B to i which are different from the line [A, B|
intersect in A’s third vertex C' € u. This point reads

R(2dR — (R? + d®)c;) (& — R*)Rs,

C =
R2 + d2 — 2dRCt 7 R2 + d2 — QdRCt ’

(5)

whose trace is now described by the same parameter ¢t. Here and in the following ¢; and s,
are short hand for cost and sint, respectively.

The triangle A and thus any triangle in the poristic family defines some other triangles:
The medial triangle A,, is built by the midpoints of A’s sides. We denote the anticomple-
mentary triangle by A,, the excentral triangle by A., the intouch triangle by A;, the tangent
triangle by A;, the orthic triangle by A,, and the extouch triangle by A,.

It is elementary to find the vertices of A,, A., A,,, A,, and A, if the parametric rep-
resentation of A, B, and C' is known. One vertex from A; is known from the beginning:

3Note that r, R, and d are related via Eq. (1). Sometimes we do not eliminate r in order to shorten
formulae.
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Bap = [reg + d,rsy], the point of contact of g and i. The remaining vertices of A; can be
obtained by reflecting the contact point Bag of the line [A, B] with i in [A, X;] and [B, X4,
respectively. Though these operations are elementary we sketch them in order to make any
computation traceable.

Finally we point out that the computation of centers X; with

i€{1,2,3,4,5,6,7,8,9,10,11,12,20}

among many others is elementary with these preparations. The shape of the respective poristic
loci will be discussed later in Sec. 4. At this point we should confess that the computation
of incenters needs normalization of direction vectors. Luckily we have the incenter of A, but,
unfortunately we cannot reach incenters of A, and A;.

3. Traces of some points

We give the answer to the question raised in [11, p. 257] by proving the following:

Theorem 3.1. The trace of the midpoint of any side of a triangle traversing a poristic family
1s a Limacon of Pascal.

Proof. The midpoint M of AB is given as the arithmetic mean of the coordinate vectors of
the two points A and B from (4) and reads

M = [rcost +dcos*t,rsint + dcostsint]. (6)

The curve parametrized by (6) is called Limagon of PASCAL, see [15]. Its equations in terms
of Cartesian coordinates is obtained by eliminating ¢t and reads

m: (22 4+ y?)? = 2da(2® + y*) — ((r* — d*)2® +r*y®) = 0 (7)
for variable choices of r and d such that Eq. (1) is satisfied. O

Figure 2 shows different shapes of this curve: noded, cusped, or without visible singularity.
However, independent on the choice of R and d the point X3 is a double point on m in any
case. The quartic curve m has a cusp at U exactly if |d| = |r|. If |d| < |r| U is an isolated
double point.

Figure 2: Different shapes of Pascal’s limacon which appears as trace of a side’s midpoint
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The quartic m touches i twice, i.e., precisely at points Xoye = [d — 7,0] and Xogy =
[d+7,0]. If a midpoint of a side of A happens to coincide with one of these points then A is
isosceles. Obviously there are two isosceles triangles in the family of poristic triangles.

According to BEZOUT’s theorem the total amount of intersection points of m and i equals
8. The two real contact points Xo446 and Xo447 are each of multiplicity two, the remaining
four points are the absolute points of Euclidean geometry (a pair of conjugate complex points
on the ideal line) each of which has multiplicity two on m and as a common point of m and
1. Note that the midpoints of the remaining two sides of A hound M on the same curve.

Figure 3: The common path of all three excenters

The traces of the excenters (see Fig. 3) of triangles in a poristic family have been studied
in [14] with slightly different methods. We observe:

Theorem 3.2. The three excenters of the triangles in a poristic family trace the same circle
e. Its center E is the reflection of X1 in X3 and its radius equals 2R.

Proof. The normals to [A, X;] and [B, X;] at A and B, respectively, intersect at A’s excenter
As, opposite to C, for these lines are the internal bisectors at A and B. An elementary
computation using (4) and (5) yields

Ag - [QRCt - d, QRSt]
which obviously parametrizes the circle e with equation
e: (x+d)?+y*=4R% (8)

Cyclically shifting A, B, and C yields parametrizations of the loci of the other excenters.
These parametrizations annihilate Eq. (8). The center of e is £ = [—d, 0], i.e., the point X
is the midpoint of £ and X;. The radius of e equals 2R. O
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Note that the point E is A’s center Xyo, which is frequently called BEVAN POINT (cf.
[10, 11]) and it remains fixed while A goes through the poristic family. The excentral triangles
A, together with the triangles A form another poristic family of triangles with common
circumcircle e and nine-point circle u for A is the orthic triangle of A, see [5].

Similarly we can show:

Theorem 3.3. The vertices of the tangential triangle A, of A move on an ellipse while A
traverses the poristic family.

Proof. The vertices Ty, Ty, T of A; are constructed as the intersections of the tangents of
the circumcircle v at A, B, C, respectively. The trace of the vertex Ty opposite to C' is
parametrized by

2R3Ct 2R38t

T = .
T IR 421 2dRe,” R? — d2 + 2dRe,

This is an ellipse with center [R?d/(R? —2Rr —r?),0] and semiaxes a = rR*/(r* 4+ 2Rr — R?),
b= R%?/\/r? + 2Rr — R? which can be seen after implicitization. The traces of T4 and Tz have
a more complicated parametrization, but, however, they annihilate the same equation. O

Figure 4 shows the ellipse appearing as the poristic orbit of the vertices of A, .

4. Orbits of some centers

4.1. Centers on L3

On the central line £, 3 we find the triangle centers X; with

Figure 4: The ellipse traced by the vertices of the tangential triangle.



B. Odehnal: Poristic Loci of Triangle Centers 51

i €1, 3, 35, 36, 40, 46, 55, 56, 57, 65, 165, 171, 241, 260, 354, 484, 517, 559, 940,
942, 980, 982, 986, 988, 999, 1038, 1040, 1060, 1062, 1082, 1155, 1159, 1214, 1319,
1381, 1382, 1385, 1388, 1402, 1403, 1420, 1429, 1454, 1460, 1466, 1467, 1470, 1482,
1617, 1622, 1697, 1715, 1735, 1754, 1758, 1764, 1771, 1936, 2061, 2077, 2078, 2093,
2095, 2098, 2099, 2223, 2283, 2352, 2446, ..., 2449, 2556, 2557, 2564, 2565, 2572,
2573, 2646, 2662, 3057, 3072, 3075, 3245, 3256, 3295, 3303, 3304, 3333, 3336, ...,
3340, 3359, 3361, 3428, 3503, 3513, 3514, 3550, 3576, 3579, 3587, 3601, 3612},

cf. [10]. The points X; and X3 are fixed anyway. The circumcenter of A’s excentral triangle

is the point X4 and remains fixed as shown in Theorem 3.2. The triangle center X57; is the

ideal point of the line £, 3 and all parallel lines, especially the central lines L£4g and L5 0.
For some of the centers on £, 3 we can give their precise position and state:

Theorem 4.1. The triangle centers X; of A with

i € {1, 3, 35, 86, 40, 46, 55, 56, 57, 65, 165, 354, 484, 517, 942, 999, 1155,
1159, 1319, 1381, 1382, 1385, 1388, 1420, 145/, 1482, 1697, 2077, 2078, 2093,
2095, 2098, 2099, 2446, 2447, 2646, 5057, 5245, 5256, 5295, 3303, 3304, 3336,
..., 3340, 83576, 3579, 3587, 3601, 3612}

remain fized while A traverses its poristic family.

Proof. There is nothing to be done for X; = [d,0], X5 = [0,0], and X357, the ideal point of
L13. The BEVAN point Xy is the circumcenter of A, and according to Theorem 3.2 it is
fixed.

The center Xg5 = [d(R +1)/R, 0] ist the orthocenter of A;. X4 = [d(2R+1)/(2R), 0] is
the midpoint of X; and Xgs. The center X35 = [R?/d, 0] is the inverse of Xg,5 in the incircle
and the 1 EVANS PERSPECTOR Xyg4 = [R(R +2r)/d, 0] is the reflection of X; in X36. Then
X35 = [dR/(R + 2r),0] is the inverse of Xyg4 in the circumcircle.

The centers Xs5 = [dR/(R+7),0] and X5 = [dR/(R—7), 0] are the in- and exsimilicenter
of the incircle 7 and the circumcircle u. They are fixed for u and ¢ are fixed. As the reflection
of Xy in X56 we find Xy = [d(R+71)/(R—7r),0]. X5; appears as the intersection of £ 3 and
Lo 7 and reads Xz7 = [d(2R+1)/(2R — r), 0], which is obviously indpendent of ¢. The center
Xigs = [—%d, 0] is computed as the centroid of A..

The WEILL point X354 (cf. [10, 11]) is the centroid of A; and therefore X354 = [d(3R +
r)/(3R),0]. The center Xgg9 is the midpoint of centers X; and Xs; and thus Xgg9 =
[2dR/(2R — d),0]. The SCHRODER point Xy155 = [R(R + r)/d,0] (cf. [10]) is the inverse
of X5 in the circumcircle. The GREENHILL point X159 (see also [10]) is the intersection of
L 3 and the line parallel to £, 5 through X7 and consequently M50 = [4d(R+7)/(4R+7),0].

The BEVAN-SCHRODER point Xj319 = [R(R — r)/d, 0] (cf. [10]) is the midpoint of X,
and X35. The center X335 = [%d, 0] is the midpoint of X; and X3. The triangle center
Xigss = [d(R — 2r)/(R — 3r),0] is computed as the intersection of L3 and Lg1317, with
Xi317 being the reflection of the FEUERBACH point Xj; in the incenter X;. The points
Xiss1 = [—R,0] and X380 = [R,0] are the common points of the circumcircle and the line
£173.

Now we show that X490 = [d(2R—7)/(2R —3r), 0] which is thus also fixed and contained
in £1,32 First we observe that X1420 = £173 N £84,104- Now X84 is the reflection of X1490 in X3
and Xiy90 = L£14 N L39. The triangle center Xjg4 is the circumcircle-antipode of Xj¢p and
thus it is the reflection of X9 in X3 with X990 = L35 N Ls6 145, where X145 is the reflection
of X5 in Xj.
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Figure 5: Some centers on the line £; 3 mentioned in Theorem 4.1: the circum-
center Xy of A, the orthocenter Xg5 of A;, the centroid Xi45 of A, the centroid
X354 (WEILL point) of A;, the DE LONGCHAMPS point X3p57 of A;.

By the way we obtain X454 = [d(R + r)?/(R* + Rr — r?),0] which lies on L4145 and
X2 = [2d,0] is the reflection of the circumcenter in the incenter. We find X697 = L£13N
Lso = [d(2R —r)/(2R +1),0]. Since Xog77 is the inverse of Xy in the circumcircle we have
Xogrr = [—R?/d,0]. Analagously we find Xyyrs = [R*(2R — r)/(d(2R + r)),0] which is the
inverse of X57 in the circumcircle.

The triangle center Xogo3 = [d(2R + 3r)/(2R — r), 0] is the reflection of X; in X5;. The
reflection of X3 in Xs7 yields Xoggs = [2d(2R + 1)/(2R — r),0]. The reflection of X54 in the
incenter X leads to Xogps = [d(R — 2r)/(R — r),0]. The point Xsp99 can be obtained as
reflection of X55 in X;.

The centers Xogyg = [d — 7,0] and Xayy; = [d 4 7,0] are each others reflections in Xj.
Moreover they are the intersections of the incircle ¢ with the line £;35. Xo446 is the center
closer to X3, cf. [10].

Further Xog46 = 3(X1 + X35) = [d(R+7)/(R+2r),0]. The center X357 = [d(R—7)/R, (]
is the DE LONGCHAMPS point of A;. This fact is not mentioned in [10]. There X3p57 only
appears as the intersection of lines £; 3 and Ly 11.

The center Xsou5 = [R(R + 4r)/d, 0] is found as the reflection of X3 in Xyg4. Now we
show that X3256 = [dR(QR + 37’)/(2R2 + Rr + 27“2), 0] First note that X3256 = £173 N £100,226-



B. Odehnal: Poristic Loci of Triangle Centers 53

56
3340

3576 3057 999 1 57 1319

35

3256
1482 2095
1385 942 ] A
3304 |3338 \?
3601
1 1382 36
O XX X
2078 2093 1155 484
3303 asn
3587 :
3205 o
2646 3336
2077 1420 - . -
63 1454 | 5339 ‘///fffi,/—/—4?7’
2008 354 (3337
3361
3612 46 1388

55
2099
1697 C

Figure 6: Distribution of fixed centers on £ 3

Where Xoo6 is the reflection of Xgg3 in X7105. The latter point X795 is the midpoint of X,
and A’s SPIEKER point Xio. The first one, Xgg3, is the reflection of X; in Xg3z, which is the
reflection of X475 in Xj9. The center of the JOHNSON-YFF circle Xy475 (cf. [10]) is given by
Xiars = L1.4 N Loy 36.

Intersecting £y 3 with L4390 gives Xso05 = [2dR/(2R + 1),0], where X399 comes as a
byproduct in a very early stage of the computation: X3gg is the reflection of the GERGONNE
pOil’lt X7 in Xl. We observe X3303 = £173 ﬁ£1274g7 = [3dR/(3R+T), 0], with X12 = £175 ﬁ£2,56
and X497 = £174 N 52711. Slmllarly we find X3304 = £173 N £117153 = [3dR/(3R — 7’), O] with X153
being the reflection of X5y in Xjqo.

We find the triangle centers Xssse, . .., X3340, X3361 as intersections of £, 3 with lines L7 403,
£77499, £7790, £7710, £77145, and £7’1125 and obtain X3336 = [d(?)R + 27’)/(3R — 27’), O], X3337 =
[d(5R + 27’)/(5R - QT), 0], X3338 = [d(gR -+ T)/(?)R - T), 0], X3339 = [d(4R -+ 37’)/(4R - 7’), O],
X3310 = [d(2R + 3r)/(2R + 7),0], and X3361 = [d(4R + r)/(4R — 3r), 0], respectively. We
remark that X3335 is also the reflection of X7 in X3304.

We can easily find the centers X357 = %(Xl + Xig5) = [%d, 0] and X3579 = %(Xg + Xy) =
[—%d, 0]. The center Xssg7 = [—-d(2R +1)/(4R + 1)), 0] is the intersection of £, 3 and Ls4 550,
where X550 = 5(X3 + X20). The center X360 = [d(2R + 7)/(2R + 3r),0] is also located on
Ly91, where the SCHIFFLER point Xy; can be found as intersection of A’s EULER line with
£7756- Finally X3612 = [d(R + T)/(R + 3’/“), 0] is located on £21790, where Xgo = £17155 N £40,80-
The center X155 is the orthocenter of At and Xgo = £175 N £27214 with X214 = %(Xl + XlOO)-
Xgp can also be found as the reflection of X; in the FEUERBACH point Xi;. O

Figure 5 shows some triangle centers on the central line £, 3 which appear as centers of cen-
tral triangles. Figure 6 shows the distribution of centers on £; 3 as described in Theorem 4.1.

4.2. Centers on the incircle and circumcircle
According to [10] the triangle centers X; with

i€ {11,1314,1315,1317,1354, ..., 1367, 2446, 2447, 3020, . . ., 3028, 3317, ..., 3328}
are contained in the incircle. Here we can only verify the following result:

Theorem 4.2. The centers Xogg and Xoyyr remain fized while A is running through the
poristic famaly.
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Proof. Actually there is nothing to be done: Xoys = [d — r,0] and Xayy7 = [d + 1, 0] are the
intersections of the incircle ¢ with the line £, 3, see the proof of Theorem 4.1. ]

Figure 7: The grey shaded annulus is the locus of all nine-point circles n
of triangles in the poristic family

The point X7; known as FEUERBACH point is the point of contact of the nine-point circle
with the incircle. Thus this point moves on the incircle given in (2). Since the circumradius
R is the same for all triangles in the poristic family the family of corresponding FEUERBACH
circles consists of congruent circles of radius R/2. The nine-point circles of the poristic family
are in contact with ¢ and enclose it at any instant. Beside X;; the FEUERBACH antipode
X119 is the second point of contact of any nine-point circle n with the outer boundary of their
envelope, see Fig. 7. So we can state:

Theorem 4.3. The nine-point circles of the triangles of a poristic family over coat an annulus
bounded by the incircle i and a concentric circle with radius R — r.

From this we can deduce the following result:
Theorem 4.4. The poristic locus of X119 s a circle centered at X, with radius p119 = R—r.

Among the huge amount of known triangle centers X; only those few with indices
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i€ {74, 98, ..., 112, 399, 476, 477, 675, 681, 689, 697, 699, 701, 703, 705, 707, 709,
711, 713, 715, 717, 719, 721, 723, 725, 727, 729, 731, 733, 735, 737, 739, TA1, 743,
645, 747, 753, 755, 759, T61, 767, 769, T73, 777, 779, T81, 783, 785, 787, 789, 791,
793, 795, 797, 803, 805, 807, 807, 813, 815, 817, 819, 825, 827, 831, 833, 835, 839,
840, 841, 843, 900, 901, 917, 919, 925, 927, 929, ..., 935, 953, 972, 1286, ..., 1311,
1381, 1382, 1477, 2222, 2249, 2291, 2365, ..., 2384, 2687, ..., 2770, 2855, ..., 2868,
3222, 3563, 3565}

lie on the circumcircle. Here we have:

Theorem 4.5. Among the triangle centers on the circumcircle u only the points Xi3s and
Xi3go remain fixed while A traverses the poristic family.

Proof. We refer to the proof of Theorem 4.1 where X351 = [—R,0] and X330 = [R, 0] are
mentioned as the intersections of u with £ 3. O

4.3. Centers with circular paths

In the following we describe the orbits of some triangle centers with circular paths. Some of
them are points on the circumcircle u, some lie on the incircle i. We show:

Theorem 4.6. Let A be a triangle traversing its poristic family. Then A’s triangle centers
X, have circular paths for

i€{2,4,5,7,8,09,10, 11, 12, 20, 21, 23, 32, 63, 72, 76, 78, 80, 84, 90, 94, 100, 104,
105, 119, 120, 140, 142, ..., 145, 149, 153, 186, 191, 200, 210, 214, 226, 323, 329,
347, 355, 376, 381, 382, 388, 390, 392, 399, 442, 495, ..., 499, 501, 546, ..., 551,
631, 632, 759, 908, 920, 936, 938, 943, 944, 946, 950, 954, 956, 958, 960, 962, 993,
997, 1001, 1004, 1005, 1007, 1125, 1145, 1156, 1158, 1210, 1292, 1317, 1320, 1323,
1324, 1325, 1329, 1376, 1387, 1478, 1479, 1483, 1484, 1490, 1511, 1512, 1519, 1532,
1537, 1538, 1656, 1657, 1698, 1699, 1706, 1737, 1750, 1785, 1837, 1851, 1858, 1898,
1899, 2070, 2071, 2094, 2096, 2478, 2550, 2551, 2886, 2032, 2948, 3036, 3059, 3060,
3085, 3086, 3091, 3110, 3219, 3241, 3243, 3244, 3254, 3305, 3322, 3328, 3358, 3419,
3421, 3434, 3452, 3473, 3474, 3475, 3485, 3486, 3522, 3534, 3543, 3555, 3582, ...,
3586, 3589, 3600}.

Each of these centers traces its circular path three times while A performs one full turn in the
poristic famaily.

Proof. We demonstrate how to prove the above theorem by means of the trace of X,: Xs
is the centroid of A and therefore a parametrization of the poristic orbit of X5 is given as
the arithmetic mean of the coordinate vectors of A, B, and C' from Egs. (4) and (5), i.e.,
Xs(t) = 3(A+ B+ (). Explicitly we have

d(—42ER? + A2ER — d(R2 + d)e, + 2R°)
3R(R? + & — 2dRa)) )
d*si(R* — d* + 4dRc; — 4R*c?) '
SR(R? + & — 2dRey)

Xg(t) -

This parametrization tells us that X, traces its path three times. In order to obtain an
equation of it and moreover in order to show that the orbit of X5 is a circle, we eliminate ¢ by
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first substituting ¢; = (1 —u?)/(1+u?) and s; = 2u/(1+u?). Then we compute the resultant
with respect to u of the two polynomials

P = den(xe(u)) — z - num(zz(u)), py = den(yz(u)) — y - num(yz(u)),

where xo(u) and yo(u) are the coordinate functions of X, (u) and den(f/g) = g = num(g/f)
give the denominator and numerator of a rational expression. This yields

202 RY(R? — d*)*(4R*d* — 122dR* + 9y°R* + 9R*z* — d*)?
and thus
co: OR*(2® + %) — 12dR*x + d*(4R* — d?) = 0 (10)

is an equation of the desired circle. The fact that Eq. (10) appears three times as a factor
of the resultant also shows that this circle is traced three times. The latter fact is caused by
the so-called improper parametrization of ¢y given in Eq. (10). The circle ¢y is centered at
M, = [%d, 0] and the radius equals py = %(R — 2r). Note that M, is a triangle center of A
(not yet named or labelled, cf. [10]) for it is the reflection of X3 = [0,0] in X357 = [3d, 0].

The method shown so far applies to the orbit of any center listed above. For all other
centers we only show how they are related to the vertices of A and its deduced triangles A,
Ao, A;, Ay, Ay, Ay, and A, in order to find a parametrization of the central orbit.

In the following the poristic path of the center X; will be denoted by ¢;. The center and
radius of ¢; shall be denoted by M; and p;.

X4 is the orthocenter of A and thus elementary to find. We have M, = Xz and
ps = R—2r. The nine-point center X5 is the circumcenter of A,, and M; = X; and p5 = % P4
The GERGONNE point X7 moves on ¢; with M7 = X159 and p; = rps /(4R + r). This fits to
the results given in [8]. For the trace of the NAGEL point we have Mg = X3 and pg = pa.
The Mittenpunkt Xy leads to Mg = [d(2R — r)/(4R + r),0] and pg = 2Rps/(4R + 1). The
trace of the SPIEKER point Xy is centered at M;y = Xj3g5 and has radius pg = %p4. The
FEUERBACH point is treated earlier, however, it moves on 7. Since X135 = £15 N Lo 56 we find
My = X; and p12 = rps/(R+ 2r). The DE LONGCHAMPS point X is the orthocenter of A,
and we find My = [—2d, 0] and pyy = ps4.

Since the SCHIFFLER point is given by X21 = £273ﬁ£7756 we have M21 = [2Rd/(3R+2’F), 0]
and po; = Rps/(3R + 2r). The Far-Out point Xs3 is the inverse of X5 in the circumcircle
and so we find Moz = [6R3/(d(3R + 2r)),0] and po3 = 3R?*/(3R + 2r). The 3™ power point
X3y is the intersection of L4 4 and Lgg31007. For the latter two points see below. We find
M3y = Xoog9 and p3p = 7p3/(R+ 7).

The center Xgs is the reflection of X475 in Xq0. Further X478 = £4 4N Lo 36 and therefore
Mi47s = Xopgg and prarg = p32. Consequently Mgz = [—rd/(R+1),0] and pgs = Rps/(R+7).
The point X7, is found as the reflection of Xg;5 in X9 and so My = [—rd/R, 0] and prs = p4.
The 3" BROCARD point X7 is computed as X5 = L3958 N L4 69, With Xog being the reflection
of Xg in X341 and X3416 being the reflection of X4 in X7o. The center Xgg is the symmedian
point of A, and the reflection of Xy in X3416. Thus we find Mg = X480 and prg = p4.

We note that X78 = £1,2ﬂ£2107958, where X210 is the centroid of Aw and X958 = EI,G ﬂﬁg’lg.
This leads to Mzs = [—rd/(R—r)], prs = Rpa/(R—71); Moo = [d(R—7)/)3R), 0], pa1o = 2pu;
and Moss = [Rd/(2R + 1), 0], poss = Rps/(2R + ). The center Xy, appears as the reflection
of A’s incenter X; in A’s FEUERBACH point Xi; and therefore Mgy = X and pgyg = 2r. We
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find Xg4 as the reflection of Xj499 in the circumcenter X3 with X490 = £14 N L39. So we
obtain M84 = [d(2R — ’l“)/’l“, 0], P84 = 2Rp4/7’ and M1490 = [—d(2R — 7’)/7’, O] £1490 = P84-

The trace of Xog = L1155 N Laogo is centered at Moy = [d(R — r)?/(R?* — 2Rr — r?) and
has radius pgy = 2rRps/(r* — 2Rr — R?). For the computation of X4y, Xgo, and X155 (the
latter being the orthocenter of A;) see the proof of Theorem 4.1. Since Xgq = L4143 N L3 08
we compute X3 = %(Xg, + X59) with X555 being the orthocenter of the orthic triangle A,.
Thus M3 = [d(R + 2r)/R,0] and py43 = p3/(4R). Note that X3 is the nine-point center
of A,, provided that A is acute. We also have Mgy = X480 and pgy = ps. The TARRY point
Xog is the reflection of the STEINER point Xgg in X35. Xgg is the common point of u and the
STEINER ellipse different from A, B, and C.

For the computation of Xjoo and X94s we refer to the proof of Theorem 4.1. Then it is
easily verified that Xjo9, X104 are points on the circumcircle u. Since (Xjg5, Xi292) is a pair
of antipodal centers on w, their poristic locus equals u. For Xj;9 see Theorem 4.4. With
X120 = %(X4 + X1292) we find M120 = M2 and P£120 = %P4 Now X140 = %(Xg + X5) and thus
M40 = Xq385 and pyg9 = ip4. Note that Xi4 is also the nine-point center of A,,.

The Mittenpunkt of A,, is denoted by X4 and appears as the midpoint of X; and X
and consequently we have Mo = [3d(2R+7)/(4R+7r),0] and prae = (2R+7)ps/(2(4R+1)).

Figure 8: Poristic loci of some centroids: X, is the centroid for A, A,, and
A,, at the same time and moves on a circle ¢y, c¢f. Theorem 4.6. The WEILL
point Xssq (centroid of A;) and the centroid Xig5 of Ae remain fized according to
Theorem 4.1. The centroids X5; and Xi54 of A, and Ay, respectively, trace conic
sections as stated in Theorem 4.7.
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Figure 9: Poristic loci of some circumcenters: A’s circumcenter X3 is fixed. X;
is the circumcenter of A;. The circumcenter of A, is the orthocenter of A which
is moving on the circle ¢4 (cf. Theorem 4.6). The nine-point center Xj is the
circumcenter of both, A,, and A,. The circumcenter Xy of A; moves on e
according to Theorem 4.7. The BEVAN point Xy is the circumcenter of A, and
is fixed as shown in Theorem 3.2.

X144 comes along as the reflection of X7 in Xy and we find Myyy = [—6rd/(4R + r),0] and
p1aa = ps(AR —1)/(4R + r). The construction of Xy45 is already mentioned in the proof of
Theorem 4.1. We find My,5 = Xy482 and p1a5 = ps. The center X149 appears as the reflection
of Xoo in Xjo4 and we observe Miyg = Xiys0 and prg9 = R+ 2r. Xis3 is the reflection of Xy
in X19p and we find Mys53 = X480 and py53 = 3R — 2r.

The center Xig5 is the inverse of X, in the circumcircle and so it is no surprise that
its poristic path is a circle. It is centered at Migs = [2R3*/(d(3R + 2r)),0] and has radius
P186 = %,023. We reflect the incenter X; in the SCHIFFLER point X5, and arrive at Xi9;. This
results in Myg; = [d(R—2r)/(3R+2r),0] and p191 = 2p2;. The center Xy is the intersection
of £172 with £40764, where X64 is the reflection of X1498 in X3 and X1498 = £1,84 N £476~ X200
traces a circle centered at Magy = [—rd/(2R — 1), 0] and with radius pay = 2Rps/(2R — 7).
Since X214 = %(Xl + XIOO) we have M214 = X1385 and P214 = %R

Xo96 is the reflection of Xgg3 in Xj195. For the construction of the latter two we refer to
the proof of Theorem 4.1. So we obtain the data of three poristic traces: May = [d(2R +
3r)/(2(R +7)),0], paz = 5p325 Mogs = [dR/(2(R + 1)), 0], poos = 3pe3; and Miizs = [3d, 0],
Plios = ip4. Reflecting Xo3 in Xj9 gives X303 moving on a circle with center Mzoy =
[—6R3/(d(3R + 27)),0] and p323 = R(OR + 4r)/(3R + 2r). Reflecting Xop93 in the SPIEKER
center X9 we obtain Xsog and then Mseg = [—47d/(2R — r),0] and psag = py. With X347 =
%(XQ + X5) we find M347 = [%d, 0] and P347 = %p4

For the FUHRMANN center X355 = %(X4 + Xg) we find Mss55 = X7 and pss5 = pyg. Since
X376 = %(XQ + XQ(]) and X381 = %(XQ + X4) we find M376 = [—%d, 0], P36 — %p4 and
Msg; = [%d, 0], p3s1 = % ps. The reflection of the circumcenter in the orthocenter yields Xsg9
with M382 = [4d, O] and P382 = 2p4

The center Xsgs = £4.4MNL7 g runs on a circle with center Msgs = [2d(R+7)/(2R+7), 0] and
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Figure 10: Poristic loci of some orthocenters: A’s orthocenter X, circles along cy.
The DE LONGCHAMPS point Xo runs on the circle ¢y (¢f. Theorem 4.6). X,
X3, and Xgs5 are the orthocenter A, A,,, and ;. According to Theorem 3.2 Xgs
remains fized. The orthocenters Xso and Xis5 of A, and A; travel along conic
sections esy and eyss, respectively, cf. Theorem 4.7.

radius psss = 7p4/(2R+71). We reflect the GERGONNE point X7 in the incenter X; in order to
obtain Xs99. So we have Msgg = [2d(2R—7r)/(4R+r)] and psgg = p7. With X390 = L16M Lo 11
we arrive at Msgo = My and p3gs = pg. The PARRY reflection point X399 is the reflection of
X3 in Xqq¢ therefore we have Msg9 = X3 and p3g9 = 2R. The complement of the SCHIFFLER
point is X442 = £273 N £117214 and its trace is centered at M442 = [2d(R + T)/(gR + 27“), 0] and
has radius pye = (R +r)ps/(3R + 2r).

The JOHNSON midpoint is computed as Xugs = L1 5N L4 390 and we derive Mygs = X; and
P4a95 = %pgg. For X496 = £175 N £36,550 we determine X550 = %(XQ + Xgo). This intermediate
result yields Msso = Xuo, psso = 3pa and Magg = X1, pags = 7p1/(2p110). With Xyg7 =
£174ﬁ£2711, X498 = ,6172 ﬁ£3712, and X499 = £172ﬁ£3711 we find M497 = [2d(R—’I“)/(2R—T), 0],
Pa97 = ’f’p4/(2R - T), M498 = [d(R + QT)/(R + 37’), 0], P498 = ’f’p4/(R + 37’)7 and M499 = X13887
Pagy = Tpa/ (31 — R).

We Compute X501 = £217214 N £36758 with X58 = £1721 N £3,6 which leads to M501 = M21
and pso1 = po1. The next five centers are midpoints of centers: Xzu5 = l(X4 + X;5), Xaur =
%(Xg + X5), X548 = %(X5 -+ Xgo), X549 = %(XQ + Xg), and X551 = §(X1 + XQ) So we
find Ms46 = [%d, 0], Ps46 = 204; Msyr = Msaz, psar = 15—2ﬂ4; Msas = X379, psag = iﬂ4; and
M9 = X3576, Mss1 = Msyaz, psag = pss1 = %p4. Xe31 1s the reflection of X in X3q9;. Therefore
we have to determine Xgogl = £273 N £117153. This giV@S M631 = [%d, 0], P631 = %p4 and
Msp91 = [gd, 0], p3oo1 = % ps. Then Xgzo appears as the reflection of X3g9; in the circumcenter
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Figure 11: Poristic loci of some nine-point centers: X5 moves on c5. The centers
X140 and X143 are the nine-point centers of A,, and A,, respectively. According to
Theorem 4.6 their poristic loci are the circles c¢149 and ci43. The nine-point center
of A; is the point Xi56. Its poristic orbit is the conic section eqsq, cf. Theorem 4.7.
A’s circumcenter X3 plays a double-role: It is the nine-point center of A, and
A.. The nine-point center of A; is the same point for all triangles in the poristic
system, i.e., Xoyo is fixed, see Theorem 4.1.

X3 and we find Mgsy = [%d, 0] and pgz2 = %p4. With X759 = L1021 N L5865 We can verify that
X759 travels on u.

The point ACUBENS Xggg is the intersection of Ly7 and L13960. So we compute Xgg9 =
%(Xl + X79). Since Xggg is the reflection of X519 in X719, we obtain X519 as reflection of Xogog
in Xllg. Thus we have M960 = [d(R—T)/(2R), 0], £960 = %p4; Mgog = [—37’R/d, 0], £908 = P119;
and M50 = [R(2R—1)/d, 0], p1512 = p119. We find Xgog = L4 91 N Ly 46 and therefore we have
Moo = [d(R* +12)/(R* — Rr — r?),0] and pgag = rRps/(R? — Rr — r?). If we intersect L
with the lines £39 and £47 we find Xg36 and Xgss, respectively. The centers and radii of their
paths are M936 = [d(QR— T')/(4R—7’), O], P936 = 2Rp4/(4R—7’) and Mggg = [4dR/(4R—7’), O],
£938 = ’I“p4/(4R—T’) For X943 = £377ﬁ£4712 we find Mg43 = [4dR(R—T’)/(4R2 +7R’I“—|—2’I“2), 0]
and poss = rRpy/(4R* + TRr + 2r?).

The HOFSTADTER-Trapezoid point Xy is the midpoint in between Xoq and Xi45. There-
fore we have Moy, = X3 and pgyy = ps. The center Xgu = %(Xl + X4) traces a circle with
center Mgys = M54 and radius pgyg = % pa. As intercept of £, 4 and Lgg we obtain the point
Xoso and Mysg = [d(2R — r)/2R,0] and posg = rps/(2R). The central line £, carries the
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Figure 12: Poristic loci of the SCHIFFLER point X5, the Far-Out point X3, the
37% power point Xso, the FUHRMANN center Xss5, the point ACUBENS Xggg, the
HOFSTADTER-TRAPEZOID point Xg44, the LONGUET-HIGGINS point Xgge, and
the FERMAT crosssum Xi511.

three centers Xgs4 and Xgsg, which also lie in the central lines L3 7 and L3 g, respectively. We
find Mysy = [4dR/(4R + 1),0|, posa = Rrps/(R + r)(4R + r) and Moss = X3, poss = pe3-
The Longuet-Higgins point is the reflection of the NAGEL point Xg in the orthocenter Xj.
This yields Mggy = Msgo and pggs = p4. The midpoint Xgg; of X; and Xgoy determines
M997 = [d(R — 7’)/(2R — ’l“), 0] and £997 = %pgoo.

Since X1001 = %(Xl + Xg) we have M1001 = [3Rd/(4R + 7"),0] and £1001 — %pg For
X1004 = £273 N £7’100 we compute M1004 = [2Rd(R + T)/(?)RZ — Rr — 7”2),0] and £1004 —
R(R+1)ps/(3R*— Rr —r?). The centers X 05 and X097 are located on the EULER line and
on the central lines Lg 100 and Ly g9, respectively. We derive Mypos = [2Rd(2R — r)/(6R* +
5Rr + 27’2),0], £1005 = R(2R — ’f’)p4/(6R2 + 5Rr + 2’/“2) and M1007 = MQ, £1007 = %p4 The
37" EHRMANN point X145 = %(Xg + Xi00) leads to My145 = X3 and pi145 = p119. The center
Xi156 18 found as the midpoint of Xg¢ and X;q9. Its circular path is centered at M55 = M3g
and has radius pj156 = 9rR/(4R + r). The circumcenter of the extouch triangle A, is given
by X158 = %(X40 + Xg4) and its poristic locus is centered at M55 = [d(R —7)/r,0] and has
radius P£1158 = %pg4. The center X1210 = ;Cl,g N £37950 yields M1210 = [d(QR — T)/(QR), O] and
P1210 = P946-

Since Xi317 is the reflection of X;; and X; it is easy to find a parametrization of its
path which is the incircle. The path of the midpoint X300 = %(X145 + Xi49) is centered at
M350 = X482 and is congruent to u for pi3s0 = R. The Fletcher point X303 is the inverse of
the GERGONNE point X7 in the incircle and its trace is centered at Mises = [R(2R—1)/(2d), 0]
and has radius py303 = %r. The inverse X304 of the SPIEKER point X7, in the incircle moves
on a circle centered at Mz, = [R?/(rd),0] with radius pi324 = R?/r. The inverse X395 of the
SCHIFFLER point Xy; in the incircle has an orbit centered at Mis05 = [2R?/d, 0] with py395 = R
for its radius. The center X309 = %(Xg + Xog0s), where Xogos is known from Theorem 4.1
and its proof, respectively, gives Mysog = [d(R — 2r)/(2(R — r),0] and pis9 = 3ps. The
exsimilicenter of the circumcircle and the SPIEKER circle is given by Xis7¢ = L3190 N Lsg 56.
Its poristic locus is centered at Miszg = [Rd/(2R — r),0] and has radius pis7g = %pgoo.

Xisgr = %(Xl + Xj1) has a circular path centered at Mjszs; = X and pigsr = %r. From
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Xiarg = 51,4 N 53,11 we derive Miy79 = Xoogs and prarg = 2pgss.

The centers X483 and X454 appear as reflections of X5 in X; and X5 in X1, respectively.
We have Mygs = Mgy = X1, plagz = %P4, P1484 = %P149- The FERMAT crosssum X511 =
%(Xg + Xi10) runs on a circle concentric with w and thus Mjs; = X3 and p1511 = %R.
The construction of X519 produces a lot of useful byproducts since X519 is the reflection of
X1532 in X1538, where X1538 is the reflection of X1512 in X1537. Since X1537 = £4,145 N £11,65
and X1532 = £273 N £12,946 we find: M1519 = [R(2R - 3T>/d, 0], M1532 = [2R(R - T)/d, O],
Missr = Xiase, Misss = [R(AR — 5r)/(2d),0] and pi519 = pis32 = pissr = Pisss = pi1g- Lhe
center Xigs6 is the intersection of the EULER line with £,715. Without explicitly knowing the
latter two points we find X656 as the reflection of X5 in Xg30 and this gives Migss = [%d, 0]
and pig56 = §p4. Reflecting the DE LONGCHAMPS point X5 in the circumcenter X3 we find
Xies7. Its trace has center Migs; = [—4d, 0] and radius pig57 = 2pa4.

The poristic locus of the center Xjg08 = £12M L5 40 is the circle with center Migos = Mgso
and has radius piges = % ps. Since Xigg9 shows up as the reflection of Xi45 in the centroid
Xy we find Myggg = [gd, 0] and pigg9 = % ps. The exsimilicenter of the BEVAN circle and the
SPIEKER circle is the triangle center X705 which is the reflection of Xs55; in the SPIEKER
pOil’lt Xl(). So we compute X2551 = £4’9 N £2712 and find M2551 = [2d(R - 7’)/(4R - 7"),0],
P2551 — p4(2R — 7’)/(4R — 7") and M1706 = [d(QR + 7’)/(4R — 7"), 0], £1706 = 936 -

The midpoint of X3¢ and Xgq is labelled Xi737 and rotates about Mi73; = Xj319 at
distance py737 = r.The reflection of X; in X,97 equals the point Xss5. This enables us to
construct X750 as the reflection of X356 in the orthocenter X,4. From that we obtain Mj7590 =
[d(6R —7)/(2R —1),0], pi7so = 2p200 and Mssgs = [d(2R — 37)/(2R — 1), 0], pssss = 2paor.
The point Xi7g5 is the inverse of Xg46 in the incircle. It is circling around Mi7g5 = Xi319 with
pP1rss = T For the center X1837 = £1,5 ﬂ£4765 we find M1837 = X1 and P1837 = 2p946- The center
Xiss1 = L4 N Lo5105, where Xos = L9353 M Lg51 and with X5, being the centroid of A, and
Migs1 = Xias2, piss1 = pa. With Xigss = L1990 N La5 we get Migzs = [d(R* +r?)/R?,0)] and
piess = 2poso- Reflecting X5 in Xig37 gives Xiggg and thus Miggs = X3057 and piges = 4496
The pOil’lt X1899 = Eng N £4,51 is I'Ot&til’lg about M1899 = X1482 at distance P£1899 = P4.

The inverse of X5 and Xy in the circumcircle yield Xsp79 and Xsp71 which are rotating
about M2070 = [4R3/(d(3R + 27")),0] at distance L2070 = %pgg and M2071 = [—2R3/(d(3R +
2r)), 0] at distance pogr = é po3. The reflection of X5 and Xy in X7 yields Xoggs and Xaggg,
respectively. From that we conclude that Mgy = [8d(R + 7)/(3(2R — 1)), 0], paggs = %p4
and M2096 = [4’/“d/(2R — 7“),0], P2096 = pP4- With X2478 = 5273 N £87210 we find M2478 =
[2d(R — T)/(?)R — 7"), 0] and P2478 = p4p119/(3R — 7"). The Il’lldell’lt Xos50 of the GERGONNE
and NAGEL point determines Mayss0 = [2d(R 4 r)/(4R + 1), 0] and passo = 2p142-

We find Xoggg = %(Xl + X3419) with X419 as the reflection of X5 in Xj9. This leads
to M2886 = [d(R + QT)/(Q(R + 7’)),0], L2886 = %p4 and M3419 = [’f’d/(R + 7“),0], P3419 = P4,
respectively. The point X935 is the inverse of X145 in the circumcircle. It is rotating about
Moygzo = X3 at distance pagss = R*/p119. The center Xogss comes up as the reflection of X3zuus
in the SPIEKER center X9. For that we determine X3445 as the reflection of Xyq in X74 with
the latter being X74 = Loges N L72.100, Where Xgg is the reflection of X5 in Xy55. We find
Magss = Xgo and pagas = 2.

Wlth X3036 = %(Xg + X11) we ﬁnd M3036 = X1385 and P3036 — %(37" — R) Then X3059 =
£7,8 N £9755 and we get M3059 = [—d’f’(R + T)/(R(4R + 7’)), O] and L3059 — 4p142. FOI' X3060 =
Lo51 N Ly 50 we find the center and radius of its circular path: Mz = [4d(R + 27)/(3R),0)]
and £3060 — §p143. We intersect the line £172 with £4712 and £4711 and get X3085 and X3086>
respectively. The centers and radii of the respective poristic loci are: Msogs = [2d(R+7)/(2R+
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37"), 0], P3085 = Tp4/(2R + 37’) and M3086 = [T(R - 27’)/(2R — 37"), 0], P3086 — Tp4/(2R — 37”)
The center X310 is the inverse of X3ag6 in the circumcircle and Xsgogs = L36 M Lr721. S0 we
have M3110 = X1385 and P3110 = %d We Compute X3219 = £277 N £8,90 and find M3219 =
[2d(R—1)/(BR+2r),0] and ps219 = 3Rps/(5R+2r). The center Xsoq = %(Xg + X145) moves
on a circle centered at Msoqy = Msgy with radius psoq = %p4.

We reflect Xg in Xj40 and arrive at Xgou3 with Msou3 = [3d(2R + r)/(4R + r),0] and
p3243 = Po. The reflection of the SPIEKER center X in the incenter X; is named X3944 and
circles around M3so4q4 = Ms46 with p3oqy = % ps. Now Xjso54 is the reflection of the Mittenpunkt
Xg in the FEUERBACH pOiIlt X11 and we get M3254 = M3243 and P3254 = 2(R -+ 7’)2/(4R + 7").
The point Xs305 = La.7 N La10,1001 traces a circle with center Mss0s = [d(4R —1)/(TR + 1), 0]
and radius pszos = 3Rps/(TR + r). The reflection of X308 in X7 yields X3z00, where Xgsog is
computed as the reflection of X155 in Xj303. Note that X;55 is the reflection of X7 in X3o45.
Now it is easily verified that X3390 and X330 run on the incircle. The center X355 = %(Xg +

Xg4) determines Mazsg = [d(4R% —r2)/(r(4R + 1)), 0] and passs = 2Rps(2R +7)/(r(4R+7)).

The reflection of Xg in X3419 yields X3434 with circular orbit centered at Mzyzq = [2rd/(R+
r),0] and radius psigqs = ps. We construct Xsqs0 as the intersection of the central lines Ly 7
and L5719 and find the center of the circular orbit Msyse = [d(2R — 3r)/(2(2R — r)), 0] and
the radius pss0 = %p4. This allows to compute X3491 as the reflection of X; in X345, and
we find M3421 = [—27’d/(2R - 7"),0] and P3421 = pP4- From X3474 = £4,46 N £7,55 we get
Msyzy = [2d(R + 2r)/(2R — r),0] and pssza = pao7. On the central line £, 4 we find the
next four centers: We intersect with Lgss, L755, L7291, and Lg9; and obtain Xssrs, Xsurs,
Xsus5, and Xsgug6, respectively. Their poristic orbits are centered at Msur3 = Xoggg, Msars =
[2d(3R—|—27’)/(3(2R—|—’F)), 0], M3485 = [2d(R—|—27’)/(2R+3’F), 0], and M3486 = [2Rd/(2R+T>, 0]
and have radii p3sr2 = pag7, P3ars = %p3887 P3185 = P30s5, and p3ige = P3ss-

The reflection of Xsg; in the circumcenter X3 leads to Xss90 with Mgy = [—%d, 0] and
P3522 = %p4. The center Xss34 is the reflection of Xsgy in X351 and rotates about Msssy =
[—%d, O] with P3534 = §p4 Reﬂecting X3534 in X5 we find X3543 and M3543 = [13—061, 0] and
P3543 = g ps. The DOSA point X3555 is the reflection of X;o in the incenter X; and circles
about Mss55 = [d(2R + r)/R,0] at distance psss5 = ps. On the central line parallel to the
EULER line through the FEUERBACH point X7; we find X3580 and X353 by intersecting with
L1 and Ly 4, respectively. This yields circular orbits with centers Msss0 = [R(3R—4r)/(3d), 0]
and Mssss = [R(R —4r)/d, 0] and radii psssa = %7’ and p3ss3 = 2r, respectively. Since X3sg4 =
L12N L1507 we find Mssss = [d(3R+4r)/(3(R+2r)),0] and pssss = Zp12. On the central line
L4 4 we find X585 and X586 as intersections with L5 36 and Lsg 57, respectively. Their poristic
paths are centered at Mssgs = [d(R + 4r)/(R + 2r),0] and Msss6 = [d(2R — 3r)/(2R — 1), 0].
The respective radii are pssss = 2p12 and pssse = 2pagr. For Xsseg = La5 N Lg 19 we find
M3589 = Mg and £3589 = %p4 Finally the center X3600 = £177 N £8757 circles around M3600 =
[2d(2R+r)/(4R — ), 0] at distance psgo0 = Po3s- O

4.4. Centers moving on conic sections

In this last section we focus on triangle centers that run on conic sections while A is moving
through its poristic family. We shall give the semiaxes and center of the poristic paths only for
some prominent centers and in the cases where these (centers and axes) are relatively simple
functions in R, r, and d. We shall skip the lengthy discussion under which circumstances the
poristic loci of triangle centers mentioned here are ellipses or hyperbolae. We can show:
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Theorem 4.7. The triangle centers X; with

i € {6, 22, 25, 31, 42, 51, 52, 58, 64, 81, 154, 155, 156, 182, 185, 374, 375, 378,
386, 387, 389, 500, 573, 575, 576, 609, 612, 948, 959, 961, 970, 975, 991, 1012, 1147,
1216, 1350, 1351, 1386, 1486, 1495, 1498, 1658, 1829, 1834, 1836, 1838, 1871, 1900,
1902, 2097, 2334, 2482, 3240, 3242, 3292, 3332, 3581}

trace conic sections while A makes a full turn in the poristic family. These conic sections are
centered at points on the central line L1 3. One of their azes coincides with L4 3.

Proof. The center Xg is the LEMOINE point of A. Tts trace has center Mg = [3R?d/(3R?* —
2Rr +r?),0] and major and minor axes are ag = Rrps/(3R* — 2Rr + r?) and
b@ = R\/Fp4/\/p119(2R2 — 3Rr — 7’2).

We compute the Exeter pOil’lt X22 = £273 N £51,182 with X182 = %(Xg -+ X6) and X51
being the centroid of A,. We find M5, = [d(3R + 4r)/R,0] and a5 = rps/(3R) and by =
papoos/(3R). The center X5 is the intersection of Lo3 and Lgs;. The 2"¢ Power point
X3 is collinear with the incenter X; and SCHIFFLER’s point Xy, and lies on Lg40 1001 With
Xoao = L13N Log. We construct Xyo as L2 N L3558, Wwhere Xsg appears as the intersection
of the central lines £49; and L36. The construction of Xg, is explained in the proof of
Theorem 4.6.

The center X5 is the orthocenter of A,. It is moving on an ellipse centered at Mg =
[d(R + 4r)/R, 0] and with semiaxes asy = psp119/R and bsy = rps/R. The point Xg4 is the
reflection of Xj49s in X3 and a construction of Xj49g is given in the proof of Theorem 4.6.

On the central line joining the incenter X; with the SCHIFFLER point Xs; we find Xg;
which also lies on L£y6. X154 is the centroid of A;, Xi55 is the orthocenter of A;, and X556 =
%(X% + Xi55) is the nine-point center of A;. The center Xjg5 is the NAGEL point of the
orthic triangle A,. Its poristic locus is the ellipse with center Mjg; = [—d(R — 4r)/R, 0], its
semiaxes are ajgs = (2R — r)ps/R and bigs = (R +r)ps/R.

The triangle center X374 is the centroid of the pedal triangle of Xgy. Its poristic locus
is the ellipse centered at Mszy = [d(R + 7)(8R — r)/(3R(4R + 1)), 0] with semiaxes aszqy =
dps(R+7)/(3(4R + 1)) and bsry = 2Rps/(4R + r), respectively. The centroid of the pedal
triangle of the SPIEKER point is denoted by Xjz75. Its poristic trace has center Mz =
[d(4R+3r)/(6R), 0] and its semiaxes are asgs = (2R+7)ps/(6R) and bszs = (3R —1)ps/(6R).
X3g7s is determined as the reflection of Xss in X3. We have X356 = £12 N L3¢ and Xsg7 =
L1500 Lyg. With X339 = £(X3 + X5) we find an ellipse with Mg = [d(R + 47)/(2R), 0],
assg = pap119/(2R), and psgg = rps/R. The orthocenter of the incentral triangle X5q0 leads
to M5()0 = [d(5R + 2T)/(2(3R = 27’)),0] and asoo = P21, and b500 = \/Fpgl/\/ﬁ With
X573 = »63,6 N £479 we find M573 = [—4d(R + 7“)/(5R + 8’/“),0], as73 = Rp4/(5R + 8’/“), and
bszs = paVTR/V20R2 + 37Rr + 8r2. The center Xj75 is the midpoint in between X5 and
Xs76, where Xg76 is the reflection of Xig5 in Xg. The triangle center Xgo9 is the intersection
of the central lines £, 35 and Lg 36.

The center Xg;2 is found as intersection of £ o and L 219. We find the next three centers
and thereby the parametrizations of their poristic paths as intersection of central lines: Xg43 =
L14NLs7, Xosg = L1573MN Lo g5, and Xog1 = Lo12M Lg959. The center of the Apollonius circle
is found as Xg79 = L36 N L510. Its poristic trace is centered at Mgy = [—d(R + 47)/(2r), 0]
and the semiaxes are agrg = pap119/(2r) and berg = %p4. Again three centers are found as
intersections of central lines: X975 = £172 N £9,58> X991 = £177 N £3,6> and X1012 = £2,6 N £1,84-
The point X147 is the midpoint of X3 and Xiss5.
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Figure 13: Some ellipses being poristic loci of triangles, c¢f. Theorem 4.7.

The center X214 appears as the reflection of X3g9 in X149 and its poristic locus is centered
at Mioig = [d(R — 4r)/(2R),0] and the semiaxes are aja6 = (2R — r)ps/(2R) and by =
(R4 7)ps/(2R). The points Xi350 and Xi35 are found as reflections of Xg in X3 and X350
in Xig9, respectively. Xjsg¢ is the midpoint of X; and Xg. The perspector of A; and A; is
the center Xy486. The triangle center Xi495 = %(ng + Xi10) moves on an ellipse with center
Mie5 = [3R3/(d(3R + 27)),0], a1a05 = Rr/(3R + 2r), and byy95 = R(3R+1)/(3R + 2r). We
find X498 = L1584 N Ly and X8 = %(Xg + Xo6). Then we find three centers by intersecting
central lines: X1834 = £4,6 N £12742, X1836 = £4,65 N £5,467 and X1838 = £174 N £571214. The
center Xjo14 lies on £; 3 and on L7 464, where Xygq = Lg3,69-

On the central line £45 we find the centers Xigs9, Xig71, and Xjgoo by intersecting with
central lines L o5, Ls51848, and Los 35, respectively. This yields Migog = [d(R? + 3Rr —
Tz)/RQ, O], 1829 — 2Tp4/R, b1829 = pP4; M1871 = [d<3R2 + S5Rr — TQ)/(R(2R + 7’)), O], ai1871 —
(R + 37“)p4/(2R -+ 7’), 61871 = pP4; and M1900 = [d(RZ + TRr — Tz)/(R(R + 27“)), 0], 1900 = 4p12,
bigoo = pa. Reflecting Xigo9 in Xy we arrive at Xigop with Migpe = [d(3R* — 3Rr +1r?)/R?, 0],
902 = 2pap119/ R, and pigoz = pa.

The triangle center Xog97 is the reflection of Xg inXs5; and Xosgo = %(Xg + Xog). We
obtain X334 as the common point of the central lines £, 919 and Lg 210. The midpoint of X9
and X745 is identified as center X3949. The point Xs3090 is constructed as the reflection of X495
in X0 and its poristic trace is centered at Mzagy = [3R3/(d(3R+2r)), 0] and its semiaxes are
3292 — RT/(?)R + 27’) and b3292 = R(?)R + T)/(?)R + 27’) We find X3332 = £1,7 N £4,6- Flnally
the center X3s81 C L3¢ lies on the EULER line and we find Msss; = [6R*/(d(3R + 2r), 0],
asss1 = 2R(BR+ 1) /(3R + 2r), and bsss; = 2Rr /(3R + 2r). O

Figure 14 shows that for certain values of R, r, and d ellipses, parabolae, and hyperbolae
appear as poristic trace of the same center.
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Figure 14: Different shapes of the poristic trace of the EXETER point Xos.

5. Final remarks

All the centers mentioned in the proof of Ths. 4.6 and 4.7 are triangle centers for A since for
any fixed triangle R, r, and d are fixed and so is the relative position of M; to X; and X3 on
£173.

The poristic traces of many centers have been parametrized during the computation of
the poristic path of all centers mentioned in the theorems. Some of the centers which appear
in the construction of centers do not have a conic section for its poristic orbit. The center
X9 like many others traces an algebraic curve. In most cases the algebraic degree is larger
then 4.

In the previous section we skipped the discussion of the affine type of the poristic paths
of the centers investigated there. However, it is easy to show that the traces of X; with
i € {22,64, 154,156,609, 1498, 1658, 2482} can be ellipses and hyperbolae as well.
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