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Abstract. The one-parameter family of triangles with common incircle and
circumcircle is called a porisitic1 system of triangles. The triangles of a poristic
system can be rotated freely about the common incircle. However this motion
is not a rigid body motion for the sidelengths of the triangle are changing. Sur-
prisingly many triangle centers associated with the triangles of the poristic family
trace circles while the triangle traverses the poristic family. Other points move
on conic sections, some points trace more complicated curves. We shall describe
the orbits of centers and some other points. Thereby we are able to answer open
questions and verify some older results.
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1. Introduction

The family of poristic triangles has marginally attracted geometers interest. There are only
a few articles contributing to this particular topic of triangle geometry: [3] is dedicated
to perspective poristic triangles, [12] deals with the existence of triangles with prescribed
circumcircle, incircle, and an additional element. Some more general appearances of porisms
are investigated in [2, 4, 6, 9, 16] and especially [7] provides an overview on Poncelet’s
theorem which is the projective version and thus more general notion of porism.

Nevertheless there are some results on poristic loci, i.e., the traces of triangle centers
and other points related to the triangle while the triangle is traversing the poristic family.
In [14] some invariant lines, circles, and conic sections have been determined. Also triangles
with common circumcircle and nine-point circle have been studied by R. Crane in [5]. The
poristic loci of triangle centers have not undergone sincere study. For some centers the loci

1The word poristic is deduced from the greek word porisma, which could be translated by deduced theorem,
cf. L. Mackensen: Neues Wörterbuch der deutschen Sprache. 13. Auflage, Manuscriptum Verlag, München,
2006.
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are given in [11], especially the trace of the Gergonne point is treated in [1]. In [13] a result
by Weill is reproduced showing that the centroid X354 of the intouch triangle is fixed while
∆ traces its poristic family.

For most of the centers listed in [10] the respective poristic locus is unknown. In the
following we shall derive these loci, at least for some centers that can easily be accessed with
our method. For that purpose we impose a Cartesian coordinate system in Sec. 2 which will
henceforth be the system of reference. Subsequently we derive paths of points which are not
centers in Sec. 3. Afterwards we pay our attention to triangle centers in Sec. 4. First we
focus on the centers on the line L1,3,

2 connecting the incenter X1 with the circumcenter X3.
It carries a lot of centers, some of them stay fixed others do not. We only look at the fixed
ones. Triangle centers which are located on the incircle or circumcircle naturally trace these
circles. None of these remains fixed, except those on L1,3. Then we shall derive poristic loci of
some triangle centers and focus on those that traverse circles and conic sections. The centers
and radii or semiaxes of these poristic orbits are given explicitly.

At this point we shall say a few words about techniques used in this work. Computations
are done with Maple. Equations of poristic loci mainly use the framework of resultants.
The computation of parametrizations of centers is restricted somehow. This will be clear
when we see parametrizations of the circumcircle and incircle describing the vertices of ∆ and
its intouch triangle, respectively. Deriving paths of orthocenters, centroids, circumcenters,
midpoints of a pair of triangle centers, as well as paths of triangle centers which appear
as intersections of central lines seems to be a very simple task at first glance. But, however,
parametrizations become larger and larger and the computation of equations exceeds memory
capacity and cannot be done in an acceptable amount of time. Therefore centers like the
incenter of the intouch triangle (which is X177 for the base triangle) cannot be reached with
our method.

2. Prerequisites

Let ∆ be a triangle with vertices A, B, C. We denote its circumcircle and incircle by u and i,
respectively. The circumcenter and the incenter shall be denoted by X3 and X1, see [10, 11].
The circumradius R, the radius of the incircle r, and the distance d of X1 and X3 are related
by

d2 = R2 − 2rR, (1)

see for example [11, p. 40]. The incircle and the circumcircle are circles in a special position.
To the best of the author’s knowledge there is no english word for that. In german we would
say: “Kreise in Schließungslage”.

Any two circles u and i define a one-parameter family of triangles all of them having u
for the circumcircle and i for the incircle provided that Eq. (1) is fulfilled, cf. Fig. 1. Any two
triangles out of this family are said to form a poristic pair of triangles.

In the following we want to study the traces of centers and other points related to a
triangle traversing its poristic family. For that purpose we use Cartesian coordinates in order
to represent points in the Euclidean plane. Without loss of generality we can assume that
X3 = [0, 0] and X1 = [d, 0]. The equations of the circumcircle and the incircle are thus

u : x2 + y2 = R2, i : (x− d)2 + y2 = r2. (2)

2Triangle centers are labelled according to C. Kimberlings list [10, 11]. Central lines, i.e., lines joining
two centers with Kimberling number i and j shall be denoted by Li,j .
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Figure 1: Triangle ∆ with incircle i, circumcircle u, and the Cartesian
coordinate system imposed on it

Aiming at parametrizations of the traces of centers and other points related to the triangle
we assume that the line carrying A and B is given by

g : x cos t+ y sin t = r + d cos t with t ∈ [0, 2π) (3)

since [A,B] has to be tangent to i. This allows to parametrize the circular path of points A
and B in a proper way. Note that these points are the intersections of g and u and therefore
they are given by

A = [r cos t + d cos2 t+W sin t, r sin t + d cos t sin t−W cos t],

B = [r cos t + d cos2 t−W sin t, r sin t+ d cos t sin t+W cos t],
(4)

where W =
√

R2 − (r + d cos t)2.3

Finally the two tangents from A and B to i which are different from the line [A,B]
intersect in ∆’s third vertex C ∈ u. This point reads

C =

[

R(2dR− (R2 + d2)ct)

R2 + d2 − 2dRct
,

(d2 − R2)Rst
R2 + d2 − 2dRct

]

, (5)

whose trace is now described by the same parameter t. Here and in the following ct and st
are short hand for cos t and sin t, respectively.

The triangle ∆ and thus any triangle in the poristic family defines some other triangles:
The medial triangle ∆m is built by the midpoints of ∆’s sides. We denote the anticomple-
mentary triangle by ∆a, the excentral triangle by ∆e, the intouch triangle by ∆i, the tangent
triangle by ∆t, the orthic triangle by ∆o, and the extouch triangle by ∆x.

It is elementary to find the vertices of ∆a, ∆e, ∆m, ∆o, and ∆t, if the parametric rep-
resentation of A, B, and C is known. One vertex from ∆i is known from the beginning:

3Note that r, R, and d are related via Eq. (1). Sometimes we do not eliminate r in order to shorten
formulae.
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BAB = [rct + d, rst], the point of contact of g and i. The remaining vertices of ∆i can be
obtained by reflecting the contact point BAB of the line [A,B] with i in [A,X1] and [B,X1],
respectively. Though these operations are elementary we sketch them in order to make any
computation traceable.

Finally we point out that the computation of centers Xi with

i ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 20}

among many others is elementary with these preparations. The shape of the respective poristic
loci will be discussed later in Sec. 4. At this point we should confess that the computation
of incenters needs normalization of direction vectors. Luckily we have the incenter of ∆, but,
unfortunately we cannot reach incenters of ∆e and ∆i.

3. Traces of some points

We give the answer to the question raised in [11, p. 257] by proving the following:

Theorem 3.1. The trace of the midpoint of any side of a triangle traversing a poristic family
is a Limaçon of Pascal.

Proof. The midpoint M of AB is given as the arithmetic mean of the coordinate vectors of
the two points A and B from (4) and reads

M = [r cos t + d cos2 t, r sin t + d cos t sin t]. (6)

The curve parametrized by (6) is called Limaçon of Pascal, see [15]. Its equations in terms
of Cartesian coordinates is obtained by eliminating t and reads

m : (x2 + y2)2 − 2dx(x2 + y2)− ((r2 − d2)x2 + r2y2) = 0 (7)

for variable choices of r and d such that Eq. (1) is satisfied.

Figure 2 shows different shapes of this curve: noded, cusped, or without visible singularity.
However, independent on the choice of R and d the point X3 is a double point on m in any
case. The quartic curve m has a cusp at U exactly if |d| = |r|. If |d| < |r| U is an isolated
double point.
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Figure 2: Different shapes of Pascal’s limaçon which appears as trace of a side’s midpoint
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The quartic m touches i twice, i.e., precisely at points X2446 = [d − r, 0] and X2447 =
[d+ r, 0]. If a midpoint of a side of ∆ happens to coincide with one of these points then ∆ is
isosceles. Obviously there are two isosceles triangles in the family of poristic triangles.

According to Bézout’s theorem the total amount of intersection points of m and i equals
8. The two real contact points X2446 and X2447 are each of multiplicity two, the remaining
four points are the absolute points of Euclidean geometry (a pair of conjugate complex points
on the ideal line) each of which has multiplicity two on m and as a common point of m and
i. Note that the midpoints of the remaining two sides of ∆ hound M on the same curve.
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Figure 3: The common path of all three excenters

The traces of the excenters (see Fig. 3) of triangles in a poristic family have been studied
in [14] with slightly different methods. We observe:

Theorem 3.2. The three excenters of the triangles in a poristic family trace the same circle
e. Its center E is the reflection of X1 in X3 and its radius equals 2R.

Proof. The normals to [A,X1] and [B,X1] at A and B, respectively, intersect at ∆’s excenter
A3, opposite to C, for these lines are the internal bisectors at A and B. An elementary
computation using (4) and (5) yields

A3 = [2Rct − d, 2Rst]

which obviously parametrizes the circle e with equation

e : (x+ d)2 + y2 = 4R2. (8)

Cyclically shifting A, B, and C yields parametrizations of the loci of the other excenters.
These parametrizations annihilate Eq. (8). The center of e is E = [−d, 0], i.e., the point X3

is the midpoint of E and X1. The radius of e equals 2R.
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Note that the point E is ∆’s center X40, which is frequently called Bevan point (cf.
[10, 11]) and it remains fixed while ∆ goes through the poristic family. The excentral triangles
∆e together with the triangles ∆ form another poristic family of triangles with common
circumcircle e and nine-point circle u for ∆ is the orthic triangle of ∆e, see [5].

Similarly we can show:

Theorem 3.3. The vertices of the tangential triangle ∆t of ∆ move on an ellipse while ∆
traverses the poristic family.

Proof. The vertices TA, TB, TC of ∆t are constructed as the intersections of the tangents of
the circumcircle u at A, B, C, respectively. The trace of the vertex TC opposite to C is
parametrized by

TC =

[

2R3ct
R2 − d2 + 2dRct

,
2R3st

R2 − d2 + 2dRct

]

.

This is an ellipse with center [R2d/(R2−2Rr− r2), 0] and semiaxes a = rR2/(r2+2Rr−R2),
b = R2/

√
r2 + 2Rr −R2 which can be seen after implicitization. The traces of TA and TB have

a more complicated parametrization, but, however, they annihilate the same equation.

Figure 4 shows the ellipse appearing as the poristic orbit of the vertices of ∆t .

4. Orbits of some centers

4.1. Centers on L1,3

On the central line L1,3 we find the triangle centers Xi with
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Figure 4: The ellipse traced by the vertices of the tangential triangle.
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i ∈ {1, 3, 35, 36, 40, 46, 55, 56, 57, 65, 165, 171, 241, 260, 354, 484, 517, 559, 940,
942, 980, 982, 986, 988, 999, 1038, 1040, 1060, 1062, 1082, 1155, 1159, 1214, 1319,
1381, 1382, 1385, 1388, 1402, 1403, 1420, 1429, 1454, 1460, 1466, 1467, 1470, 1482,
1617, 1622, 1697, 1715, 1735, 1754, 1758, 1764, 1771, 1936, 2061, 2077, 2078, 2093,
2095, 2098, 2099, 2223, 2283, 2352, 2446, . . . , 2449, 2556, 2557, 2564, 2565, 2572,
2573, 2646, 2662, 3057, 3072, 3075, 3245, 3256, 3295, 3303, 3304, 3333, 3336, . . . ,
3340, 3359, 3361, 3428, 3503, 3513, 3514, 3550, 3576, 3579, 3587, 3601, 3612},

cf. [10]. The points X1 and X3 are fixed anyway. The circumcenter of ∆’s excentral triangle
is the point X40 and remains fixed as shown in Theorem 3.2. The triangle center X571 is the
ideal point of the line L1,3 and all parallel lines, especially the central lines L4,8 and L5,10.

For some of the centers on L1,3 we can give their precise position and state:

Theorem 4.1. The triangle centers Xi of ∆ with

i ∈ {1, 3, 35, 36, 40, 46, 55, 56, 57, 65, 165, 354, 484, 517, 942, 999, 1155,
1159, 1319, 1381, 1382, 1385, 1388, 1420, 1454, 1482, 1697, 2077, 2078, 2093,
2095, 2098, 2099, 2446, 2447, 2646, 3057, 3245, 3256, 3295, 3303, 3304, 3336,
. . . , 3340, 3576, 3579, 3587, 3601, 3612}

remain fixed while ∆ traverses its poristic family.

Proof. There is nothing to be done for X1 = [d, 0], X3 = [0, 0], and X517, the ideal point of
L1,3. The Bevan point X40 is the circumcenter of ∆e and according to Theorem 3.2 it is
fixed.

The center X65 = [d(R+ r)/R, 0] ist the orthocenter of ∆i. X942 = [d(2R+ r)/(2R), 0] is
the midpoint of X1 and X65. The center X36 = [R2/d, 0] is the inverse of X942 in the incircle
and the 1st Evans perspector X484 = [R(R+2r)/d, 0] is the reflection of X1 in X36. Then
X35 = [dR/(R + 2r), 0] is the inverse of X484 in the circumcircle.

The centers X55 = [dR/(R+r), 0] and X56 = [dR/(R−r), 0] are the in- and exsimilicenter
of the incircle i and the circumcircle u. They are fixed for u and i are fixed. As the reflection
of X1 in X56 we find X46 = [d(R+ r)/(R− r), 0]. X57 appears as the intersection of L1,3 and
L2,7 and reads X57 = [d(2R+ r)/(2R− r), 0], which is obviously indpendent of t. The center
X165 = [−1

3
d, 0] is computed as the centroid of ∆e.

The Weill point X354 (cf. [10, 11]) is the centroid of ∆i and therefore X354 = [d(3R +
r)/(3R), 0]. The center X999 is the midpoint of centers X1 and X57 and thus X999 =
[2dR/(2R − d), 0]. The Schröder point X1155 = [R(R + r)/d, 0] (cf. [10]) is the inverse
of X55 in the circumcircle. The Greenhill point X1159 (see also [10]) is the intersection of
L1,3 and the line parallel to L1,5 through X7 and consequently M1159 = [4d(R+r)/(4R+r), 0].

The Bevan-Schröder point X1319 = [R(R − r)/d, 0] (cf. [10]) is the midpoint of X1

and X36. The center X1385 = [1
2
d, 0] is the midpoint of X1 and X3. The triangle center

X1388 = [d(R − 2r)/(R − 3r), 0] is computed as the intersection of L1,3 and L8,1317, with
X1317 being the reflection of the Feuerbach point X11 in the incenter X1. The points
X1381 = [−R, 0] and X1382 = [R, 0] are the common points of the circumcircle and the line
L1,3.

Now we show that X1420 = [d(2R−r)/(2R−3r), 0] which is thus also fixed and contained
in L1,3: First we observe that X1420 = L1,3 ∩ L84,104. Now X84 is the reflection of X1490 in X3

and X1490 = L1,4 ∩ L3,9. The triangle center X104 is the circumcircle-antipode of X100 and
thus it is the reflection of X100 in X3 with X100 = L3,8 ∩ L56,145, where X145 is the reflection
of X8 in X1.
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Figure 5: Some centers on the line L1,3 mentioned in Theorem 4.1: the circum-
center X40 of ∆e, the orthocenter X65 of ∆i, the centroid X165 of ∆e, the centroid
X354 (Weill point) of ∆i, the de Longchamps point X3057 of ∆i.

By the way we obtain X1454 = [d(R + r)2/(R2 + Rr − r2), 0] which lies on L4,145 and
X1482 = [2d, 0] is the reflection of the circumcenter in the incenter. We find X1697 = L1,3 ∩
L8,9 = [d(2R − r)/(2R + r), 0]. Since X2077 is the inverse of X40 in the circumcircle we have
X2077 = [−R2/d, 0]. Analagously we find X2078 = [R2(2R − r)/(d(2R + r)), 0] which is the
inverse of X57 in the circumcircle.

The triangle center X2093 = [d(2R + 3r)/(2R− r), 0] is the reflection of X1 in X57. The
reflection of X3 in X57 yields X2095 = [2d(2R + r)/(2R − r), 0]. The reflection of X56 in the
incenter X1 leads to X2098 = [d(R − 2r)/(R − r), 0]. The point X2099 can be obtained as
reflection of X55 in X1.

The centers X2446 = [d − r, 0] and X2447 = [d + r, 0] are each others reflections in X1.
Moreover they are the intersections of the incircle i with the line L1,3. X2446 is the center
closer to X3, cf. [10].

Further X2646 =
1

2
(X1+X35) = [d(R+ r)/(R+2r), 0]. The center X3057 = [d(R− r)/R, 0]

is the de Longchamps point of ∆i. This fact is not mentioned in [10]. There X3057 only
appears as the intersection of lines L1,3 and L10,11.

The center X3245 = [R(R + 4r)/d, 0] is found as the reflection of X36 in X484. Now we
show that X3256 = [dR(2R+ 3r)/(2R2 +Rr+2r2), 0]: First note that X3256 = L1,3 ∩L100,226.
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Figure 6: Distribution of fixed centers on L1,3

Where X226 is the reflection of X993 in X1125. The latter point X1125 is the midpoint of X1

and ∆’s Spieker point X10. The first one, X993, is the reflection of X1 in X63, which is the
reflection of X1478 in X10. The center of the Johnson-Yff circle X1478 (cf. [10]) is given by
X1478 = L1,4 ∩ L2,36.

Intersecting L1,3 with L4,390 gives X3295 = [2dR/(2R + r), 0], where X390 comes as a
byproduct in a very early stage of the computation: X390 is the reflection of the Gergonne

point X7 in X1. We observe X3303 = L1,3∩L12,497 = [3dR/(3R+ r), 0], with X12 = L1,5∩L2,56

and X497 = L1,4∩L2,11. Similarly we find X3304 = L1,3∩L11,153 = [3dR/(3R− r), 0] with X153

being the reflection of X20 in X100.
We find the triangle centersX3336, . . . , X3340,X3361 as intersections of L1,3 with lines L7,498,

L7,499, L7,90, L7,10, L7,145, and L7,1125 and obtain X3336 = [d(3R + 2r)/(3R− 2r), 0], X3337 =
[d(5R+ 2r)/(5R− 2r), 0], X3338 = [d(3R+ r)/(3R− r), 0], X3339 = [d(4R+ 3r)/(4R− r), 0],
X3340 = [d(2R + 3r)/(2R + r), 0], and X3361 = [d(4R + r)/(4R − 3r), 0], respectively. We
remark that X3338 is also the reflection of X1 in X3304.

We can easily find the centers X3576 =
1

2
(X1+X165) = [1

3
d, 0] and X3579 =

1

2
(X3+X40) =

[−1

2
d, 0]. The center X3587 = [−d(2R+ r)/(4R+ r)), 0] is the intersection of L1,3 and L84,550,

where X550 = 1

2
(X3 + X20). The center X3601 = [d(2R + r)/(2R + 3r), 0] is also located on

L9,21, where the Schiffler point X21 can be found as intersection of ∆’s Euler line with
L7,56. Finally X3612 = [d(R+ r)/(R+ 3r), 0] is located on L21,90, where X90 = L1,155 ∩ L40,80.
The center X155 is the orthocenter of ∆t and X80 = L1,5 ∩ L2,214 with X214 = 1

2
(X1 +X100).

X80 can also be found as the reflection of X1 in the Feuerbach point X11.

Figure 5 shows some triangle centers on the central line L1,3 which appear as centers of cen-
tral triangles. Figure 6 shows the distribution of centers on L1,3 as described in Theorem 4.1.

4.2. Centers on the incircle and circumcircle

According to [10] the triangle centers Xi with

i ∈ {11, 1314, 1315, 1317, 1354, . . . , 1367, 2446, 2447, 3020, . . . , 3028, 3317, . . . , 3328}

are contained in the incircle. Here we can only verify the following result:

Theorem 4.2. The centers X2446 and X2447 remain fixed while ∆ is running through the
poristic family.
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Proof. Actually there is nothing to be done: X2446 = [d− r, 0] and X2447 = [d + r, 0] are the
intersections of the incircle i with the line L1,3, see the proof of Theorem 4.1.

u
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X3 X1

X11

X5

X1317

X119

Figure 7: The grey shaded annulus is the locus of all nine-point circles n
of triangles in the poristic family

The point X11 known as Feuerbach point is the point of contact of the nine-point circle
with the incircle. Thus this point moves on the incircle given in (2). Since the circumradius
R is the same for all triangles in the poristic family the family of corresponding Feuerbach

circles consists of congruent circles of radius R/2. The nine-point circles of the poristic family
are in contact with i and enclose it at any instant. Beside X11 the Feuerbach antipode
X119 is the second point of contact of any nine-point circle n with the outer boundary of their
envelope, see Fig. 7. So we can state:

Theorem 4.3. The nine-point circles of the triangles of a poristic family over coat an annulus
bounded by the incircle i and a concentric circle with radius R− r.

From this we can deduce the following result:

Theorem 4.4. The poristic locus of X119 is a circle centered at X1 with radius ρ119 = R− r.

Among the huge amount of known triangle centers Xi only those few with indices
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i ∈ {74, 98, . . . , 112, 399, 476, 477, 675, 681, 689, 697, 699, 701, 703, 705, 707, 709,
711, 713, 715, 717, 719, 721, 723, 725, 727, 729, 731, 733, 735, 737, 739, 741, 743,
645, 747, 753, 755, 759, 761, 767, 769, 773, 777, 779, 781, 783, 785, 787, 789, 791,
793, 795, 797, 803, 805, 807, 807, 813, 815, 817, 819, 825, 827, 831, 833, 835, 839,
840, 841, 843, 900, 901, 917, 919, 925, 927, 929, . . . , 935, 953, 972, 1286, . . . , 1311,
1381, 1382, 1477, 2222, 2249, 2291, 2365, . . . , 2384, 2687, . . . , 2770, 2855, . . . , 2868,
3222, 3563, 3565}

lie on the circumcircle. Here we have:

Theorem 4.5. Among the triangle centers on the circumcircle u only the points X1381 and
X1382 remain fixed while ∆ traverses the poristic family.

Proof. We refer to the proof of Theorem 4.1 where X1381 = [−R, 0] and X1382 = [R, 0] are
mentioned as the intersections of u with L1,3.

4.3. Centers with circular paths

In the following we describe the orbits of some triangle centers with circular paths. Some of
them are points on the circumcircle u, some lie on the incircle i. We show:

Theorem 4.6. Let ∆ be a triangle traversing its poristic family. Then ∆’s triangle centers
Xi have circular paths for

i ∈ {2, 4, 5, 7, 8, 9, 10, 11, 12, 20, 21, 23, 32, 63, 72, 76, 78, 80, 84, 90, 94, 100, 104,
105, 119, 120, 140, 142, . . . , 145, 149, 153, 186, 191, 200, 210, 214, 226, 323, 329,
347, 355, 376, 381, 382, 388, 390, 392, 399, 442, 495, . . . , 499, 501, 546, . . . , 551,
631, 632, 759, 908, 920, 936, 938, 943, 944, 946, 950, 954, 956, 958, 960, 962, 993,
997, 1001, 1004, 1005, 1007, 1125, 1145, 1156, 1158, 1210, 1292, 1317, 1320, 1323,
1324, 1325, 1329, 1376, 1387, 1478, 1479, 1483, 1484, 1490, 1511, 1512, 1519, 1532,
1537, 1538, 1656, 1657, 1698, 1699, 1706, 1737, 1750, 1785, 1837, 1851, 1858, 1898,
1899, 2070, 2071, 2094, 2096, 2478, 2550, 2551, 2886, 2932, 2948, 3036, 3059, 3060,
3085, 3086, 3091, 3110, 3219, 3241, 3243, 3244, 3254, 3305, 3322, 3328, 3358, 3419,
3421, 3434, 3452, 3473, 3474, 3475, 3485, 3486, 3522, 3534, 3543, 3555, 3582, . . . ,
3586, 3589, 3600}.

Each of these centers traces its circular path three times while ∆ performs one full turn in the
poristic family.

Proof. We demonstrate how to prove the above theorem by means of the trace of X2: X2

is the centroid of ∆ and therefore a parametrization of the poristic orbit of X2 is given as
the arithmetic mean of the coordinate vectors of A, B, and C from Eqs. (4) and (5), i.e.,
X2(t) =

1

3
(A+B + C). Explicitly we have

X2(t) =









d(−4d2c3tR
2 + 4d2c2tR− d(R2 + d2)ct + 2R3)

3R(R2 + d2 − 2dRct)
d2st(R

2 − d2 + 4dRct − 4R2c2t )

3R(R2 + d2 − 2dRct)









. (9)

This parametrization tells us that X2 traces its path three times. In order to obtain an
equation of it and moreover in order to show that the orbit of X2 is a circle, we eliminate t by
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first substituting ct = (1−u2)/(1+u2) and st = 2u/(1+u2). Then we compute the resultant
with respect to u of the two polynomials

px := den(x2(u))− x · num(x2(u)), py := den(y2(u))− y · num(y2(u)),

where x2(u) and y2(u) are the coordinate functions of X2(u) and den(f/g) = g = num(g/f)
give the denominator and numerator of a rational expression. This yields

230d12R16(R2 − d2)4(4R2d2 − 12xdR2 + 9y2R2 + 9R2x2 − d4)3

and thus

c2 : 9R2(x2 + y2)− 12dR2x+ d2(4R2 − d2) = 0 (10)

is an equation of the desired circle. The fact that Eq. (10) appears three times as a factor
of the resultant also shows that this circle is traced three times. The latter fact is caused by
the so-called improper parametrization of c2 given in Eq. (10). The circle c2 is centered at
M2 = [2

3
d, 0] and the radius equals ρ2 = 1

3
(R − 2r). Note that M2 is a triangle center of ∆

(not yet named or labelled, cf. [10]) for it is the reflection of X3 = [0, 0] in X3576 = [1
3
d, 0].

The method shown so far applies to the orbit of any center listed above. For all other
centers we only show how they are related to the vertices of ∆ and its deduced triangles ∆a,
∆e, ∆i, ∆o, ∆m, ∆t, and ∆x in order to find a parametrization of the central orbit.

In the following the poristic path of the center Xi will be denoted by ci. The center and
radius of ci shall be denoted by Mi and ρi.

X4 is the orthocenter of ∆ and thus elementary to find. We have M4 = X1482 and
ρ4 = R−2r. The nine-point center X5 is the circumcenter of ∆m and M5 = X1 and ρ5 =

1

2
ρ4.

The Gergonne point X7 moves on c7 with M7 = X1159 and ρ7 = rρ4/(4R + r). This fits to
the results given in [8]. For the trace of the Nagel point we have M8 = X3 and ρ8 = ρ4.
The Mittenpunkt X9 leads to M9 = [d(2R − r)/(4R + r), 0] and ρ9 = 2Rρ4/(4R + r). The
trace of the Spieker point X10 is centered at M10 = X1385 and has radius ρ10 = 1

2
ρ4. The

Feuerbach point is treated earlier, however, it moves on i. Since X12 = L1,5 ∩L2,56 we find
M12 = X1 and ρ12 = rρ4/(R+2r). The de Longchamps point X20 is the orthocenter of ∆a

and we find M20 = [−2d, 0] and ρ20 = ρ4.
Since the Schiffler point is given by X21 = L2,3∩L7,56 we have M21 = [2Rd/(3R+2r), 0]

and ρ21 = Rρ4/(3R + 2r). The Far-Out point X23 is the inverse of X2 in the circumcircle
and so we find M23 = [6R3/(d(3R + 2r)), 0] and ρ23 = 3R2/(3R + 2r). The 3rd power point
X32 is the intersection of L1,4 and L993,1007. For the latter two points see below. We find
M32 = X2099 and ρ32 = rρ3/(R + r).

The center X63 is the reflection of X1478 in X10. Further X1478 = L1,4∩L2,36 and therefore
M1478 = X2099 and ρ1478 = ρ32. Consequently M63 = [−rd/(R+ r), 0] and ρ63 = Rρ4/(R+ r).
The point X72 is found as the reflection of X65 in X10 and so M72 = [−rd/R, 0] and ρ72 = ρ4.
The 3rd Brocard point X76 is computed as X76 = L3,98∩L4,69, with X98 being the reflection
of X8 in X3416 and X3416 being the reflection of X6 in X10. The center X69 is the symmedian
point of ∆a and the reflection of X8 in X3416. Thus we find M76 = X1482 and ρ76 = ρ4.

We note thatX78 = L1,2∩L210,958, where X210 is the centroid of ∆x andX958 = L1,6∩L2,12.
This leads to M78 = [−rd/(R− r)], ρ78 = Rρ4/(R− r); M210 = [d(R− r)/)3R), 0], ρ210 =

2

3
ρ4;

and M958 = [Rd/(2R + r), 0], ρ958 = Rρ4/(2R + r). The center X80 appears as the reflection
of ∆’s incenter X1 in ∆’s Feuerbach point X11 and therefore M80 = X1 and ρ80 = 2r. We
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find X84 as the reflection of X1490 in the circumcenter X3 with X1490 = L1,4 ∩ L3,9. So we
obtain M84 = [d(2R− r)/r, 0], ρ84 = 2Rρ4/r and M1490 = [−d(2R − r)/r, 0] ρ1490 = ρ84.

The trace of X90 = L1,155 ∩ L40,80 is centered at M90 = [d(R − r)2/(R2 − 2Rr − r2) and
has radius ρ90 = 2rRρ4/(r

2 − 2Rr − R2). For the computation of X40, X80, and X155 (the
latter being the orthocenter of ∆t) see the proof of Theorem 4.1. Since X94 = L4,143 ∩ L23,98

we compute X143 = 1

2
(X5 + X52) with X52 being the orthocenter of the orthic triangle ∆o.

Thus M143 = [d(R + 2r)/R, 0] and ρ143 = ρ2
4
/(4R). Note that X143 is the nine-point center

of ∆o, provided that ∆ is acute. We also have M94 = X1482 and ρ94 = ρ4. The Tarry point
X98 is the reflection of the Steiner point X99 in X3. X99 is the common point of u and the
Steiner ellipse different from A, B, and C.

For the computation of X100 and X104 we refer to the proof of Theorem 4.1. Then it is
easily verified that X100, X104 are points on the circumcircle u. Since (X105, X1292) is a pair
of antipodal centers on u, their poristic locus equals u. For X119 see Theorem 4.4. With
X120 =

1

2
(X4 +X1292) we find M120 = M2 and ρ120 =

1

3
ρ4. Now X140 =

1

2
(X3 +X5) and thus

M140 = X1385 and ρ140 =
1

4
ρ4. Note that X140 is also the nine-point center of ∆m.

The Mittenpunkt of ∆m is denoted by X142 and appears as the midpoint of X7 and X9

and consequently we have M142 = [3d(2R+ r)/(4R+ r), 0] and ρ142 = (2R+ r)ρ4/(2(4R+ r)).

A

B

C

i

u

X1

X2

X3X165 X354

c2 e51

e154

Figure 8: Poristic loci of some centroids: X2 is the centroid for ∆, ∆a, and
∆m at the same time and moves on a circle c2, cf. Theorem 4.6. The Weill

point X354 (centroid of ∆i) and the centroid X165 of ∆e remain fixed according to
Theorem 4.1. The centroids X51 and X154 of ∆o and ∆t, respectively, trace conic
sections as stated in Theorem 4.7.
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X40

Figure 9: Poristic loci of some circumcenters: ∆’s circumcenter X3 is fixed. X1

is the circumcenter of ∆i. The circumcenter of ∆a is the orthocenter of ∆ which
is moving on the circle c4 (cf. Theorem 4.6). The nine-point center X5 is the
circumcenter of both, ∆m and ∆o. The circumcenter X26 of ∆t moves on e26
according to Theorem 4.7. The Bevan point X40 is the circumcenter of ∆e and
is fixed as shown in Theorem 3.2.

X144 comes along as the reflection of X7 in X9 and we find M144 = [−6rd/(4R + r), 0] and
ρ144 = ρ4(4R − r)/(4R + r). The construction of X145 is already mentioned in the proof of
Theorem 4.1. We find M145 = X1482 and ρ145 = ρ4. The center X149 appears as the reflection
of X20 in X104 and we observe M149 = X1482 and ρ149 = R + 2r. X153 is the reflection of X20

in X100 and we find M153 = X1482 and ρ153 = 3R− 2r.

The center X186 is the inverse of X4 in the circumcircle and so it is no surprise that
its poristic path is a circle. It is centered at M186 = [2R3/(d(3R + 2r)), 0] and has radius
ρ186 =

1

3
ρ23. We reflect the incenter X1 in the Schiffler point X21 and arrive at X191. This

results in M191 = [d(R−2r)/(3R+2r), 0] and ρ191 = 2ρ21. The center X200 is the intersection
of L1,2 with L40,64, where X64 is the reflection of X1498 in X3 and X1498 = L1,84 ∩ L4,6. X200

traces a circle centered at M200 = [−rd/(2R − r), 0] and with radius ρ200 = 2Rρ4/(2R − r).
Since X214 =

1

2
(X1 +X100) we have M214 = X1385 and ρ214 =

1

2
R.

X226 is the reflection of X993 in X1125. For the construction of the latter two we refer to
the proof of Theorem 4.1. So we obtain the data of three poristic traces: M226 = [d(2R +
3r)/(2(R + r)), 0], ρ226 = 1

2
ρ32; M993 = [dR/(2(R + r)), 0], ρ993 = 1

2
ρ63; and M1125 = [3

4
d, 0],

ρ1125 = 1

4
ρ4. Reflecting X23 in X110 gives X323 moving on a circle with center M323 =

[−6R3/(d(3R + 2r)), 0] and ρ323 = R(9R + 4r)/(3R + 2r). Reflecting X2093 in the Spieker

center X10 we obtain X329 and then M329 = [−4rd/(2R− r), 0] and ρ329 = ρ4. With X347 =
1

2
(X2 +X5) we find M347 = [5

6
d, 0] and ρ347 =

5

12
ρ4.

For the Fuhrmann center X355 = 1

2
(X4 +X8) we find M355 = X1 and ρ355 = ρ4. Since

X376 = 1

2
(X2 + X20) and X381 = 1

2
(X2 + X4) we find M376 = [−2

3
d, 0], ρ376 = 1

3
ρ4 and

M381 = [4
3
d, 0], ρ381 = 2

3
ρ4. The reflection of the circumcenter in the orthocenter yields X382

with M382 = [4d, 0] and ρ382 = 2ρ4.
The center X388 = L1,4∩L7,8 runs on a circle with center M388 = [2d(R+r)/(2R+r), 0] and
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Figure 10: Poristic loci of some orthocenters: ∆’s orthocenter X4 circles along c4.
The de Longchamps point X20 runs on the circle c20 (cf. Theorem 4.6). X1,
X3, and X65 are the orthocenter ∆e, ∆m, and ∆i. According to Theorem 3.2 X65

remains fixed. The orthocenters X52 and X155 of ∆o and ∆t travel along conic
sections e52 and e155, respectively, cf. Theorem 4.7.

radius ρ388 = rρ4/(2R+r). We reflect the Gergonne point X7 in the incenter X1 in order to
obtain X390. So we have M390 = [2d(2R−r)/(4R+r)] and ρ390 = ρ7. With X392 = L1,6∩L9,11

we arrive at M392 = M9 and ρ392 = ρ9. The Parry reflection point X399 is the reflection of
X3 in X110 therefore we have M399 = X3 and ρ399 = 2R. The complement of the Schiffler

point is X442 = L2,3 ∩L11,214 and its trace is centered at M442 = [2d(R+ r)/(3R+ 2r), 0] and
has radius ρ442 = (R + r)ρ4/(3R + 2r).

The Johnson midpoint is computed as X495 = L1,5∩L4,390 and we derive M495 = X1 and
ρ495 = 1

2
ρ32. For X496 = L1,5 ∩ L36,550 we determine X550 = 1

2
(X2 +X20). This intermediate

result yields M550 = X40, ρ550 = 1

2
ρ4 and M496 = X1, ρ496 = rρ4/(2ρ119). With X497 =

L1,4∩L2,11, X498 = L1,2∩L3,12, and X499 = L1,2∩L3,11 we find M497 = [2d(R−r)/(2R−r), 0],
ρ497 = rρ4/(2R− r); M498 = [d(R+ 2r)/(R+ 3r), 0], ρ498 = rρ4/(R+ 3r); and M499 = X1388,
ρ499 = rρ4/(3r − R).

We compute X501 = L21,214 ∩ L36,58 with X58 = L1,21 ∩ L3,6 which leads to M501 = M21

and ρ501 = ρ21. The next five centers are midpoints of centers: X546 = 1

2
(X4 +X5), X547 =

1

2
(X2 + X5), X548 = 1

2
(X5 + X20), X549 = 1

2
(X2 + X3), and X551 = 1

2
(X1 + X2). So we

find M546 = [3
2
d, 0], ρ546 = 3

4
ρ4; M547 = M347, ρ547 = 5

12
ρ4; M548 = X3579, ρ548 = 1

4
ρ4; and

M549 = X3576, M551 = M347, ρ549 = ρ551 =
1

6
ρ4. X631 is the reflection ofX4 in X3091. Therefore

we have to determine X3091 = L2,3 ∩ L11,153. This gives M631 = [2
5
d, 0], ρ631 = 1

5
ρ4 and

M3091 = [6
5
d, 0], ρ3091 =

3

5
ρ4. Then X632 appears as the reflection of X3091 in the circumcenter



60 B. Odehnal: Poristic Loci of Triangle Centers

A

B

C c5

u

i

c140

c143
e156

X1

X3

X942

Figure 11: Poristic loci of some nine-point centers: X5 moves on c5. The centers
X140 and X143 are the nine-point centers of ∆m and ∆o, respectively. According to
Theorem 4.6 their poristic loci are the circles c140 and c143. The nine-point center
of ∆t is the point X156. Its poristic orbit is the conic section e156, cf. Theorem 4.7.
∆’s circumcenter X3 plays a double-role: It is the nine-point center of ∆a and
∆e. The nine-point center of ∆i is the same point for all triangles in the poristic
system, i.e., X942 is fixed, see Theorem 4.1.

X3 and we find M632 = [3
5
d, 0] and ρ632 =

3

10
ρ4. With X759 = L10,21 ∩L58,65 we can verify that

X759 travels on u.
The point Acubens X908 is the intersection of L2,7 and L12,960. So we compute X960 =

1

2
(X1+X72). Since X908 is the reflection of X1512 in X119, we obtain X1512 as reflection of X908

in X119. Thus we have M960 = [d(R−r)/(2R), 0], ρ960 =
1

2
ρ4; M908 = [−3rR/d, 0], ρ908 = ρ119;

and M1512 = [R(2R−r)/d, 0], ρ1512 = ρ119. We find X920 = L1,21∩L4,46 and therefore we have
M920 = [d(R2 + r2)/(R2 − Rr − r2), 0] and ρ920 = rRρ4/(R

2 − Rr − r2). If we intersect L1,2

with the lines L3,9 and L4,7 we find X936 and X938, respectively. The centers and radii of their
paths are M936 = [d(2R−r)/(4R−r), 0], ρ936 = 2Rρ4/(4R−r) and M938 = [4dR/(4R−r), 0],
ρ938 = rρ4/(4R−r). For X943 = L3,7∩L4,12 we find M943 = [4dR(R−r)/(4R2+7Rr+2r2), 0]
and ρ943 = rRρ4/(4R

2 + 7Rr + 2r2).
The Hofstadter-Trapezoid point X944 is the midpoint in between X20 and X145. There-

fore we have M944 = X3 and ρ944 = ρ4. The center X946 = 1

2
(X1 + X4) traces a circle with

center M946 = M546 and radius ρ946 =
1

2
ρ4. As intercept of L1,4 and L8,9 we obtain the point

X950 and M950 = [d(2R − r)/2R, 0] and ρ950 = rρ4/(2R). The central line L1,6 carries the
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Figure 12: Poristic loci of the Schiffler point X21, the Far-Out point X23, the
3rd power point X32, the Fuhrmann center X355, the point Acubens X908, the
Hofstadter-Trapezoid point X944, the Longuet-Higgins point X962, and
the Fermat crosssum X1511.

three centers X954 and X956, which also lie in the central lines L3,7 and L3,8, respectively. We
find M954 = [4dR/(4R + r), 0], ρ954 = Rrρ4/(R + r)(4R + r) and M956 = X3, ρ956 = ρ63.
The Longuet-Higgins point is the reflection of the Nagel point X8 in the orthocenter X4.
This yields M962 = M382 and ρ962 = ρ4. The midpoint X997 of X1 and X200 determines
M997 = [d(R− r)/(2R− r), 0] and ρ997 =

1

2
ρ200.

Since X1001 = 1

2
(X1 + X9) we have M1001 = [3Rd/(4R + r), 0] and ρ1001 = 1

2
ρ9. For

X1004 = L2,3 ∩ L7,100 we compute M1004 = [2Rd(R + r)/(3R2 − Rr − r2), 0] and ρ1004 =
R(R+ r)ρ4/(3R

2−Rr− r2). The centers X1005 and X1007 are located on the Euler line and
on the central lines L9,100 and L4,99, respectively. We derive M1005 = [2Rd(2R − r)/(6R2 +
5Rr + 2r2), 0], ρ1005 = R(2R − r)ρ4/(6R

2 + 5Rr + 2r2) and M1007 = M2, ρ1007 = 1

3
ρ4. The

3rd Ehrmann point X1145 =
1

2
(X8 +X100) leads to M1145 = X3 and ρ1145 = ρ119. The center

X1156 is found as the midpoint of X9 and X100. Its circular path is centered at M1156 = M390

and has radius ρ1156 = 9rR/(4R + r). The circumcenter of the extouch triangle ∆x is given
by X1158 =

1

2
(X40 +X84) and its poristic locus is centered at M1158 = [d(R− r)/r, 0] and has

radius ρ1158 = 1

2
ρ84. The center X1210 = L1,2 ∩ L3,950 yields M1210 = [d(2R − r)/(2R), 0] and

ρ1210 = ρ946.

Since X1317 is the reflection of X11 and X1 it is easy to find a parametrization of its
path which is the incircle. The path of the midpoint X1320 = 1

2
(X145 +X149) is centered at

M1320 = X1482 and is congruent to u for ρ1320 = R. The Fletcher point X1323 is the inverse of
theGergonne pointX7 in the incircle and its trace is centered atM1323 = [R(2R−r)/(2d), 0]
and has radius ρ1323 =

1

2
r. The inverse X1324 of the Spieker point X10 in the incircle moves

on a circle centered at M1324 = [R3/(rd), 0] with radius ρ1324 = R2/r. The inverse X1325 of the
Schiffler pointX21 in the incircle has an orbit centered atM1325 = [2R2/d, 0] with ρ1325 = R
for its radius. The center X1329 = 1

2
(X8 + X2098), where X2098 is known from Theorem 4.1

and its proof, respectively, gives M1329 = [d(R − 2r)/(2(R − r), 0] and ρ1329 = 1

2
ρ4. The

exsimilicenter of the circumcircle and the Spieker circle is given by X1376 = L3,10 ∩ L8,56.
Its poristic locus is centered at M1376 = [Rd/(2R − r), 0] and has radius ρ1376 = 1

2
ρ200.

X1387 = 1

2
(X1 + X11) has a circular path centered at M1387 = X1 and ρ1387 = 1

2
r. From



62 B. Odehnal: Poristic Loci of Triangle Centers

X1479 = L1,4 ∩ L3,11 we derive M1479 = X2098 and ρ1479 = 2ρ946.

The centers X1483 and X1484 appear as reflections of X5 in X1 and X5 in X11, respectively.
We have M1483 = M1484 = X1, ρ1483 = 1

2
ρ4, ρ1484 = 1

2
ρ149. The Fermat crosssum X1511 =

1

2
(X3 + X110) runs on a circle concentric with u and thus M1511 = X3 and ρ1511 = 1

2
R.

The construction of X1519 produces a lot of useful byproducts since X1519 is the reflection of
X1532 in X1538, where X1538 is the reflection of X1512 in X1537. Since X1537 = L4,145 ∩ L11,65

and X1532 = L2,3 ∩ L12,946 we find: M1519 = [R(2R − 3r)/d, 0], M1532 = [2R(R − r)/d, 0],
M1537 = X1482, M1538 = [R(4R − 5r)/(2d), 0] and ρ1519 = ρ1532 = ρ1537 = ρ1538 = ρ119. The
center X1656 is the intersection of the Euler line with L17,18. Without explicitly knowing the
latter two points we find X1656 as the reflection of X5 in X632 and this gives M1656 = [4

5
d, 0]

and ρ1656 = 2

5
ρ4. Reflecting the de Longchamps point X20 in the circumcenter X3 we find

X1657. Its trace has center M1657 = [−4d, 0] and radius ρ1657 = 2ρ4.

The poristic locus of the center X1698 = L1,2∩L5,40 is the circle with center M1698 = M632

and has radius ρ1698 = 2

5
ρ4. Since X1699 shows up as the reflection of X165 in the centroid

X2 we find M1699 = [5
3
d, 0] and ρ1699 = 1

3
ρ4. The exsimilicenter of the Bevan circle and the

Spieker circle is the triangle center X1706 which is the reflection of X2551 in the Spieker

point X10. So we compute X2551 = L4,9 ∩ L2,12 and find M2551 = [2d(R − r)/(4R − r), 0],
ρ2551 = ρ4(2R− r)/(4R− r) and M1706 = [d(2R + r)/(4R− r), 0], ρ1706 = ρ936.

The midpoint of X36 and X80 is labelled X1737 and rotates about M1737 = X1319 at
distance ρ1737 = r.The reflection of X1 in X497 equals the point X3586. This enables us to
construct X1750 as the reflection of X3586 in the orthocenter X4. From that we obtain M1750 =
[d(6R − r)/(2R − r), 0], ρ1750 = 2ρ200 and M3586 = [d(2R − 3r)/(2R − r), 0], ρ3586 = 2ρ497.
The point X1785 is the inverse of X946 in the incircle. It is circling around M1785 = X1319 with
ρ1785 = r. For the center X1837 = L1,5∩L4,65 we findM1837 = X1 and ρ1837 = 2ρ946. The center
X1851 = L4,8 ∩ L25,105, where X25 = L2,3 ∩ L6,51 and with X51 being the centroid of ∆o and
M1851 = X1482, ρ1851 = ρ4. With X1858 = L1,90 ∩ L4,65 we get M1858 = [d(R2 + r2)/R2, 0)] and
ρ1858 = 2ρ950. Reflecting X65 in X1837 gives X1898 and thus M1898 = X3057 and ρ1898 = 4ρ496.
The point X1899 = L1,98 ∩ L4,51 is rotating about M1899 = X1482 at distance ρ1899 = ρ4.

The inverse of X5 and X20 in the circumcircle yield X2070 and X2071 which are rotating
about M2070 = [4R3/(d(3R + 2r)), 0] at distance ρ2070 = 2

3
ρ23 and M2071 = [−2R3/(d(3R +

2r)), 0] at distance ρ2071 = 1

3
ρ23. The reflection of X2 and X4 in X57 yields X2094 and X2096,

respectively. From that we conclude that M2094 = [8d(R + r)/(3(2R − r)), 0], ρ2094 = 1

3
ρ4

and M2096 = [4rd/(2R − r), 0], ρ2096 = ρ4. With X2478 = L2,3 ∩ L8,210 we find M2478 =
[2d(R− r)/(3R− r), 0] and ρ2478 = ρ4ρ119/(3R − r). The midpoint X2550 of the Gergonne

and Nagel point determines M2550 = [2d(R + r)/(4R+ r), 0] and ρ2550 = 2ρ142.

We find X2886 = 1

2
(X1 + X3419) with X3419 as the reflection of X55 in X10. This leads

to M2886 = [d(R + 2r)/(2(R + r)), 0], ρ2886 = 1

2
ρ4 and M3419 = [rd/(R + r), 0], ρ3419 = ρ4,

respectively. The point X2932 is the inverse of X1145 in the circumcircle. It is rotating about
M2932 = X3 at distance ρ2932 = R2/ρ119. The center X2948 comes up as the reflection of X3448

in the Spieker center X10. For that we determine X3448 as the reflection of X20 in X74 with
the latter being X74 = L20,68 ∩ L72,100, where X68 is the reflection of X5 in X155. We find
M2948 = X40 and ρ2948 = 2R.

With X3036 = 1

2
(X8 +X11) we find M3036 = X1385 and ρ3036 = 1

2
(3r − R). Then X3059 =

L7,8 ∩ L9,55 and we get M3059 = [−dr(R + r)/(R(4R + r)), 0] and ρ3059 = 4ρ142. For X3060 =
L2,51 ∩ L4,52 we find the center and radius of its circular path: M3060 = [4d(R+ 2r)/(3R), 0)]
and ρ3060 = 4

3
ρ143. We intersect the line L1,2 with L4,12 and L4,11 and get X3085 and X3086,

respectively. The centers and radii of the respective poristic loci are: M3085 = [2d(R+r)/(2R+



B. Odehnal: Poristic Loci of Triangle Centers 63

3r), 0], ρ3085 = rρ4/(2R + 3r) and M3086 = [r(R − 2r)/(2R − 3r), 0], ρ3086 = rρ4/(2R − 3r).
The center X3110 is the inverse of X3286 in the circumcircle and X3286 = L3,6 ∩ L7,21. So we
have M3110 = X1385 and ρ3110 = 1

2
d. We compute X3219 = L2,7 ∩ L8,90 and find M3219 =

[2d(R− r)/(5R+2r), 0] and ρ3219 = 3Rρ4/(5R+2r). The center X3241 =
1

2
(X2+X145) moves

on a circle centered at M3241 = M381 with radius ρ3241 =
1

3
ρ4.

We reflect X8 in X142 and arrive at X3243 with M3243 = [3d(2R + r)/(4R + r), 0] and
ρ3243 = ρ9. The reflection of the Spieker center X10 in the incenter X1 is named X3244 and
circles around M3244 = M546 with ρ3244 =

1

2
ρ4. Now X3254 is the reflection of the Mittenpunkt

X9 in the Feuerbach point X11 and we get M3254 = M3243 and ρ3254 = 2(R+ r)2/(4R+ r).
The point X3305 = L2,7 ∩ L210,1001 traces a circle with center M3305 = [d(4R− r)/(7R + r), 0]
and radius ρ3305 = 3Rρ4/(7R + r). The reflection of X3328 in X1 yields X3322, where X3328 is
computed as the reflection of X1155 in X1323. Note that X1155 is the reflection of X1 in X3245.
Now it is easily verified that X3322 and X3328 run on the incircle. The center X3358 =

1

2
(X9 +

X84) determines M3358 = [d(4R2 − r2)/(r(4R+ r)), 0] and ρ3358 = 2Rρ4(2R+ r)/(r(4R+ r)).

The reflection ofX8 inX3419 yields X3434 with circular orbit centered atM3434 = [2rd/(R+
r), 0] and radius ρ3434 = ρ4. We construct X3452 as the intersection of the central lines L2,7

and L5,10 and find the center of the circular orbit M3452 = [d(2R − 3r)/(2(2R − r)), 0] and
the radius ρ3542 = 1

2
ρ4. This allows to compute X3421 as the reflection of X1 in X3452 and

we find M3421 = [−2rd/(2R − r), 0] and ρ3421 = ρ4. From X3474 = L4,46 ∩ L7,55 we get
M3474 = [2d(R + 2r)/(2R − r), 0] and ρ3474 = ρ497. On the central line L1,4 we find the
next four centers: We intersect with L8,56, L7,55, L7,21, and L8,21 and obtain X3473, X3475,
X3485, and X3486, respectively. Their poristic orbits are centered at M3473 = X999, M3475 =
[2d(3R+2r)/(3(2R+r)), 0], M3485 = [2d(R+2r)/(2R+3r), 0], and M3486 = [2Rd/(2R+r), 0]
and have radii ρ3472 = ρ497, ρ3475 =

1

3
ρ388, ρ3485 = ρ3085, and ρ3486 = ρ388.

The reflection of X361 in the circumcenter X3 leads to X3522 with M3522 = [−2

5
d, 0] and

ρ3522 = 1

5
ρ4. The center X3534 is the reflection of X382 in X381 and rotates about M3534 =

[−4

3
d, 0] with ρ3534 = 2

3
ρ4. Reflecting X3534 in X5 we find X3543 and M3543 = [10

3
d, 0] and

ρ3543 = 5

3
ρ4. The Dosa point X3555 is the reflection of X72 in the incenter X1 and circles

about M3555 = [d(2R + r)/R, 0] at distance ρ3555 = ρ4. On the central line parallel to the
Euler line through the Feuerbach point X11 we find X3582 and X3583 by intersecting with
L1,2 and L1,4, respectively. This yields circular orbits with centersM3582 = [R(3R−4r)/(3d), 0]
and M3583 = [R(R− 4r)/d, 0] and radii ρ3582 =

2

3
r and ρ3583 = 2r, respectively. Since X3584 =

L1,2∩L11,547 we find M3584 = [d(3R+4r)/(3(R+2r)), 0] and ρ3584 =
2

3
ρ12. On the central line

L1,4 we find X3585 and X3586 as intersections with L5,36 and L30,57, respectively. Their poristic
paths are centered at M3585 = [d(R + 4r)/(R + 2r), 0] and M3586 = [d(2R− 3r)/(2R− r), 0].
The respective radii are ρ3585 = 2ρ12 and ρ3586 = 2ρ497. For X3589 = L4,5 ∩ L8,10 we find
M3589 = M2 and ρ3589 = 1

3
ρ4. Finally the center X3600 = L1,7 ∩ L8,57 circles around M3600 =

[2d(2R+ r)/(4R− r), 0] at distance ρ3600 = ρ938.

4.4. Centers moving on conic sections

In this last section we focus on triangle centers that run on conic sections while ∆ is moving
through its poristic family. We shall give the semiaxes and center of the poristic paths only for
some prominent centers and in the cases where these (centers and axes) are relatively simple
functions in R, r, and d. We shall skip the lengthy discussion under which circumstances the
poristic loci of triangle centers mentioned here are ellipses or hyperbolae. We can show:
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Theorem 4.7. The triangle centers Xi with

i ∈ {6, 22, 25, 31, 42, 51, 52, 58, 64, 81, 154, 155, 156, 182, 185, 374, 375, 378,
386, 387, 389, 500, 573, 575, 576, 609, 612, 948, 959, 961, 970, 975, 991, 1012, 1147,
1216, 1350, 1351, 1386, 1486, 1495, 1498, 1658, 1829, 1834, 1836, 1838, 1871, 1900,
1902, 2097, 2334, 2482, 3240, 3242, 3292, 3332, 3581}

trace conic sections while ∆ makes a full turn in the poristic family. These conic sections are
centered at points on the central line L1,3. One of their axes coincides with L1,3.

Proof. The center X6 is the Lemoine point of ∆. Its trace has center M6 = [3R2d/(3R2 −
2Rr + r2), 0] and major and minor axes are a6 = Rrρ4/(3R

2 − 2Rr + r2) and
b6 = R

√
rρ4/

√

ρ119(2R2 − 3Rr − r2).

We compute the Exeter point X22 = L2,3 ∩ L51,182 with X182 = 1

2
(X3 + X6) and X51

being the centroid of ∆o. We find M51 = [d(3R + 4r)/R, 0] and a51 = rρ4/(3R) and b51 =
ρ4ρ908/(3R). The center X25 is the intersection of L2,3 and L6,51. The 2nd Power point
X31 is collinear with the incenter X1 and Schiffler’s point X21 and lies on L940,1001 with
X940 = L1,3 ∩ L2,6. We construct X42 as L1,2 ∩ L35,58, where X58 appears as the intersection
of the central lines L1,21 and L3,6. The construction of X64 is explained in the proof of
Theorem 4.6.

The center X52 is the orthocenter of ∆o. It is moving on an ellipse centered at M52 =
[d(R + 4r)/R, 0] and with semiaxes a52 = ρ4ρ119/R and b52 = rρ4/R. The point X64 is the
reflection of X1498 in X3 and a construction of X1498 is given in the proof of Theorem 4.6.

On the central line joining the incenter X1 with the Schiffler point X21 we find X81

which also lies on L2,6. X154 is the centroid of ∆t, X155 is the orthocenter of ∆t, and X156 =
1

2
(X26 + X155) is the nine-point center of ∆t. The center X185 is the Nagel point of the

orthic triangle ∆o. Its poristic locus is the ellipse with center M185 = [−d(R − 4r)/R, 0], its
semiaxes are a185 = (2R− r)ρ4/R and b185 = (R + r)ρ4/R.

The triangle center X374 is the centroid of the pedal triangle of X9. Its poristic locus
is the ellipse centered at M374 = [d(R + r)(8R − r)/(3R(4R + r)), 0] with semiaxes a374 =
4ρ4(R + r)/(3(4R + r)) and b374 = 2Rρ4/(4R + r), respectively. The centroid of the pedal
triangle of the Spieker point is denoted by X375. Its poristic trace has center M375 =
[d(4R+3r)/(6R), 0] and its semiaxes are a365 = (2R+ r)ρ4/(6R) and b375 = (3R− r)ρ4/(6R).
X378 is determined as the reflection of X22 in X3. We have X386 = L1,2 ∩ L3,6 and X387 =
L1,2 ∩ L4,6. With X389 = 1

2
(X3 + X52) we find an ellipse with M389 = [d(R + 4r)/(2R), 0],

a389 = ρ4ρ119/(2R), and ρ389 = rρ4/R. The orthocenter of the incentral triangle X500 leads
to M500 = [d(5R + 2r)/(2(3R = 2r)), 0] and a500 = ρ21, and b500 =

√
rρ21/

√
2R. With

X573 = L3,6 ∩ L4,9 we find M573 = [−4d(R + r)/(5R + 8r), 0], a573 = Rρ4/(5R + 8r), and
b573 = ρ4

√
rR/

√
20R2 + 37Rr + 8r2. The center X575 is the midpoint in between X3 and

X576, where X576 is the reflection of X182 in X6. The triangle center X609 is the intersection
of the central lines L1,32 and L6,36.

The center X612 is found as intersection of L1,2 and L6,210. We find the next three centers
and thereby the parametrizations of their poristic paths as intersection of central lines: X948 =
L1,4∩L6,7, X959 = L1,573∩L2,65, and X961 = L2,12∩L6,959. The center of the Apollonius circle
is found as X970 = L3,6 ∩ L5,10. Its poristic trace is centered at M970 = [−d(R + 4r)/(2r), 0]
and the semiaxes are a970 = ρ4ρ119/(2r) and b970 = 1

2
ρ4. Again three centers are found as

intersections of central lines: X975 = L1,2 ∩L9,58, X991 = L1,7 ∩L3,6, and X1012 = L2,6 ∩L1,84.
The point X1147 is the midpoint of X3 and X155.
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Figure 13: Some ellipses being poristic loci of triangles, cf. Theorem 4.7.

The center X1216 appears as the reflection of X389 in X140 and its poristic locus is centered
at M1216 = [d(R − 4r)/(2R), 0] and the semiaxes are a1216 = (2R − r)ρ4/(2R) and b1216 =
(R + r)ρ4/(2R). The points X1350 and X1351 are found as reflections of X6 in X3 and X1350

in X182, respectively. X1386 is the midpoint of X1 and X6. The perspector of ∆t and ∆i is
the center X1486. The triangle center X1495 =

1

2
(X23 +X110) moves on an ellipse with center

M1495 = [3R3/(d(3R + 2r)), 0], a1495 = Rr/(3R + 2r), and b1495 = R(3R + r)/(3R + 2r). We
find X1498 = L1,84 ∩L4,6 and X1658 =

1

2
(X3+X26). Then we find three centers by intersecting

central lines: X1834 = L4,6 ∩ L12,42, X1836 = L4,65 ∩ L5,46, and X1838 = L1,4 ∩ L5,1214. The
center X1214 lies on L1,3 and on L7,464, where X464 = L63,69.

On the central line L4,8 we find the centers X1829, X1871, and X1900 by intersecting with
central lines L1,25, L5,1848, and L25,35, respectively. This yields M1829 = [d(R2 + 3Rr −
r2)/R2, 0], a1829 = 2rρ4/R, b1829 = ρ4; M1871 = [d(3R2 + 5Rr − r2)/(R(2R + r)), 0], a1871 =
(R+3r)ρ4/(2R+ r), b1871 = ρ4; and M1900 = [d(R2 +7Rr− r2)/(R(R+2r)), 0], a1900 = 4ρ12,
b1900 = ρ4. Reflecting X1829 in X4 we arrive at X1902 with M1902 = [d(3R2 − 3Rr+ r2)/R2, 0],
a1902 = 2ρ4ρ119/R, and ρ1902 = ρ4.

The triangle center X2097 is the reflection of X6 inX57 and X2482 = 1

2
(X2 + X99). We

obtain X2334 as the common point of the central lines L1,210 and L6,210. The midpoint of X69

and X145 is identified as center X3242. The point X3292 is constructed as the reflection of X1495

in X110 and its poristic trace is centered at M3292 = [3R3/(d(3R+2r)), 0] and its semiaxes are
a3292 = Rr/(3R+ 2r) and b3292 = R(3R+ r)/(3R+ 2r). We find X3332 = L1,7 ∩ L4,6. Finally
the center X3581 ⊂ L3,6 lies on the Euler line and we find M3581 = [6R3/(d(3R + 2r), 0],
a3581 = 2R(3R+ r)/(3R + 2r), and b3581 = 2Rr/(3R + 2r).

Figure 14 shows that for certain values of R, r, and d ellipses, parabolae, and hyperbolae
appear as poristic trace of the same center.



66 B. Odehnal: Poristic Loci of Triangle Centers
replacements

A

B

C

u

i

X1

X3

X22

e22

A

B

C
u

i

X1X3

X22

e22

A

B

C u

X3

e22

Figure 14: Different shapes of the poristic trace of the Exeter point X22.

5. Final remarks

All the centers mentioned in the proof of Ths. 4.6 and 4.7 are triangle centers for ∆ since for
any fixed triangle R, r, and d are fixed and so is the relative position of Mi to X1 and X3 on
L1,3.

The poristic traces of many centers have been parametrized during the computation of
the poristic path of all centers mentioned in the theorems. Some of the centers which appear
in the construction of centers do not have a conic section for its poristic orbit. The center
X69 like many others traces an algebraic curve. In most cases the algebraic degree is larger
then 4.

In the previous section we skipped the discussion of the affine type of the poristic paths
of the centers investigated there. However, it is easy to show that the traces of Xi with
i ∈ {22, 64, 154, 156, 609, 1498, 1658, 2482} can be ellipses and hyperbolae as well.
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