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Abstract. The famous Sawayama-Thébault configuration of the triangle ABC
depends on a variable point D on its sideline BC and consists of eight circles
touching the lines AD and BC and its circumcircle. These circles are best con-
sidered in four pairs that are related to the four circles touching the sidelines BC,
CA and AB (the incircle and the three excircles). We use analytic geometry to
determine the coordinates of the centers P , Q, S, T , U , V , X , and Y of the eight
Sawayama-Thébault circles with respect to a parametrization of the triangle ABC
with inradius r and cotangents f and g of the angles B

2
and C

2
. The position of the

point D is described by the cotangent k of half of the angle between the lines AD
and BC. The coordinates of many points in this configuration are rational func-
tions in r, f , g and k that makes most computations simple especially when done
by a computer. In this approach, the proof of the original Thébault’s problem
about the incenter I dividing the segment QP in the ratio k2 is straightforward.
Some other interesting properties of this gem of triangle geometry are explored by
analytic methods.

Key Words: triangle, line, concurrent lines, orthopole, Simson-Wallace line, locus,
power
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1. Introduction

In [32], the authors say that the following result is usually called Thébault’s theorem (see the
portion of the Fig. 1 above the line BC). For a point X and a positive real number y, let
k(X, y) denote the circle k with the center at X and the radius y.

Theorem 1. Let u(I, r) be the incircle of a triangle △ABC and D any point on the line BC.
Let k1(P, r1) and k2(Q, r2) be two circles touching the lines AD and BC and the circumcircle
o(O,R) of ABC. Then the three centers P , Q and I are collinear and the following relations
hold:

PI : IQ = τ 2, (1)

r1 + r2 τ
2 = r(1 + τ 2), (2)

where 2 θ = ∠ADB and τ = tan θ.
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Figure 1: Thébault’s theorem

The primary goal of this paper is to give correct versions of the above “theorem”. Its
formulation needs greater precision because the requirement “touching the lines AD and BC
and the circumcircle o(O,R)” is not restrictive enough. This is obvious from the part of Fig. 1
under the line BC since the centers Y , U and I are not collinear. On the other hand, the
relation (2) does not hold for all positions of the point D on the line BC.

The exciting history of Thébault’s theorem is nicely presented in [1], [3], [13], [21], [25]
and [32]. Now we only mention briefly key developments in chronological order:

In 1900 and 1905 Sawayama (see [15, p. 142] and [23]) first considered circles touching
the circumcircle, the sideline and a variable line through the opposite vertex of a triangle. In
1938 Thébault formulated the above Theorem 1 as the American Mathematical Monthly
Problem 3887 with the wrong relation (2) (corrected in [8]). It does appear also in Ogilvy’s
book [16] from 1962 (and in its translation into German [17] in 1969).

The first solutions by Streefkerk [28], Veldkamp [33], Dijkstra-Kluyver [4] and
Dijkstra-Kluyver and Streefkerk [5] are from 1972 and 1973 (all in Dutch). In 1988
and 1989 this was recalled in [7] and in a solution [34] by Veldkamp of [9] for the English
speaking world.

In this larger world, the perception was that the first complicated solution [29] of the
Problem 3887 (on 24 pages) is by Taylor in 1983. However, already in 1975 a much simpler
solution [8] by English was submitted to the American Mathematical Monthly only to be
published in 2003.
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The following two solutions by Turnwald [31] in 1986 and by Stärk [27] in 1989 are
in German. The more recent solutions and further improvements are by Chou [2] in 1988,
Demir and Tezer [3] and Lu and Jingzhong [14] in 1991, Rigby [21] in 1995, Shail
[25] and Dutta [6] in 2001, Gueron [10] in 2002, Kodokostas [12] in 2004, Veljan and
Volenec [32] in 2008, and Ostermann and Wanner [18] in 2010. There were also some
other contributions that are partially given in the references.

Following these 111 years of efforts to understand the Sawayama-Thébault configuration
it is fair to say that the Problem 3887 is an unusual result in elementary geometry that was
more often considered within the analytic geometry rather than in the synthetic geometry.
The synthetic approach is traditionally considered as more valuable while the inferior analytic
method is always a kind of brute force with lengthly computations.

In this paper we also follow the analytic method but thanks to a right selection of pa-
rameters the majority of our calculations and expressions remain quite simple. We need the
following auxiliary notation to achieve this goal. Let

d = f − g, z = f + g, ζ = fg, h = ζ − 1, h̄ = ζ + 1,
f± = f ± k, g± = k ± g, f± = f 2 ± 1, g± = g2 ± 1, ϕ± = f k ± 1,
ψ± = g k ± 1, K = k2 + 1, L = k2 − 1,

and let λ(a, b) replace (λ a, λ b).
Let ABC be a triangle in the plane. Let β = ∠CBA and γ = ∠ACB. Let f = cot β

2
and

g = cot γ
2
and let u(I, r) be the incircle of the triangle ABC. We shall use the rectangular

coordinate system that has point B as the origin and point C on the positive part of the
x-axis while point A is above it. For a point P , let xP and yP denote its x- and y-coordinate
with respect to this system. Then the vertices A, B and C of the triangle ABC have the
coordinates

rg

h

(

f−, 2f
)

, (0, 0) and (r z, 0),

where the positive real numbers r, f and g satisfy h > 0. The position of a variable point
D on the line BC is determined by the positive real number k = cot δ

2
, where δ is the angle

between the lines AD and BC. Hence, D = Dk =
(

r g f+ ϕ−

h k
, 0

)

.

2. Thébault’s theorem

We shall first determine the coordinates of the centers of the Sawayama-Thébault circles (see
Theorem 2). With this important information the proof of the (complete) Thébault theorem
(see Theorems 3, 4 and 5 and Fig. 2) is indeed very simple and straightforward. Of course, our
approach is similar to [3] and [25]. However, our choice of the parametrization gives simpler
expressions and allows a more extensive study of the Sawayama-Thébault configuration.

Theorem 2. The points P , Q, S, T , U , V , X, and Y with respective coordinates

rϕ−

k

(

1,
ψ+

hk

)

, rf+

(

1, −g−

h

)

,
rgf+

k

(

1,
fg−

hk

)

, −rgϕ−

(

1,
fψ+

h

)

,

rgϕ−

hk

(

z,
g−

k

)

,
rgf+

h
(z, ψ+) ,

rf+

hk

(

−z, fψ+

k

)

,
rϕ−

h
(z, fg−)

are the centers and r1 = |yP |, . . . , r8 = |yY | are the radii of the eight circles ki (i = 1, . . . , 8)
that touch the lines BC and AD and the circumcircle o(O, R).
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Figure 2: Theorems 3 and 4 together

Proof: Let P (p, q) be the center of the circle that touches the lines BC and AD and the
circle o. Then

|PP ′′| = |q|, (3)

and

|PO|2 = (R± q)2, (4)

where P ′′ is the orthogonal projection of the point P on the line AD. If

u = Lp− 2 k q, v = Lq + 2 k p, w = hK2,
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then

xP ′′ =
4 r g k f+ ϕ− + hLu

w
and yP ′′ =

2 r g Lf+ ϕ− − 2 h ku

w
, hence |PP ′′| =

∣

∣

∣

hv− 2 r g f+ ϕ−

w

∣

∣

∣
.

On the other hand, R =
rf+g+

4 h
and O has the coordinates

r

4h
(2z, z2 − h2). It is now easy to

see (perhaps with a little help from Maple V) that the above eight cases of pairs (p, q) are all
solutions of the equations (3) and (4).

While it is easy to find the coordinates of the centers P, . . . , Y of the eight Sawayama-
Thébault circles and their radii |yP |, . . . , |yY |, it is difficult to describe them precisely by
purely geometric means because when the point D changes position on the line BC these
circles are changing considerably so that it is hard to tell one from the other. For the points
P , Q, S and T this was done in [3, Section 3] by the use of the oriented configurations.

For a real number λ 6= −1 and different points M and N , the λ-point of the segment MN
is a unique point F on the line MN such that the ratio of oriented distances |MF | and |FN |
is equal to λ. We can extend this definition to the case when M = N taking that the λ-point
is the point M for every real number λ 6= −1. Recall that the coordinates of the λ-point are
(

xM + λxN

λ+ 1
,
yM + λ yN

λ+ 1

)

.

Let ka(Ia, ra), kb(Ib, rb) and kc(Ic, rc) be the excircles of the triangle ABC. Then I, Ia,
Ib and Ic have the coordinates

r(f, 1), rg(1, −f), rgz

h
(f, 1) and

rz

h
(−1, f) .

Also,

ra = rfg, rb =
rgz

h
and rc =

rfz

h
.

The part of the following result for the segment QP is the correct form of Thébault’s theorem
while the part for the segment TS is the correct form of Thébault’s external theorem (see [32,
Remark 2]). In [25], Shail calls Theorem 3 the full Thébault theorem.

Theorem 3. The points I, Ia, Ib and Ic are the k2-points of the segments QP , TS, V U and
Y X.

Proof: From

xQ + k2 xP
K

=
r f+ + k2 rϕ−

k

K
= rf = xI and

yQ + k2 yP
K

=
− rf+g−

h
+ k2 rϕ− ψ+

hk2

K
= r = yI

follows that I is the k2-point of the segment QP . The other cases have similar proofs.

Corollary 1. The abscises and the ordinates of the centers of Sawayama-Thébault circles
satisfy

xQ + k2 xP = Krf, xT + k2 xS = Krg, (5)

xV + k2 xU = Krbf, f(xY + k2 xX) = −Krc , (6)

yQ + k2 yP = Kr, yT + k2 yS = −Kra , (7)

yV + k2 yU = Krb , yY + k2 yX = Krc . (8)
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Note that only when the point D is on the segment BC it holds yP = r1, yQ = r2,
yS = −r3, and yT = −r4 so that from (7) we get (2) since k = 1/τ . The second relation in (7)
gives us the analogous formula r3 + r4 τ

2 = ra(1 + τ 2) for the Thébault’s external theorem.
On the other hand, when the point D is on the left from the point B, the ordinate yP of

the center P is negative so that the relation (7) gives r2 − k2 r1 = (1 + k2)r. Moreover, when
the point D is on the right from the point C, the ordinate yQ is negative so that the relation
(7) implies the third part k2 r1 − r2 = (1 + k2)r of the correct version of the formula (2).

As was already noticed in [27], the eight Sawayama-Thébault circles are also connected
with the triangle EBC, where the point E is the second intersection (besides the point A) of

the line AD and the circumcircle o. Its coordinates are
r f+ ϕ−

hK2

(

ψ2
+ − g2

−
, 2ψ+ g−

)

. One can

easily find that its incenter J and the excenters Jb, Jc and Je have the coordinates

r z ϕ−

hK
(ψ+, g−) ,

r f+

K
(ψ+, g−) ,

r ϕ−

K
(g−, −ψ+) , and

r z f+

hK
(−g−, ψ+) .

It is important to note here that as the parameter k changes the actual role of these points
changes so that from the excenters they can become other excenters or the incenter and vice
versa.

Theorem 4. The four points J , Jb, Jc, and Je are the k2-points of the segments Y U , QS,
TP , and V X.

Proof: Since
xY + k2xU

K
=
rzϕ−

hK
+
rzgkϕ−

hK
=
rzϕ−ψ+

hK
= xJ

and
yY + k2yU

K
=
rfϕ−g−
hK

+
rgϕ−g−
hK

=
rzϕ−g−
hK

= yJ ,

it follows that J is the k2-point of the segment Y U . The other cases have similar proofs.

The approach in [27] also suggests that the other two triangles ABE and ACE and their
incenters and the excenters should play a similar role. We denote those centers by I, Ia, Ib,
Ie, and J, Ja, Jc, Je. Their respective coordinates are

r ϕ−

hK
(h k + z, z k − h) , −r g ϕ−

hK
(h− z k, h k + z) ,

rf+ g

hK
(h k + z, z k − h) ,

rf+

hK
(h− z k, h k + z) ,

r

hK
(ζ z k2 − g+ k + f h, g−(h k − z)) ,

r

hK
(g h k2 − f 2 g+ k − z, f g−(z k + h)) ,

− r

hK
(z k2 + f 2g+ k − g h, f ψ+(h k − z)) ,

r

hK
(f h k2 + g+ k + ζ z, ψ+(z k + h)) .

Theorem 5.

(i) The points I, Ia, Ib and Ie are the k2-points of the segments Y P , TU , V S and QX.

(ii) The points J, Ja, Jc and Je are the k2-points of the segments QU , Y S, TX and V P .

Proof: Since
xY + k2 xP

K
=
rzϕ−

hK
+
r ϕ− k

K
=
r ϕ−(h k + z)

hK
= xI

and
yY + k2 yP

K
=
r f ϕ− g−
hK

+
r ϕ− ψ+

hK
=
r ϕ−(z k − h)

hK
= yI,
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it follows that I is the k2-point of the segment Y P . The other cases have similar proofs.

Now we could say that the Theorems 3, 4 and 5 together represent the complete Thébault
theorem.

The rather simple coordinates of the incenters and the excenters of the triangles ABC,
BCE, ABE and ACE allow us to prove easily the following results that Johnson in [11,
p. 193] calls the “Japanese Theorem” (see also [20]).

Theorem 6.

(i) The following quadrangles IIJJ, IaIbJeJc, IbIaJcJe and IcIeJbJa are rectangles.

(ii) Their areas satisfy: |IIJJ| |IaIbJeJc| = |IbIaJcJe| |IcIeJbJa|.
(iii) Their centers are vertices of a parallelogram with the center at the circumcenter O of

the triangle ABC.

Proof: Since the lines II and JJ have the equations k x−y = r ϕ− and k x−y =
r g z ϕ−

h
, we

infer that they are parallel. Similarly one can prove that the lines IJ and IJ are also parallel.
If follows that IIJJ is a parallelogram. On the other hand, since the lines II and IJ have
the equations k x− y = r ϕ− and x+k y = r f+, we conclude that they are perpendicular and
IIJJ is a rectangle.

Since the area of a rectangle is the product of the lengths of its adjacent sides, we see that

|IIJJ| = r2 f+ g+ |g− ϕ−|
h2K

. Similarly,

|IaIbJeJc| =
r2 ζ f+ g+ f+ ψ+

h2K
, |IbIaJcJe| =

r2 g f+ g+ ψ+ |ϕ−|
h2K

,

and |IcIeJbJa| = r2 f f+ g+ f+ |g−|
h2K

. The identity in (ii) is now obvious.

Finally, it is easy to check that the circumcenter O is the midpoint of the two segments
GIIJJGIaIbJeJc and GIbIaJcJe GIcIeJbJa joining the centers (i.e., the centroids) of these rectan-
gles.

Note that the inradii j, r and j and the exradii jb, jc, je, ra, rb, re, ja, jc and je of the
triangles BCE, ABE and ACE are the absolute values of the quotients

r g− z ϕ−

hK
,

r ϕ−(h̄− d k)

hK
,

r g−(h̄ k + d)

hK
,

r f+ g−

K
,

r ϕ− ψ+

K
,

r f+ ψ+ z

hK
,

r ϕ− g(h̄ k + d)

hK
,

r f+ g(h̄− d k)

hK
,

r f+(h̄ k + d)

hK
,

r f g−(h̄− d k)

hK
,

r f ψ+(h̄ k + d)

hK
,

r ψ+(h̄− d k)

hK
.

Now, at least under the assumption that D is on the segment BC, we can easily check the
following identities:

r + j = r+ j, ra + je = rb + jc, rb + jc = ra + je, rc + jb = re + ja.

The first is the relation (2.2) in [20].

3. Some conics as loci and envelopes

In order to find the locus of the Sawayama-Thébault center P , let us eliminate the parameter

k from the equations xP = x and yP = y. We get the equation y =
x(rz − x)

rh
of the parabola
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µ with the circumcenter O as the focus and the horizontal line ε above the line BC at the
distance R (the circumradius) as the directrix. Repeating this for the centers Q, S and T will
always produce the same parabola µ. On the other hand, doing this for the centers U , V , X

and Y , will give the equation y =
hx(x− rz)

rz2
of the parabola ν also with the circumcenter O

as focus and the horizontal line ε∗ below the line BC at the distance R as directrix.

Corollary 2. The points P , Q, S and T are on the parabola µ and the points U , V , X and
Y are on the parabola ν.

The parabolas µ and ν intersect only in the points B and C and they enclose the region
with the area 2

3
aR.

When the point D moves on the line BC, the many lines joining pairs of Sawayama-
Thébault centers provide families of lines that envelop some interesting conics of the triangle
ABC. For example, one interpretation of the Theorem 3 is that the lines PQ, ST , UV and
XY envelop the points I, Ia, Ib and Ic (considered as degenerated ellipses), respectively. On
the other hand, it was noted in [3], the lines PS, QT , UX , and V Y envelop the parabola λ
of focus A and directrix BC having the equation

y =
h

4rζ
x2 − f−

2f
x+

rg(f+)2

4fh
.

The parabolas λ, µ and ν are closely related in many respects: They have parallel direc-
trices and axes and the distance between the foci of λ and µ and between the foci of λ and ν is
equal to the distance between their directrices. It is not difficult to see that λ and µ touch in

the
(b+ c)2 − a2

a2
-point Tµ of the segment AO and that λ and ν touch in the

(b− c)2 − a2

a2
-point

Tν of the segment AO (when b 6= c).
When b 6= c, the lines PT and QS envelop the same hyperbola η with the equation

ζ(2x− rz)2 − (hy − 2rζ)2 = r2d2ζ ([3, Remark 7]).
The lines UY and V X envelop the same ellipse χ with the equation

h2ζ(2x− rz)2 + z2(hy − 2rζ)2 = r2h̄2z2ζ.

It can be shown that χ is symmetric with respect to the perpendicular bisector of BC, tangent
to ν at B and C, tangent to lines TνIb and TνIc and to the perpendiculars to BC through Ib
and Ic.

4. The line AD tangent to the circumcircle

We shall see that some positions of the point D on the line BC are particularly important.
In the following two results we identify what happens when the line AD is tangent to the
circumcircle o at the point A. In this exceptional case many points of the configuration
coincide. Of course, this can happen only when the angles B and C are different.

Let Po, . . . , Yo denote the points in which the Sawayama-Thébault circles touch the cir-
cumcircle o. Their respective coordinates are

rϕ−

P1

(P2, 2hψ+) ,
rf+

Q1

(Q2, 2hg−) ,
rgf+

S1

(S2, 2hfg−) ,
rgϕ−

T1
(T2, −2hfψ+) ,

rgzϕ−

hU1

(U2, 2zg−) ,
rgzf+

hV1
(V2, 2zψ+) ,

rzf+

hX1

(X2, 2zfψ+) ,
rzϕ−

hY1
(Y2, 2zfg−)
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with

P1 = (h2 + d2)k2 − 4dk + 4, Q1 = 4k(k + d) + h2 + d2, S1 = (h2 + d2)k2 − 4ζ(dkζ),

T1 = 4ζk(ζk + d) + h2 + d2, U1 = (h̄2 + z2)k2 − 4g(h̄k − g), V1 = 4gk(gk + h̄) + h̄2 + z2,

X1 = (h̄2 + z2)k2 + 4f(h̄k + f), Y1 = 4fk(fk − h̄) + h̄2 + z2

and

P2 = (h2 + dz)k − 2z, Q2 = 2zk + h2 + dz, S2 = (h2 − dz)k + 2zζ,
T2 = 2zζk − h2 + dz, U2 = (ζ2 + z2 − 1)k − 2gh, V2 = 2ghk + ζ2 + z2 − 1,
X2 = (ζ2 − z2 − 1)k + 2fh, Y2 = 2fhk − ζ2 + z2 + 1 .

For eight points G1, . . . , G8, let D(G1, . . . , G8) be the determinant

∣

∣

∣

∣

∣

∣

∣

∣

xG1
yG1

xG2
yG2

xG3
yG3

xG4
yG4

xG5
yG5

xG6
yG6

xG7
yG7

xG8
yG8

∣

∣

∣

∣

∣

∣

∣

∣

.

Theorem 7. The following statements are equivalent:

(i) P = S, (ii) V = Y , (iii) Po = A, (iv) So = A, (v) Vo = A, (vi) Yo = A,

(vii) I = Jc, (viii) Ia = Jb, (ix) Ib = J , (x) Ic = Ja, (xi) I = Ib, (xii) I = Ja,

(xiii) I = Je, (xiv) Ja = Je, (xv) the lines IbJc and IcJe are perpendicular,

(xvi) D(I, Ia, Ib, Ic, J, Je, Jb, Jc) = 0, (xvii) Ib ∈ AD, (xviii) Je ∈ AD,

(xix) the lines IbJe and AD are perpendicular,

(xx) the lines IcJa and AD are parallel, (xxi) the lines IaJc and AD are parallel, and

(xxii) the angle B is smaller than the angle C and the lines AD and AO are perpendicular.

Proof: Since |PS|2 = r2K(h̄− dk)2

k4
, we conclude that P = S if and only if k =

h̄

d
. However,

the parameter k is positive, so that f > g (i.e., the angle B is smaller than the angle C) and

the point D divides the segment BC in the ratio − |AB|2
|AC|2 (i.e., the point D is the intersection of

the tangent to the circumcircle at the vertex A with the line BC). This shows the equivalence
of (i) and (xxii). For the other parts, it suffices to note that the only factor that could be
zero in the squares of distances of the points in this part is always the same h̄− dk.

The following companion result has a similar proof. This time the common factor is
d+ h̄k.

Theorem 8. The following statements are equivalent:

(i) Q = T , (ii) U = X, (iii) Qo = A, (iv) To = A, (v) Uo = A, (vi) Xo = A,

(vii) I = Jb, (viii) Ia = Jc, (ix) Ib = Ja, (x) Ic = J , (xi) J = Ia, (xii) J = Ie,

(xiii) J = Jc, (xiv) Ia = Ie, (xv) the lines IbJc and IbJe are perpendicular,

(xvi) Ie ∈ AD, (xvii) Jc ∈ AD, (xviii) the lines IeJc and AD are perpendicular,

(xix) the lines IbJa and AD are parallel, (xx) the lines IaJb and AD are parallel, and

(xxi) the angle B is larger than the angle C and the lines AD and AO are perpendicular.
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5. Equal radii r1 and r2

In this section we shall explore when the radii r1 and r2 of the first and the second Sawayama-
Thébault circles are equal. In fact, the problem is to describe the positions of the point D
on the line BC when r1 = r2 holds. It turns out that the equality happens for three values
of the parameter k. The simpler value corresponds to the case when r1 = r2 = r (see
Theorem 9) and the two more complicated values to the case r1 = r2 and either r1 6= r or
r2 6= r (see Theorem 10). In each situation many other geometric consequences hold. Some
are characteristic for the equality of r1 and r2 (with r).

Let kI′a =

√
d2 + 4− d

2
be the positive root of the polynomial pI′a = L + dk. Let the

perpendicular bisector of the segment BC intersect the circumcircle o in the points Z1 and
Z2 such that Z1 is above and Z2 is below the line BC. Note that Z1 is the midpoint of IbIc
and the circle kIbIc goes through B, C and Ja. Similarly, Z2 is the midpoint of JbJc and the
circle kJbJc goes through B, C and Ia.

Theorem 9. The following statements are equivalent:

(i) the point D is the orthogonal projection I ′a of the excenter Ia onto the line BC,

(ii) the parameter k is kI′a, (iii) the lines PQ and BC are parallel,

(iv) the lines PoQo and BC are parallel, (v) the line AD bisects the segment PQ,

(vi) the segments PQ and P ′′Q′′ share the midpoints,

(vii) the line joining incenter I and midpoint of the segment BC is parallel to the line AD,

(viii) the line joining the circumcenter O and the midpoint of either the segment P ′Q′ or
P ′′Q′′ is perpendicular to the line PQ,

(ix) the midpoint of the segment BC has the same power with respect to the circles k1 and
k2,

(x) the points Po and Qo are equidistant from the point Z1 and/or Z2, and

(xi) the equalities r1 = r and r2 = r hold.

Proof: Since the point I ′a has the coordinates (rg, 0), we get that |DI ′a| is equal
rζ |pI′

a

|
hk

.

Hence, (i) and (ii) are equivalent.
The lines PQ and BC are parallel if and only if the points P and Q have equal ordinates.

Since yP − yQ =
rKpI′

a

hk2
, we see that (ii) and (iii) are equivalent.

Similarly, since yPo
− yQo

=
2rhKf+g+pI′

a

P1Q1

, it follows that (ii) and (iv) are equivalent.

The midpoint of the segment PQ has the coordinates
r

2k

(

L+ 2fk, − p4

hk

)

, where p4 is defined

below. It is on the line AD whose equation is 2kx+Ly =
2rgf+ϕ−

h
if and only if

r2ζK2pI′

a

2h2k3
= 0.

Hence, (ii) and (v) are equivalent.

The orthogonal projections P ′′ and Q′′ of P and Q onto the line AD have

rϕ−

hkK

(

hk2 + 2gk + h̄, 2ψ+k
)

and
rf+

hK

(

h̄k2 − 2gk + h, −2g−
)

as coordinates. It follows that the midpoints of the segments PQ and P ′′Q′′ are
rK|pI′

a

|
2hk2

apart.

Therefore, (ii) and (vi) are equivalent.
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The line joining the incenter I and the midpoint of the segment BC has the equation 2x−dy =

rz. It will be parallel to the line AD if and only if
r2ζp

I′a

hk
= 0. This shows the equivalence of

(ii) and (vii).
The line PQ has the equation pI′a x + hk y = r f+ ϕ−. The line joining the circumcenter O
and the midpoint of the segment P ′Q′ has the equation

2(h2 − z2)k y − 4 h pI′a y = r(L+ 2 f k)(h2 − z2).

They will be perpendicular if and only if
r2K f+ g+ pI′

a

4 h2 k2
= 0. The line joining O and the

midpoint of the segment P ′′Q′′ is more complicated but it will be perpendicular to the line
PQ if and only if the same condition holds. This shows the equivalence of (ii) and (viii).
The power w(Ag, k2) of the midpoint Ag of the segment BC with respect to the circle k2

is |AgQ|2 − r22 or
r2(d+ 2k)2

4
. Similarly, w(Ag, k1) is

r2(dk − 2)2

4k2
. Their difference is

r2KpI′

a

k2
.

Hence, (ix) and (ii) are equivalent.
The differences of squares |QZ1|2 − |PZ1|2 and |PZ2|2 − |QZ2|2 of distances are equal

r2K (f+)2 (g+)2 pI′a
[(h2 + d2)k2 − 4 d k + 4](4 k2 + 4 d k + h2 + d2)

.

It follows that (x) and (ii) are equivalent.

Finally, since r21 − r2 =
r2MpI′

a

h2k4
and r22 − r2 =

r2NpI′

a

h2
and the factors M = (2ζ − 1)k2 + dk− 1

and N = k2 + dk − 2ζ + 1 are not both zero at any real number k, we conclude that (ii) and
(xi) are equivalent.

Let k± =

√

2N± ±M − d

4
be the positive roots of the quartic polynomial p4 = L(L+dk)−

2hk2, where M =
√
d2 + 8h and N± = d2 ∓ dM+4h̄.

Theorem 10. The following statements are equivalent:

(i) the parameter k is either k+ or k−, (ii) the lines PQ and AD are parallel,

(iii) the line PoQo bisects the segment P ′Q′, (iv) the line PQ bisects the segment P ′Q′,

(v) the segments PQ and P ′Q′ share the midpoints, and

(vi) the lines AD and DIa are perpendicular.

Proof: Since

pI′ax+ hky = rf+ϕ− and 2kx+ Ly =
2rgf+ϕ−

h

are the equations of the lines PQ and AD, they will be parallel if and only if p4 = 0. This
shows that (i) and (ii) are equivalent.
The orthogonal projections P ′ and Q′ of the centers P and Q onto the line BC (the x-axis)
have the abscises

rϕ−

k
and rf+. It follows that the midpoint of the segment P ′Q′ lies on the

line PoQo (i.e., on the line 2hpI′ax− [2dL+ (z2 − h̄2 − 4)k]y = 2rhf+ϕ−), provided

pI′a

(

rL

2k
+ rf

)

− rf+ϕ− =
rp4

2k
= 0.

Hence, (i) and (iii) are equivalent.
This same calculation applies also in the proof that (i) and (iv) are equivalent because the
line PQ has the equation pI′ax+ hky = rf+ϕ−.
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The midpoints of PQ and P ′Q′ are
r|p4|
2hk2

apart. We easily conclude that (i) and (v) are

equivalent.
Finally, since hkx − pI′ay = rf+gϕ− is the equation of the line DIa, we get that this line is
perpendicular with the line AD if and only if 2hk2 − pI′aL = −p4 = 0. Hence, the first and
the last statements are equivalent.

Note that the condition (ii) in Theorem 10 implies r1 = r2. Hence, the correct version of
Theorem 4 in [32] is the following result.

Corollary 3. The following statements are equivalent:

(i) the equality r1 = r2 holds,

(ii) the parameter k is either kI′a, k+ or k−,

(iii) the points P and Q are at equal distance from the midpoint of P ′Q′ and/or P ′′Q′′.

Proof: Since r1 = |yP | and r2 = |yQ|, it follows that r1 = r2 if and only if y2P − y2Q =
r2KpI′

a

p4

h2k4
= 0. LetM ′ andM ′′ be the midpoints of P ′Q′ and P ′′Q′′. Then |QM ′|2−|PM ′|2 =

|QM ′′|2−|PM ′′|2 = r2KpI′

a

p4

h2k4
. Hence, our claim follows from Theorems 9 and 10 because the

parameter k is a positive real number.

6. Lines connecting the touching points Po, . . . , Yo

The points where the eight Sawayama-Thébault circles touch the circumcircle have many
properties. Some are revealed in the next result.

Let M1, . . . , M24 denote the intersections of the lines

PoTo, PoVo, PoQo, SoTo, QoUo, QoSo, QoSo, QoXo,
PoQo, SoTo, PoYo, PoTo, PoTo, PoVo, PoYo, SoVo,
SoYo, UoYo, QoUo, PoYo, UoVo, PoQo, QoXo, PoVo

with the respective lines

UoYo, SoYo, XoYo, UoVo, ToXo, VoXo, UoYo, ToUo,
UoVo, XoYo, SoVo, VoXo, QoSo, QoUo, QoXo, ToUo,
ToXo, VoXo, SoYo, ToUo, XoYo, SoTo, SoVo, ToXo.

Theorem 11. The point D lies on the following lines: PoSo, QoTo, UoXo and VoYo. The
intersections M1, . . . , M24 are on the lines IIa, IIb, IIe, IaIb, IaIe, IbIe, JJa, . . . , IIa,
. . . , JcJe, respectively. The points M2, M5, M8, M11, M13, M18, M21 and M22 are on the line
perpendicular to the line DO.

The point D is collinear with the points M1, M6, M9, M10, M14, M17, M20 and M23 as well
as with the points M3, M4, M7, M12, M15, M16, M19 and M24.

The point A is on the circles kM1M6
, kM7M12

and kM13M18
, the point B is on the circles kM2M5

,
kM14M17

and kM19M24
, the point C is on the circles kM8M11

, kM15M16
and kM20M23

, and the point
E is on the circles kM3M4

, kM9M10
and kM21M22

.

Moreover, there are 32 triples of collinear points beginning with {M4,M2,M1} and ending
with {M24,M23,M22} (one from each of the above three groups of eight points).
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Figure 3: The points M13, M18, M22 and M21

Proof: When h̄ 6= dk, then the line PoSo has the equation

2h2kx+ [(h2 + d2)k2 − 2dh̄k + 4ζ ]y = 2rghf+ϕ−.

The coordinates of the point D satisfy this equation. We prove similarly that D also lies on
the lines QoTo, UoXo and VoYo.
The intersection M13 has the coordinates

rg

M
(N, −2fhs2), where

M = 4dζL+ h̄k(d2 + h2 − 4ζ) and N = 2dfzL+ k[(f−)2g+ − 4ζf+].

It lies on the line IIa with the equation h̄x− dy = rgf+.
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Similarly, the point M18 has the coordinates
rgz

hM
(N, 2fzp2), where

M = 4h̄ζL+ dk(d2 + h2 + 4ζ) and N = 2fhh̄L+ k[(f−)2g+ + 4ζf+].

It lies on the line IbIc with the equation dx+ h̄y =
rgzf+

h
. The line M13M18 is perpendicular

to the line DO with the equation

k(h2 − d2)x− (4ζL+ 2dh̄k)y =
(h2 − d2)rgf+ϕ−

h
.

Moreover, the midpoint of M13M18 is equidistant from M13 and A.
The intersections M22 and M21 are treated similarly. Of course, they both lie on the line
M13M18.

7. Concluding remarks

The longer original version (45 pages) of this paper is available on the author’s web page http:
//math.hr/~cerin/. It includes an extensive study of the Sawayama-Thébault configuration.
In particular, we explore the equalities r3 = r4, r5 = r6 and r7 = r8 and present various
identities for the radii of the Sawayama-Thébault circles.
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