
Journal for Geometry and Graphics
Volume 15 (2011), No. 2, 169–179.

Algorithms for Generation of Irregular
Space Frame Structures

Franz Gruber, Günter Wallner

Department for Geometry, University of Applied Arts Vienna

Oskar Kokoschka Platz 2, A-1010 Wien, Austria

email: franz.gruber@uni-ak.ac.at

Abstract. Complex space frames with respect to aesthetics and stability are an
important factor in contemporary architecture. Obviously there are many different
ways to generate spatial structures, especially if randomness affects the generating
process. In this work we present two algorithms to generate irregular space frames
inside arbitrary (including non-convex) boundary volumes with predefined support
areas. The resulting structures are intended as input for a genetic algorithm which
optimizes the static stability. The first algorithm uses 3D-Voronoi structures as a
starting point, which makes sense in terms of the framework’s load capacity. The
second approach uses a repulsive force field for the calculation of curve-skeletons
of three-dimensional objects.

Key Words: space frames, structures, 3D Voronoi tessellations, skeletonization,
vector field

MSC 2010: 00A67, 68U05

1. Introduction

The current methods of structural design are usually based on structures with a high degree
of regularity (see, for example, [4] for numerous case studies). However, there is a desire for
irregular complex space frames in contemporary architecture. The goal of the project “Algo-
rithmic Generation of Complex Space Frames”1 is to analyze new and innovative approaches
to develop irregular and at the same time effective structures. Part of this project was the
development of algorithms to generate irregular space frames inside arbitrary (including non-
convex) boundary volumes with predefined support areas. At this point we should stress that
the algorithms, as described in this paper, focus mainly on the framework’s topology and not
on its load capacity. The task of optimizing the load capacity is done in a following step by
a genetic algorithm (see A. Hofmann et al. [9] for a basic description).

1Austrian Science Fund Grant No. L358

ISSN 1433-8157/$ 2.50 c© 2011 Heldermann Verlag



170 F. Gruber, G. Wallner: Algorithms for Generation of Irregular Space Frame Structures

Figure 1: A viewing platform supported by a framework of Voronoi paths

Figure 2: A pavilion were the girders where laid out with the skeletonization algorithm

Space frames were independently developed by Alexander Graham Bell, who invented
space frames assembled from tetrahedral frames around 1900 and by Buckminster Fuller,
who’s investigations five decades later led to the creation of the famous geodesic dome. Nowa-
days, not only regular but also irregular space frames are becoming increasingly popular in
architectural design. Notable buildings are for example the Biosphere 2 in Oracle, Arizona,
the Eden Project in the United Kingdom, the Federation Square in Melbourne and the Beijing
National Aquatics Center.

Obviously there are many different ways to generate spatial structures, especially if ran-
domness affects the generating process. In this work we present two algorithms which, based
on different experiments, turned out to be promising.

• The first method uses 3D Voronoi structures as a starting point, which are known to
produce statically rigid structures of space-filling tetrahedra [3].



F. Gruber, G. Wallner: Algorithms for Generation of Irregular Space Frame Structures 171

• The second method uses a repulsive force field for the calculation of the structure and
was influenced by the work of N.D. Cornea et al. [6].

Figures 1 and 2 show concept renderings for buildings where the framework was calculated
with the two described algorithms.

This paper is structured as follows: Section 2 reviews related work in the area of irregular
space frames. In Section 3 the bounding volume is discussed and Section 4 as well as Section 5
present the two algorithms. The paper is concluded in Section 6.

2. Related work

Because contemporary landmark architecture — as pointed out in [7] — continually moves
away from economic considerations towards increasing numbers of building elements that are
unique to the individual project, research on irregular structures has increased over the past
years.

For example, A. Kanellos [11] addressed a problem similar to ours, where a certain
volume has to be filled with a structural space frame network lattice consisting of a given
number of nodes. The author employs a particle-spring system where the connectivity between
the particles is not predetermined but established dynamically. The system uses only local
rules of inter-particle interaction so that the particles are able to generate crystal-like lattices
through self-organisation.

P.M. Canzarra [3] also starts with a population of points in space but uses a model
derived from bone accretion, whose mechanisms are relatively well known and simple, and
produce structures with good static stability. As in our case, P.M. Canzarra was not in-
terested in finding optimal solutions but in finding challenging and creative ones. A Delauney
triangulation (the dual of the Voronoi tessellation) was used as a starting structure.

P.L. Jaworski [10] published a method to “grow” a structure that supports a building
by providing initial seeds and the volumes to be supported. Influenced by the concept of
phototropic growth, stems originating at the initial seeds grow vertically upwards and avoid
obstacles and therefore entwine existing volumes. During growth the stems are connected
to nearby points to ensure static stability. The resulting structures look similar, although
denser, than structures produced by our first algorithm.

T. Fischer [7] proposed a method to create apparently irregular structures from rela-
tively small sets of identical parts, by combining a highly regular space-filling structure with
a bottom-up generative procedure.

3. Boundary volume

Because the space frames have to be generated inside a given (not necessarily convex) polyg-
onal boundary volume, and multiple solutions which can be used as input for the genetic
algorithm have to be generated, an efficient representation of the boundary volume is essen-
tial. In fact, the data structure has to allow fast intersections with a ray and admit tests
about whether a point is inside or outside. A kd-tree [2] is therefore used as a spatial data
structure to allow fast traversal of the mesh for intersection tests. Furthermore, it has to
be possible to define certain faces as supporting areas, in other words, areas where support
points of the framework can be placed.



172 F. Gruber, G. Wallner: Algorithms for Generation of Irregular Space Frame Structures

4. Voronoi paths

The algorithm starts by distributing points inside the bounding box of the given boundary
volume to be used as basis for a 3D Voronoi tessellation. Afterward, the tessellation is
cropped at the boundary volume. Then a given number of paths is traced along the cropped
tessellation between two points from different supporting areas (Voronoi paths). Finally, the
paths are smoothed and yield the irregular structure. The viewing platform in Fig. 1 was
constructed with this algorithm. For the sake of clarity, we will explain the process in two
dimensions.

Figure 3: Left: The Voronoi tessellation is cropped at the boundary (red) which serves
as the traffic system for the path finding. Right: Boundary points (red and green dots)
from different boundary areas are connected by individual paths.

4.1. Preprocessing

In the first step, points are uniformly distributed inside the bounding box of the given bound-
ary volume. The density is an important parameter for the fineness of the final framework.
These points are used as generating points to calculate a 3D Voronoi tessellation. For this
calculation the points are passed to the software package qhull [1] and the edges of the re-
turned tessellation are then cropped at the boundary volume. The intersection points are
called boundary points in what follows. These steps are depicted in Fig. 3 (left). A three
dimensional example is shown in Fig. 4.

4.2. Voronoi path finding

Obviously, the cropped tessellation does not meet the condition that its boundary points are
solely located at the predefined support areas. And from an aesthetic point of view it does not
satisfy the required irregularity. However, we use this structure as a kind of traffic system to
extract Voronoi paths between two randomly chosen support points pA and pB from different
support areas. Finding a path between pA and pB is not a well-defined task. However, in the



F. Gruber, G. Wallner: Algorithms for Generation of Irregular Space Frame Structures 173

Figure 4: 3D Voronoi tessellation cropped at a non-convex boundary surface

Figure 5: Left: The network from Fig. 3 after a few smoothing steps. Right: A fully
straightened network. In both cases crossing points (blue) were fixed at their initial
position.

current implementation we try to connect these points in a preferably short way, by using the
following method.

Starting at position pA, the path follows at each crossing point pC that adjacent edge which
has the smallest angle to the target direction pB − pC . This way we obtain a randomized
network of crossing lines which partially coincide, bifurcate or converge (see Fig. 3 (right) and
Fig. 6 (left) for an example in 3D). This also means that one and the same point can occur
multiple times in this network. However, to obtain a graph structure which is required for
the following force-directed smoothing algorithm any duplicate coincident points need to be
removed.



174 F. Gruber, G. Wallner: Algorithms for Generation of Irregular Space Frame Structures

Figure 6: Left: With the help of a random 3D-Voronoi structure we define a Voronoi
path (red) between two support points located at the top and bottom (yellow). Right:
Complex structure composed of many smoothed Voronoi paths (see also Fig. 1).

Figure 7: Left: Voronoi paths from the red to the green support area. Right: The fully
straightened structure after smoothing with fixed crossing points.

4.3. Smoothing

At this point the network already has the topology of the final framework. However, the
current network is characterized by zigzag lines which do not make much sense either from a
statical or from an aesthetic point of view. For this reason the network is smoothed iteratively
by replacing edges with elastic springs. For each vertex v a displacement vdisp is stored which
is set to zero at the beginning of each iteration. Then, the algorithm loops through each
edge with incident vertices v1 and v2 and adds ǫ · d0 to v

disp
1 , respectively subtracts it from

v
disp
2 , where d0 = (vpos

2 − v
pos
1 )/ ‖vpos

2 − v
pos
1 ‖ and ǫ is a small constant. At the end of each

iteration the displacement vdisp of each vertex is added to its position vpos. For boundary



F. Gruber, G. Wallner: Algorithms for Generation of Irregular Space Frame Structures 175

points the last step is omitted to keep their initial positions fixed. Conventional space frame
structures feature completely straight girders and can be best achieved by additionally locking
the position of crossing points (a vertex with at least three adjacent edges).

In general, the higher the number of iterations, the more straight the network will become.
Figure 5 compares a slightly smoothed with a fully straightened network. Further three
dimensional examples are shown in Fig. 6 (right) and Fig. 7.

5. Skeletonization

The second approach follows the work of N.D. Cornea et al. [6], who use a repulsive force
field for the calculation of curve-skeletons of three-dimensional objects. Although the con-
nection to architecture might not seem obvious at first because their research was originally
targeted to areas like virtual colonoscopy or animation, we found it appropriate for our pur-
poses. The method uses a generalized potential field [5] to generate a discretized vector field
inside an object by charging the object’s boundary.

5.1. Overview

The algorithm starts by distributing point charges on the triangulated surfaces of the bound-
ary volume. Afterward a discretized vector field is calculated within the surface’s bounding
box. Although this would not be strictly necessary, it accelerates the numerical integration
later in the process and eases the computation of critical points. Once the vector field is es-
tablished, the particle trajectories, starting from the supporting areas toward a critical point,
are calculated with numerical integration. Because many of these trajectories are running
practically parallel to each other they are merged into one to avoid unaesthetic clutter. Fi-
nally, cross-links depending on an angle-threshold are inserted into the existing space frame
structure. Figure 8 illustrates these steps.

Figure 8: Left: After point charges (circles with arrows) have been uniformly distributed
on the object’s boundary, a discretized vector field (shown schematically as gray grid) is
derived which contains at least one critical point (red circles). Right: The trajectories
of particles (green) which originate on the object’s boundary are the core of the final
framework. Separate components are joined by straight lines (blue, dot-dashed) which
connect the two closest crossing points (blue circles) to ensure that the entire structure
is a coherent whole. Cross-links (orange, dashed) are inserted to ensure better stability.



176 F. Gruber, G. Wallner: Algorithms for Generation of Irregular Space Frame Structures

5.2. Preprocessing

For each triangle of the boundary surface point charges q are placed at the vertices of the
triangle and on the center between its barycenter vbc and each triangle vertex v1, v2, v3. The
placement is repeated recursively for each sub-triangle (vbc, v1, v2), (vbc, v2, v3) and (vbc, v3, v1)
until a given subdivision level is reached. Further, all point charges are displaced slightly in the
direction of the corresponding outward pointing surface normal. This is necessary because
if the particles start at the boundary surface they should not move outside the boundary
volume right away.

Based on the bounding box of the volume a discretized vector field is constructed where
the number of divisions in each direction depends on the associated side length. At each cell
center a vector

v = c ·

n
∑

i=0

(

qi
‖di‖

m

)

· di (1)

is calculated, where n is the number of all point charges and di is the vector pointing from
the cell center to the position of point charge i. The exponent m is a quantity for how fast
the influence of a point charge decreases with distance and c is a small constant.

In a discretized vector field a critical point may only occur in cells where all three compo-
nents of v pass through 0, which in case of trilinear interpolation can be found with a simple
heuristic as described in [8]. If for each component of the force vector at each cell vertex both
negative and positive values exist then the components must change sign somewhere inside
the cell and the cell is a potential candidate for containing a critical point. If the condition
is fulfilled then the cell is recursively subdivided and the test is repeated for each sub-cell
until either the test fails or a maximum number of subdivisions is reached. As noted by A.

Globus et al. [8] this is only a necessary condition and the cell must not contain a critical
point. They therefore use Newton’s method to better estimate the location of the critical
point after a fixed number of subdivisions. However, in our case the exact location of the
critical point is not necessary and incorrect classifications do not interfere with the working
of the algorithm. Locating the critical points is the most time consuming task in the prepro-
cessing step. However, the preprocessing must only be performed once and does not need to
be repeated to generate different space frames for a given boundary volume. Figure 8 (left)
shows the system after the preprocessing is finished.

5.3. Particle trajectories

Once the pre-process has finished, paths through the vector field are traced which build the
foundation of the final framework. This process starts by placing particles randomly on the
supporting areas. For each particle the trajectory is calculated by explicit Euler integration 2.

Because all particle trajectories have to end at a critical point (or to be more specific at
an attracting node), and there must be at least one critical point within the closed boundary
volume, the integration is aborted if the last position is in proximity to such a critical point.
This point is added as the last point to the particle trail. These paths are shown in green in
Fig. 8 (right). Because the time step ∆t for numerical integration is usually relatively small it
is not practical to add each position to the final path. Therefore a minimum distance ǫd > ∆t
between two points must be fulfilled.

2More precise integration schemes, like Runge Kutta 4th order integration can also be used but the addi-
tional effort may not be necessary because paths that accurate are not required for the matter in hand.



F. Gruber, G. Wallner: Algorithms for Generation of Irregular Space Frame Structures 177

Figure 9: Top: Calculating each particle trajectory independently from each other
results in clutter, since paths frequently run practically parallel to each other. Middle:
The same example after merging the paths during integration which circumvents the
cluttering. Bottom: The result after the components have been connected and the
paths have been smoothed. The red circles show two areas where unaesthetic spikes
have been removed by the smoothing algorithm.



178 F. Gruber, G. Wallner: Algorithms for Generation of Irregular Space Frame Structures

As shown in Fig. 9 (top) these paths frequently run parallel which makes the result look
cluttered and not suitable for a space frame structure. To circumvent this problem the
integration stops if the current location is in proximity to an already existing position, which
eventually becomes the final point of the current path. This is implemented with a simple
space partitioning scheme which divides the bounding volume into small cuboids. Each time
a new position p is added to the path it is inserted into the appropriate cuboid c by mapping
its coordinates to indices. Then the distances between p and all other positions of different
paths in c are calculated and p will be connected with the position which is closest to it.
Positions on which multiple paths converge will be called crossing points henceforth. Critical
points are automatically considered as crossing points regardless of the number of incident
edges. The merged paths are shown in Fig. 9 (middle).

5.4. Postprocessing

Depending on the vector field, the emerging structure may consist of multiple non-connected
components. These are linked to each other by connecting the two closest crossing points
between them. Once a single component exists the smoothing algorithm as described in
Section 4.3 is applied. Figure 9 (bottom) shows the result after the components are connected
and the paths have been smoothed. Afterward cross-links — which are shown as orange
slashed lines in Fig. 8 (right) — are added to the structure as follows: First, for each crossing
point c and every pair of adjacent branches with vertices (u0 = c, u1, . . . , um) and (v0 =
c, v1, . . . , vn) a cross-link is added between ui and vi provided that none of the following
conditions is fulfilled:

1. the angle α = ∠(−−−→ui−1ui,
−−−→vi−1vi) is larger than a threshold αmax,

2. either ui or vi is a crossing or a boundary point,

3. the distance between ui and vi is larger than a maximal length lmax,

4. a cross-link has already been added between ui and vi,

5. i > n or i > m.

The process is then repeated recursively between ui+1 and vi+1
3 until one of the above men-

tioned conditions is violated.
Although the basic appearance depends on the vector field, which in turn depends mostly

on the geometry of the bounding volume, the results can be altered to a certain degree by
changing the number and starting position of the particles as well as the parameters ǫd, αmax

and lmax and the size of the cuboids (used for merging). Figure 2 shows a pavilion which was
constructed with this algorithm.

6. Conclusions

Among the infinite number of possibilities for generating spatial structures inside a given
volume, we described two methods: one is based on Voronoi tessellation and the other on
repulsive force fields.

Regarding the former we currently use a uniformly distributed point cloud to generate
the Voronoi tessellation. For future work, the density of the point cloud could depend on
geometric properties of the boundary volume. For example, the density could be higher

3
ui and vi can each only have one successor because otherwise they would either be a crossing point or a

boundary point which would terminate the process.



F. Gruber, G. Wallner: Algorithms for Generation of Irregular Space Frame Structures 179

in critical areas inside the volume, like constrictions or bottlenecks. Furthermore, different
topologies can be generated by replacing the Voronoi tessellation with alternative patterns
like a regular grid.

The main disadvantage of the latter method is that the resulting structures — despite
randomly choosing the support points — look quite similar because the underlying vector
field is defined by the bounding volume. If the vector field leads to statically unfeasible space
frame structures then altering the support points will not have much effect and one cannot
expect that the genetic algorithm will create a good solution. For example, a simple box
only has one critical point and all particle trails will converge to this point. Therefore, the
vector field should be disturbed by placing point charges randomly inside the volume which
will influence the number and location of the critical points.

Acknowledgments

This work was supported by grant L358 of the Austrian Science Foundation (FWF).

References

[1] C.B. Barber, D.P. Dobkin, H. Huhdanpaa: The quickhull algorithm for convex

hulls. ACM Trans. Math. Softw. 22(4), 469–483 (1996). http://www.qhull.org/.

[2] J.L. Bentley: Multidimensional binary search trees used for associative searching.
Commun. ACM 18(9), 509–517 (1975).

[3] P.M. Canzarra: Self-design and ontogenetic evolution. In Proceedings of the Gener-
ative Art International Conference 2001.

[4] J. Chilton: Space Grid Structures. Architectural Press, 2000.

[5] J.-H. Chuang, C.-H. Tsai, M.-C. Ko: Skeletonization of three-dimensional object

using generalized potential field. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1241–
1251 (2000).

[6] N.D. Cornea, D. Silver, X. Yuan, R. Balasubramanian: Computing hierarchical

curve-skeletons of 3d objects. The Visual Computer 21, 945–955 (2005).

[7] T. Fischer: Generation of apparently irregular truss structures. Computer Aided
Architectural Design Futures 2005, 229–238.

[8] A. Globus, C. Levit, T. Lasinski: A tool for visualizing the topology of three-

dimensional vector fields. In VIS ’91: Proceedings of the 2nd Conference on Visualization
’91, IEEE Computer Society Press, Los Alamitos/CA, 1991, pp. 33–40.

[9] A. Hofmann, K. Bollinger, M. Grohmann: Generating geometry of irregular

frameworks algorithmically. Proceedings of Advances in Architectural Geometry, 2008,
pp. 21–23 .

[10] P.L. Jaworski: Using simulations and artificial life algorithms to grow elements of

construction. Master’s thesis, University College London, 2006. Available from http:

//discovery.ucl.ac.uk/2882.

[11] A. Kanellos: Topological self-organisation: Using a particle-spring system simulation

to generate structural space-filling lattices. Master’s thesis, University College London,
2007. Available from http://eprints.ucl.ac.uk/4985/.

Received August 6, 2010; final form June 23, 2011


