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Abstract. This paper considers trajectories of light rays from the position of
projective geometry. On the basis of the well-known Law of Reflection the tra-
jectory of a light ray between two intersecting planes α and α1 is examined. The
process of construction of reflected rays from given planes leads to a certain 3D
construction Λ. In this construction we receive a spatial broken line made up of
repeatedly reflected rays, the vertices of which generate corresponding fields of
points in the planes α and α1. As a result of these constructions we have ad-
ditional fields of points on two auxiliary planes x and y. It demonstrates that
in certain constructions that are particular cases of projective models of a con-
struction Λ the fields of points mentioned above are projective. We examine the
construction of trajectory of a light ray consisting of four segments in a diamond.
The process of light reflection creates a collineation between two fields of points
on a diamond facet. Double points of this collineation indicate the presence of
closed light contours inside the diamond.
A computer program, developed by the authors, enables users to perform the
following operations: change the form of a diamond, select a facet of a diamond,
select a point (on a facet) of an incident light ray, change the orientation of a light
ray and observe the trajectory of a light ray inside a diamond. The program also
computes the intensity of an exiting light stream. This criterion enables one to
compare various forms of diamonds and search for the best among them.

Key Words: reflected and refracted rays, collineation, double points, graphical
interface
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1. Introduction

This paper is a continuation of the previous papers [5], [6] and is devoted to modeling the
trajectory of a light ray in a 3D crystal, particularly in a diamond. Some of the works in this
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field are listed in the references, for example, [14, 8, 2, 10, 9, 4]. The authors have elaborated
algorithms and programs to calculate the intensity of the light stream exiting the upper parts
(crown) and the bottom parts (pavilion) of a diamond. On the basis of this program the
user can choose the most preferable form of a diamond. The criterion for this selection is the
intensity of the reflected light ray. This program is based on the well-known laws of optics and
grapho-analytical methods. The authors widely use methods of projective geometry. This
enables the user to find interesting facts connected to the geometry of reflected light rays.

2. Geometry of the reflected ray

Let’s recall the well-known Law of Reflection:

1. The incident ray l1 and the reflected ray l2 lie in a plane T which includes also the
normal N to the reflecting surface Σ.

2. The ray of light l1 is reflected by the surface Σ at the same angle Θ1 (in absolute value).

The angle Θ1 is measured between the ray and the normal N (Fig. 1). We are speaking now
only about the geometry of the light ray, just as a straight line. Further in this article planes
will be regarded as transparent and all lines of construction are visible. We would like to
stress that the sketches (Figs. 1–6) are used only to explain the geometric constructions and
to prove a few theorems.

Figure 1: Law of Reflection

Let’s construct the trajectory of a light ray between two intersecting planes α and α1

on the basis of the above-mentioned Law of Reflection. Let’s remark that a ray trajectory
between two intersecting straight lines and inside a plane contour was examined in [5].

Let LA be an arbitrary ray incident in the plane α at the point A (Fig. 2). The point L
belongs to the plane α1. This ray will be successively reflected in the planes α and α1 and
will form some spatial broken line. Let’s construct it:

In the beginning we construct the point xL, symmetric to L with respect to plane α.
Naturally, the points L and xL lie on the normal n1 to the plane α. The straight line xLA
will intersect the plane α1 at the point A1. Then AA1 is the ray after reflection in the plane α.
After that we construct the point yA, symmetric to A with respect to plane α1. The points A
and yA lie on the normal n2 to the plane α1. The straight line yAA1 will intersect the plane
α at the point B. So, A1B is the ray after reflection in the plane α1.

The further constructions are carried out similarly. All the auxiliary points xL, xA1, . . .
and yA, yB, . . . of this construction lie correspondingly in the planes x and y, as a result
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of the symmetries with respect to planes α and α1. This results in a construction, which
we will call Λ, and in a spatial broken line made up of reflected rays. In this construction
the straight lines A yA, B yB, . . . are parallel; they are the rays of a ray pencil having the
improper center S∞

2 . Likewise, the straight lines L xL, A1 xA1, . . . are the rays of the pencil
with the improper center S∞

1 . We can see that the construction Λ is a particular case of the
more generalized construction Ω, when the centers S∞

1 and S∞
2 are replaced by regular points

S1 and S2 in the Euclidean space (Fig. 3).

Figure 2: The spatial broken light line between the two planes α and α1

3. “The light ray trajectory” in the construction Ω with two centers
S1 and S2

Below we will explain why the expression “the light ray trajectory” is enclosed in quotation
marks.

Let’s show that the construction based on four planes α, α1, x, y, intersecting at one line,
and on two centers S1 and S2 determines “the trajectory of the light ray” with the vertices
in the planes α and α1 (Fig. 3).

Let LA be a “ray” exiting from some point L, which belongs to the plane α1, which
meets the plane α at A. In the beginning we construct the point xL as the intersection of the
straight line S1L and the plane x. This construction can be written in the symbolic form:

1. xL = S1 L
⋂

x . The further constructions is as follows:
2. A1 = xLA

⋂
α1 .

3. yA = S2A
⋂

y .
4. B = yAA1

⋂
α.

5. xA1 = S1A1

⋂
x .

6. B1 = xA1B
⋂

α1 .
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The points (C,C1), (D,D1) and so on are constructed similarly. As a result, we receive a
spatial broken line the vertices of which make corresponding fields of points A,B,C,D, . . .
and A1, B1, C1, D1, . . . in the planes α and α1, respectively.

What can be said about these fields? Let’s look at this problem from the standpoint of
projective geometry.

Figure 3: The “spatial broken light line” in the construction Ω with two centers, S1 and S2

The construction Ω will be perceived as a projective model of the construction Λ. In
this construction the points xL, xA1, . . . will not be symmetrical to the respective points
L, A1 relative to the plane α. This is explained by the fact that in projective models the
metric is not preserved, for example, the equality of segments and angles. Thus, the notion
of “reflected rays” loses its physical meaning, but instead, acquires the geometric one as an
element of projective model. For this reason, furtheron the expressions “reflected ray”, “light
ray trajectory” or “spatial broken light line” will be enclosed in quotation marks.

In Figs. 4 and 5 we examine a construction of a “broken light line” in a different design
Ω1, where the straight lines A xA, A2 xA2, etc. (Fig. 5) form a pencil of lines with the center
O. These straight lines are analogous to the straight lines A xL, B xA1, etc. shown in Fig. 3.

In Section 5 below, we will describe in detail the construction of the “broken light line”
in the design Ω1, which is, basically, a special case of Ω. Henceforth, we will not refer to
the construction Ω and we will introduce different designations for certain points in order
to ease reading of the designs. As we will see below, the design Ω1 induces a formulation of
interesting and important problems, associated with the light ray trajectories in a real crystal.
In connection with the latter, let us first examine this design.

4. The collinear fields in the construction Ω1 with the three centers
S1, S2 and O

Let four planes α, α1, x, y intersecting in the straight line v and three centers S1, S2, O be
given (Fig. 4). The centers S1, S2 and O are arbitrary points in space, not belonging to the
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Figure 4: The collinear fields in construction Ω1 with three centers S1, S2 and O

mentioned planes. Let’s call the following construction Ω1.
We will construct corresponding point fields in the planes α and α1 in a way, which

somehow differs from the procedure explained before.
We assume that in the plane α there is a set of points A,B,C, . . . (for the sake of

convenience when reading the sketch, the points A,B,C are connected by straight lines).
Let’s select one point, for example A, and make the following constructions: through center
O and point A we draw a straight line intersecting the plane x at point xA. In symbolic form
we can write:

1. xA = OA
⋂

x . The further constructions will be written as follows:
2. A1 = S1 xA

⋂
α1, where the straight line S1 xA passes through the points S1 and xA.

3. yA = S2A
⋂

y .
4. A2 = yAA1

⋂
α, where the straight line yAA1 passes through the points yA and A1.

Thus, for each point A ∈ α we have received the corresponding points A1 ∈ α1 and A2 ∈ α.
Identical constructions will be carried out for the other points B,C, . . . in α which gives the
respectively corresponding points B1, B2, C1, C2, and so on.

If we connect the points A,A1, A2 by segments, then AA1 will be the incident light ray
and A1A2 will be the reflected one. (These segments are not shown in Fig. 4, because we
didn’t want to complicate the drawing). A detailed construction of light rays will be shown
in Fig. 5, as we have already mentioned above.

We will prove below that the considered constructions lead to important theorems of
projective geometry which enable us to look at a trajectory of the light ray in a new fashion.

It is well known from classical projective geometry that a sequence (chain) of perspective
collineations sets up a projective correspondence between point fields of the preceding link
and the subsequent link (for example, the first link and the last link). In other words, the
product of collineations is again a collineation (see, e.g., [1, 3, 7, 13, 15, 12]).

Theorems 1 and 2, listed below, are a direct consequence of such a product. However, we
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give proofs of these theorems for two reasons. The first reason is that the theorems apply to
the specific design Ω1; the second reason is that it is necessary to show, that such a sequence
(chain) of perspective collineations exists in Ω1.

Theorem 1. The fields of points A,B,C, . . . and A2, B2, C2, . . . , both located in the plane α,
are collinear.

Proof: Consider the following sequences of the perspective correspondences with centers O
and S1 (Figs. 4 and 5):

α(A,B,C) ∧= x (xA, xB, xC, . . . ) ∧= α1(A1, B1, C1) (1)

and (2) with center S2:
α(A,B,C, . . . ) ∧= y(yA, yB, yC, . . . ) (2)

From (1) and (2) it follows:

α1(A1, B1, C1) ∧− y(yA, yB, yC, . . . ) (3)

In accordance with Fig. 4 the common points of the mutually collinear fields α1(A1, B1, C1, . . . )
and y(yA, yB, yC, . . . ) in the planes α1 and y lie on the line v or intersection. In the
collineation (3) the common points correspond to themselves. In this case we obtain a
perspective collineation. The latter is verified by the fact that the corresponding triangles
A1, B1, C1 and yA, yB, yC satisfy Desargues’ theorem in the following sense: corresponding
sides of triangles A1, B1, C1 and yA, yB, yC intersect at three points on the same straight
line v. Consequently, the straight lines joining the corresponding vertices (A1, yA), (B1, yB),
(C1, yC) pass through the same point K. These lines are displayed dotted in (Fig. 4).

Consequently, the fields α(A2, B2, C2, . . . ), α1(A1, B1, C1, . . . ) and y(yA, yB, yC, . . . ) are
sections of the same bundle of straight lines with center K.

α(A2, B2, C2, . . . ) ∧= α1(A1, B1, C1, . . . ) ∧= y(yA, yB, yC, . . . ) (4)

From (2) and (4) we conclude:

α(A,B,C, . . . ) ∧− α(A2, B2, C2, . . . ) (5)

Thus Theorem 1 is proved.

We have shown, that in the given construction Ω1 the point field α(A2, B2, C2, . . . ) is
perspective to the point field y(yA, yB, yC, . . . ) with the center K. On the other hand the
point field y(yA, yB, yC, . . . ) is perspective to the point field α(A,B,C, . . . ) with the center
S2 in accordance with the construction. The product of these two perspective collineations is
the collineation (5).

It is known that a collineation, in the general case, has no more than three double points
P , Q and R and no more than three double lines which are sides of the triangle PQR. Their
construction is described in detail in the literature, for example, in [1]. However, in the
construction Ω1 we are facing a different case.

Let’s imagine that we have a point of the field α(A,B,C, . . . ) on the straight line v. Then,
its corresponding point in the field α(A2, B2, C2, . . . ), according to the construction, coincides
with the first one. This means that the whole straight line v consists of double points of
the mentioned fields. In this case the collineation (5) is a homology with double line v and
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homology center R. All the straight lines connecting pairs of corresponding points (A,A2),
(B,B2), (C,C2), . . . pass through this center R. In Fig. 4 these straight lines are not shown
to simplify the sketch.

For the fields α(A,B,C, . . . ) and α(A2, B2, C2, . . . ) also Desargues’ theorem holds true.
It’s not difficult to see from the construction of the “reflected ray” that the homology center
R lies on the straight line S2K and that R as a double point coincides with its image R2

under the collineation (5).
Let’s see the points α(A2, B2, C2, . . . ) as the points of the first field α(A,B,C, . . . ) and

perform once more the construction presented above. We shall receive a field α(A4, B4, C4, . . . )
projective to the field α(A2, B2, C2, . . . ). From point A2 we receive the points A3 and A4 in
the respective planes α1 and α, and so on.

Shortly, in the plane α we receive a sequence of the fields (A,B,C, . . . ), (A2, B2, C2, . . . ),
(A4, B4, C4, . . . ), in which each is projective to the following one. In the plane α1 we have
the fields (A1, B1, C1, . . . ), (A3, B3, C3, . . . ), (A5, B5, C5, . . . . If we consider all the points
A,B,C, . . . , A2, B2, C2, . . . , A4, B4, C4, . . . as points of the first field in the plane α, then the
second field will include the points A2, B2, C2, . . . , A4, B4, C4, . . . , A6, B6, C6, . . . in the same
plane.

These two fields will be in projective correspondence (homology) (5) with the center R.
The field of points α(A2, B2, C2, . . . , A4, B4, C4, . . . , A6, B6, C6, . . . ) will also be in perspective
collineation with the field of points α1(A1, B1, C1, . . . , A3, B3, C3, . . . , A5, B5, C5, . . . with the
center K, accordingly to the construction Ω1. If these points are connected by segments in
a certain order, we shall have a “broken light line” consisting of “incident” and “reflected”
rays. We shall discuss this in the next section.

5. The “broken light line” in the construction Ω1

We refer to the construction Ω1 again, to explain the construction of the “broken light line”
(Fig. 5): Let’s assume that the ray AA1 exiting from point A meets the plane α1. In accor-
dance with our construction (see Fig. 4), after reflection in the plane α1 the ray A1A2 will
become the “reflected” one. This was previously mentioned in Section 4. The points A,A1,
A2 can be seen in Fig. 4.

Now, we replace point A by point A2 and perform the constructions presented in Figs. 4
and 5.

xA2 = OA2

⋂
x

A3 = S1 xA2

⋂
α1

yA2 = S2A2

⋂
y

A4 = yA2A3

⋂
α

Now we replace point A2 by point A4 and perform the constructions presented above, and so
on. As a result, a broken line A,A1, A2, A3, A4, . . . (sequence of “incident” and “reflected”
rays) is constructed. What can be said about this line?

Earlier, we showed that the points A, A2, A4, . . . corresponding in the homology (5) lie
on the same line passing through the homology center R. According to constructions (Figs. 4
and 5), the points A1, A3, A5, . . . also lie on a common line. Hence, the entire broken line
A,A1, A2, A3, A4, . . . will lie in some plane δ. This plane is spanned by the point A and the
straight line S2K. Below, we will show that the vertices of this broken line, taken in a certain
order, form projective rows on the straight line WR (Fig. 5).
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Figure 5: Sequence of “incident and reflected rays” in the construction Ω1

Theorem 2. In the construction Ω1 the vertices of “the light broken line” are in projective
correspondence in which every point of the first row WR (A,A2, A4, . . . ) has a corresponding
successive point in the second row WR (A2, A4, A6, . . . ) on the same straight line WR.

The proof of this theorem is also evident, since it stems from the product of two perspective
collineations already mentioned in Section 4.

Proof: Let’s consider the row of points A, A2, A4, . . . on the straight line WR. These
points generate the pencil of lines with center S2. The rays of this pencil intersect the plane
y at points yA, yA2, yA4, . . . In accordance with the constructions in (Fig. 5) the following
sequences are true:

WR (A,A2, A4, . . . ) ∧= y(yA, yA2, yA4, . . . ) (6)

with center S2, and
y(yA, yA2, yA4, . . . ) ∧= WR (A2, A4, A6, . . . ) (7)

with center K. The common point of these rows is the point W . In the projective corre-
spondence (7) this common point corresponds to itself. Hence, these rows are perspective. In
Fig. 5 we can see that the rays A2 yA, (A4 yA2), . . . form a pencil of lines with center K.

From (6) and (7) we conclude

WR (A,A2, A4, . . . ) ∧− WR (A2, A4, A6, . . . ) (8)

In other words, two rows of points A,A2, A4, . . . and A2, A4, A6, . . . are projective on the
straight line WR. Thus Theorem 2 is proved.

We have shown that on line WR there is a projective correspondence (8), which has two
double points. The first double point of this correspondence is W , which is the intersection
of the plane S2KA with the straight line v (axis of homology). The second double point is
R, which belongs to straight line S2K.

This double point is, in some “physical sense”, a special, very interesting point of the
“broken light line”. Suppose that a ray exits from such a double point R. Having been
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reflected in the plane α1 at the point A0, it returns to the same point R. In other words,
having reached this point, the light ray will travel infinitely along the same segment RA0.
In Fig. 5 we can see how the broken line tends to the segment RA0 on the right. Similar to
the double point, the segment RA0 can be called a double segment. This segment forms an
immovable, as if frozen, element of the “broken light line”.

Now, one more question arises: can there exist “a spatial closed broken light line” induced
by double points?

In order to answer this question, let’s consider a crystal in the form of a pyramid ABCD
(Fig. 6). We will consider one of the possible variants of reflection of rays from facets inside
this crystal. For convenience, let’s denote facets of the pyramid as follows: ABC as α, ACD
as β, BCD as γ.

Figure 6: Collineation on facet ABC, generated by reflected rays

All these constructions generate the following sequence of perspective correspondences:

α (αM1, αM2, αM3, . . . ) ∧= β (βM1, βM2, βM3, . . . ) ∧= γ (γM1, γM2, γM3, . . . )

∧= α (αN1, αN2, αN3, . . . )
(9)

As a result, we receive on the facet α the following collineation between two planar fields:

α (αM1, αM2, αM3, . . . ) ∧− α (αN1, αN2, αN3, . . . ) (10)

In Section 4 we have already mentioned that a collineation, in a general case, has no more
than three double points. The double points of the collineation (10) in the plane of crystal’s
facet α can be either inside or outside the facet. Let’s imagine that at least one of these points
is located inside the facet α.

If a certain ray l1 from the bundle S1 passes through this double point, it will return after
reflection in the crystal’s facet to the same point as ray l4. This fact tells us that the double
points of the collineation (10), under certain conditions, can induce the formation of closed
light contours inside the crystal. It is possible to formulate the problem in a different way:

One white light ray enters at point S1. After refraction at point S1 we receive a bundle
of rays l1 of different colors inside the crystal (this is a phenomenon of dispersion). From this
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bundle, a ray of a certain color which will pass through the double point of the collineation
in α will return to the same point.

6. Computer realization of the light ray trajectory

The authors have created a program for constructing the trajectory of a light ray inside the
diamond. The plane section of a diamond (profile) is defined by the coordinates of its vertices:
1, 2, 3, 4, 5, and 6 (Figs. 7 and 8). The shape of the diamond is created by rotating this
profile around the vertical axis going through the points 3 and 6. The program is managed
by means of a graphical interface (Fig. 8).

Figure 7: The plane section of a diamond (profile)

On this interface there are the following designations: r is the incident and r1 the reflected
ray at the point M of the upper facet with number 3. r2 is the refracted ray, r3, r4, r5 are
rays reflected from the facets whose borders are distinguished by means of thicker lines by
the program itself. n1, n2, n3, n4 are the normals to the planes spanned by the facets.

The light ray r can be incident at every chosen upper facet at a point whose position is
defined by two parameters: t and q. The parameter t defines the displacement of the point
M along one side of the triangle and q along the other one. The direction of the incident
light ray r is given by two parameters: ‘slope’ and angle of rotation, which in the graphical
interface (Figs. 8, 9 and 10) is called ‘rotate’ for brevity.

‘Mode’ is a parameter indicating the choice of facets automatically or in accordance with
the user’s requirement. ‘Scale (A)’ is the scale of the drawing. ‘TOP LPW’ is the intensity
of the rays exiting from above. The graphical interface allows to search for light rays which
generate a projective correspondence in the plane of the chosen facet. The double point of
this correspondence, if it exists inside the facet, defines a closed light contour. If the angles of
incident light rays are less than critical, the program also draws the rays exiting the crystal
and calculates their intensity.

The percentage intensity of reflected light rays is calculated in accordance to the equation
(11) of Fresnel:

R =
1

2

[
tan2(Θi −Θr)

tan2(Θi + Θr)
+

sin2(Θi −Θr)

sin2(Θi + Θr)

]
(11)

where Θi is the angle of the incident light ray and Θr the angle of the refracted light ray.
The percentage intensity of the refracted light rays is calculated as a difference of the

intensities of the incident and the reflected light rays.
Two examples of diamond shapes with light ray trajectories are shown in Figs. 9 and 10.

One light ray meets a triangular facet of the top part of the crown. In this example we show
only one incident ray in order to make this figure less complicated. In Fig. 9 we see the shape



M. Manevich, E. Itskovich: Light Ray Trajectories and Projective Correspondences 191

Figure 8: Graphical interface

Figure 9: Diamond according to the proportion of M. Tolkowsky

of the diamond according to M. Tolkowsky’s proportions [11, 14]. For this shape the top
light power is 17.415 and the bottom light power (the intensity of the rays exiting from below)
is 54.93119 . In Fig. 10 we have another profile and shape; the coordinates of the vertices 3
and 6 have been changed. For this case the top light power is 99.81763 and the bottom light
power is 0. The rays exiting the crown and the pavilion (bottom part) are shown in orange
color.
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Figure 10: Diamond with new coordinates of vertices 3 and 6

7. Conclusion

This work shows that the methods of projective geometry make it possible to obtain certain
data about the behavior of a light ray inside a crystal. The double points of projective
correspondences indicate the existence of closed light contours.

The examined construction Ω1 leads to the formulation of new problems related to the
existence of special trajectories of a light ray inside a crystal. For example, the problem of
finding the point on a crystal surface and the direction of the light ray, exiting at that point,
such that the trajectory in the limit approaches some static contour.

The behavior of the desired ray in this example is analogous to the ray, shown in Fig. 5,
where the “broken light line” tends to the segment RA0. Thanks to the computer algorithm
created by the authors, a user is able to find the crystal shapes with the best light-reflection
ability.
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