
Journal for Geometry and Graphics
Volume 15 (2011), No. 2, 141–158.

On Polygons Inscribed in Other Polygons

Paris Pamfilos

Department of Mathematics, University of Crete

Knossos avenue, 71409-Herakleion, Greece

email: pamfilos@math.uoc.gr

Abstract. In this article we discuss closure properties of polygonal paths with
vertices on the sides of a given polygon p and sides parallel to given directions vi.
In particular it is investigated the question of closedness and periodicity of such
paths, which for triangles is shown to be equivalent to Ceva’s theorem.
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1. Introduction

The basic configuration in this article is a polygon p = P0 . . . Pn−1 and a set of directions
represented by unit vectors {v0, . . . , vn−1}. The lines extending the sides of the polygon are
denoted by αi = PiPi+1. In addition there are considered points {X0, . . . , Xk}, each lying
on a side of p: X0 ∈ α0, X1 ∈ α1, . . . The basic assumption is that the polygonal path
qk = X0X1 . . .Xk inscribed in p has its sides βi = XiXi+1 parallel to the given vi. Thus, qk
can be created by starting at a point X0 ∈ α0 and projecting it parallel to v0 to the point
X1 ∈ α1, then projecting this parallel to v1 to the point X2 ∈ α2, etc. We assume that vi is
not parallel to sides αi or αi+1.

The problems of concern here are whether there are such closed paths qk inscribed in p,
whether these are unique and which conditions on the vi’s guarantee the existence of such
paths. In the sequel we use the terms inscribed polygon and path interchangeably. Closed or
periodic is called a path whose last point Xk = X0. Closed paths having exactly one point
Xi on each side αi of the enclosing polygon p are called simply periodic. Closed paths having
two points on each side of p are called doubly periodic and so on. The next well known figure
of a triangle with inscribed hexagons, whose sides are parallel to the triangle’s sides, give a
glimpse of the problems at hand.1

Figure 1 shows Thomsen’s figure [1, p. 36], [6, p. 99], created by starting at a point X0 on
the side α0 = P0P1 of the triangle P0P1P2 and applying the previously described procedure

1We would like to thank the referee as well as the chief editor Professor H. Stachel for their helpful
suggestions, which greately contributed to an improved exposition of the subject.
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Figure 1: Thomsen’s figure

with directions vi parallel to the sides of the triangle. The point returns after six such parallel
projections back to its initial position, thus creating a doubly periodic inscribed hexagon in
the triangle. When the starting point coincides with the middle of the corresponding side
(X0 = F ), then we obtain the medial triangle and this is the unique position of X0 on P0P1

for which the hexagon degenerates to a triangle.

A generalization of this property, valid for all closed polygons with an odd number of sides,
will be proved in Section 5. Section 2 deals with the properties of the generic case known
from the time of Pappus (see [9, I, Sect. 498, p. 285], [3, p. 61]). For the sake of completeness
we treat in brief this case, too. The discussion in that section overlaps with some parts of
[8], though the notation there is somewhat less convenient than here. Section 3 deals with
some elementary facts and related calculations which lay the basis of the results concerning
the case of triangles. The subsequent sections investigate some special non-generic cases
of inscribed polygons with particular attention to configurations producing doubly periodic
inscribed polygons, which is a peculiarity occuring only in the case of odd-sided polygons.
Section 4 gives a complete account in the case of triangles. Section 5 discusses in brief the
case of complementary inscribed polygons in odd-sided ones. Section 6 discusses the class
of conjugate inscribed polygons, which delivers many examples of doubly periodic inscribed
polygons. This section, whose prevailing concept is the affine reflection ([6, p. 203], [10, II,
p. 109]), has also some overlaps with the discussion in [8], though the focus here is directed to
another aspect of the configuration under examination than the one discussed there. Finally,
Sections 7 and 8 deal in brief with some special configurations delivering interesting examples
of doubly periodic polygons.

2. The generic case

In this section, using the notation and the conventions made in the introduction, we look
a little bit closer at the relation of Xn to X0, i.e., the place at which the polygonal path
qn = X0X1 . . .Xn returns to the initial side containing the starting point X0 ∈ α0.

Proposition 1. In the generic case, i.e., assuming no special conditions on the directions
{vi}, the locus of points X∗ of intersection between the first side β0 and the last side βn−1,
while X0 varies on line α0, is a line L intersecting α0 at a point X∗∗. The polygonal path
starting at X0 = X∗∗ closes and defines the unique inscribed polygon X0 . . .Xn−1 with sides
respectively parallel to the given fixed directions vi.
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Figure 2: The locus of the point X∗ of intersection between β0 and βn−1

Proof: The basic fact is that, using affine coordinates on the lines αi, the respective coordi-
nates of any pair (Xi, Xj) are related by a bijective linear function. This is obvious from the
way each Xi+1 is defined by its predecessor Xi and the corresponding vi. From the definitions
follows (as seen in Figs. 2 and 3) that all triangles of the form XiPiXi+1 have constant angles,
hence the relation of Xi+1 to Xi is linear. When X∗ is defined as the intersection of the last
side βn−1 = Xn−1Xn with the first side β0 = X0X1 of the inscribed path, for the same reason
the dependency between X∗ and X0 is linear, and X∗ traces a line.
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Figure 3: Linear dependency of Xi and Xj

In order to be more specific later, we need the precise formulas for the aforementioned
linear dependencies. There is a very simple basic relation that rules the generic as well as the
non-generic cases of inscribed polygons, to which belong the doubly periodic ones. From this
relation follows, among other things, that there are no periodic polygons with period k > 2.
In other words, the procedure under study produces either simply periodic or doubly periodic
polygons, or paths that never close.

Proposition 2. In the generic case, i.e., assuming no special conditions on the directions
{vi}, the only periodic polygon path X0 . . .Xm (with Xm = X0) is the one given by the previous
proposition (with m = n− 1) and there are no k-periodic paths with k > 1.
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Proof: In fact, in affine coordinates along line α0 the relation of Xn to X0 is given by a
bijective linear function, called shift-function in the sequel,

t′ = f(t) = at + b.

Thus, a k-fold application of the function amounts to

fk(t) = akt+ (ak−1 + · · ·+ a+ 1)b.

If, for a specific t0 we have a recurring polygonal path, then it must be t0 = fk(t0), which by
substitution in the previous formula gives

t0(1− ak) = (ak−1 + · · ·+ a + 1)b.

For a = −1 and k = 2 this is satisfied for every initial value t0. Thus, in such cases, there
result doubly periodic inscribed polygons for every initial position X0 on α0. We will see in
the next section that this is the case at Thomsen’s figure (see Fig. 1) and its generalization
for odd-sided polygons (see Section 5). For a 6= −1 we can always simplify and obtain

t0(1− a) = b.

For a 6= 1 this gives just a unique simply periodic solution (the intersection of line L with
side α0), hence there are no k-periodic polygons with k > 1 in this case. For a = 1 we have
the non-generic case in which f(t) = t + b is a translation. For b 6= 0 there are no periodic
inscribed polygons; for b = 0 the resulting inscribed polygon is periodic for every initial value
X0 ∈ α0. We return to some instances of this case in Section 6.

3. The linear relations

In the following we identify the vertices {Pi, Xj} with corresponding position vectors of the
plane and assume that the sides αi = PiPi+1 of the polygon of reference p = P0 . . . Pn−1 are
respectively parallel to the unit vectors u0, . . . , un−1. As already tacitly assumed, indices
exceeding n − 1 are reduced modulo n. Points Xi ∈ αi are related to each other by the
following relations

Xi+1 = Pi+1 + t ui+1 = Xi + t′vi =⇒ t =
〈Xi − Pi+1, J(vi)〉

〈ui+1, J(vi)〉
.

Here 〈· · · , · · · 〉 denotes the usual inner product and J(X) denotes the π/2-rotation of vectors
X , satisfying 〈X, J(Y )〉 = −〈J(X), Y 〉, due to J2(X) = −X . This leads to the representation
of Xi through the formulas

Xi+1 = Qi+1 + fi(Xi) ui+1,

Qi+1 = Pi+1 −
〈Pi+1, J(vi)〉

〈ui+1, J(vi)〉
ui+1,

fi(Xi) =
〈Xi, J(vi)〉

〈ui+1, J(vi)〉
.

Remark 1. Obviously the existence of Xi’s and consequently the existence of the inscribed
polygon is guaranteed only when 〈ui+1, J(vi)〉 6= 0 . This is equivalent to the non-parallelity
of side αi+1 to the vector vi.
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A simple substitution into the formulas reveals the inductive relations

fi(Xi) = aifi−1(Xi−1) + bi,

ai =
〈ui, J(vi)〉

〈ui+1, J(vi)〉
,

bi =
〈Qi, J(vi)〉

〈ui+1, J(vi)〉
.

From the above follows inductively the relation

fi(Xi) = (a1 . . . ai)f0(X0) + (bi + aibi−1 + aiai−1bi−2 + · · ·+ ai . . . a2b1).

Taking the origin of coordinates on α0 at P0(= Pn) and setting X0 = t u0, we find the
coefficients of the linear function expressing Xn = t′u0 in terms of t:

t′ = f(t) = at + b,

a = a0 . . . an−1 =
〈u0, J(v0)〉

〈u1, J(v0)〉
·
〈u1, J(v1)〉

〈u2, J(v1)〉
· · ·

〈un−1, J(vn−1)〉

〈u0, J(vn−1)〉
,

b = (bn−1 + an−1bn−2 + an−1an−2bn−3 + · · ·+ an−1 . . . a2b1).

From these it is seen that f(t) is a non-constant function precisely when the projection
directions vi are non-parallel to the corresponding sides of the polygon, i.e., non-parallel to
ui.
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Figure 4: Parallelogram inscribed with given directions of sides

Although the two subsequent sections are applications of these formulas, we cannot with-
stand the temptation to discuss a simple example illustrating their usefullness:

Let two parallelograms be given (see Fig. 4). Our aim is to inscribe into the first p =
P0P1P2P3 a third parallelogram q4 = X0X1X2X3, whose sides are respectively parallel to the
sides of the second parallelogram. By the results of the previous section there is precisely one
solution in the generic case, depicted in Fig. 4.

Things become more important in the non-generic case in which the coefficient a of the
shift function has the value 1 (see Fig. 5). In this case line L is parallel to the side α0 = P0P1

and if L 6= α0 there is no inscribed parallelogram as required. The condition a = 1 reduces
by the previous formulas and the present circumstances to

1 =
〈u0, J(v0)〉

〈u1, J(v0)〉
·
〈u1, J(v1)〉

〈u2, J(v1)〉
·
〈u2, J(v2)〉

〈u3, J(v2)〉
·
〈u3, J(v3)〉

〈u0, J(v3)〉
=

(

〈u0, J(v0)〉

〈u1, J(v0)〉

)2

·

(

〈u1, J(v1)〉

〈u0, J(v1)〉

)2

,
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and since 〈v, J(u)〉 is the sine of the oriented angle (u, v), it is readily seen that this is
equivalent to P1 being the middle of X0Y0. Thus, with one exception, only impossible cases
occur when the directions (v0, v1) define a parallelogram (half of which is X0X1Y0) with
diagonals parallel to the sides of p; in other words, when (v0, v1) are harmonic conjugate to
(u0, u1). The one exception is that for which (v0, v1) are parallel to the diagonals of p. In
that case line L coincides with the side α0, and every point X0 ∈ α0 delivers an inscribed
parallelogram as required.
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Figure 5: Impossibility to inscribe a parallelogram

4. The triangle

The first in our series of non-generic examples is that of a triangle. Our starting point is
a generalization of Thomsen’s figure in another direction, which reveals a connexion of the
configuration to the subject of pivoting ([2, Vol. I, p. 326]):

From a point D draw parallels to the sides of the triangle ABC and define the diago-
nals {EF,GH, IJ} of the resulting parallelograms (see Fig. 6). We call them the conjugate
directions of point D with respect to (w.r.t.) the triangle ABC.
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Figure 6: Doubly periodic inscribed polygons in triangles

Proposition 3. Given is a triangle ABC and a point D not lying on its side-lines. Then,
for every point X0 ∈ α0 = AB the inscribed polygon starting at X0 and having its sides
respectively parallel to the conjugate directions of D w.r.t. ABC is closed. Furthermore, for
exactly one position U on the side α0 = AB the corresponding polygon is a triangle. For all
other X0 6= U the corresponding inscribed polygon is a doubly periodic inscribed hexagon.
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Proof: In fact, take an arbitrary point K on side AB and draw successively the sides KL,
LM , MN , NO, OP , PK parallel to the segments EF , GH , IJ , repeating in cyclic order. The
resulting polygon returns to K and closes (see Fig. 6). To prove it, we adapt our notations
to this situation taking u0, u1, u2 as the unit vectors along the directed sides AB, BC, CA,
respectively. The unit vectors v0, v1, v2 are respectively taken along the directed segments
EF , GH , IJ . Then the coefficient a of the shift function f(t) = at + b is given by the
expression

a =
〈u0, J(v0)〉

〈u1, J(v0)〉
·
〈u1, J(v1)〉

〈u2, J(v1)〉
·
〈u2, J(v2)〉

〈u0, J(v2)〉
.

It is then seen that the condition a = −1, leading to the proof, is equivalent to Ceva’s theorem
for the three cevians through D. In fact, introducing the three unit vectors w0, w1, w2 respec-
tively along the directed cevians BD, CD, AD, we can express the ratios in terms of the wi’s.
This is because each of these cevians, which are simultaneously diagonals of corresponding
parallelograms, is harmonic conjugate to the other diagonal of the parallelogram transferred
at the corresponding vertex. For example, the cevian and diagonal BD of the parallelogram
EBFD is harmonic conjugate to the other diagonal EF parallel transferred at B and with
respect to the two sides BA, BC. Using these relations and the fact that, for unit vectors,
the expression 〈J(u), v〉 equals the sine of the oriented angle (u, v), we see that

〈ui, J(vi)〉

〈ui+1, J(vi)〉
=

〈ui, J(wi)〉

〈ui+1, J(wi)〉
.

Using these facts, the expression for the coefficient a becomes

a =
〈u0, J(w0)〉

〈u1, J(w0)〉
·
〈u1, J(w1)〉

〈u2, J(w1)〉
·
〈u2, J(w2)〉

〈u0, J(w2)〉
.

Then it is readily seen that the condition a = −1 is a vectorial form of Ceva’s theorem. Notice
that Thomsen’s figure is the special case for which point D coincides with the centroid of the
triangle.

Remark 2. The established form f(t) = −t + b of the shift function implies some more
properties than those mentioned in the proposition. It shows namely that the middles of the
sides of the hexagons are located on the three cevians through D. It shows also that the
middles of the segments defined by two vertices of the hexagons on the sides of the triangle
are fixed. These are the points U,W,Z in Fig. 6. They are the vertices of a triangle which is
similar to the pre-cevian ([11, p. 100]) triangle of ABC with respect to D (see Fig. 7). By its
definition, this is a triangle A′B′C ′ whose cevian with respect to D is the triangle of reference
ABC.

Proposition 4. Given is a triangle ABC and a point D not lying on its side-lines. The
conjugate directions of D w.r.t. ABC are parallel to the sides of the pre-cevian triangle A′B′C ′

of D w.r.t. ABC.

Proof: In fact, draw the parallels from A and B respectively to IJ and EF and define their
intersection C ′ and also the points A′ = AD ∩ C ′B and B′ = BD ∩ AC ′ (Fig. 7). Line A′B′

contains point C. To see this, consider the pencil A(B,C,B′, D) of four lines through A
which is harmonic, hence it intersects all lines not passing through A in four points forming
a harmonic division. Thus, the points B,B0, D,B′ on the line BB′ are harmonic. It follows
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Figure 7: The pre-cevian A′B′C ′ of ABC with respect to D

that the pencil C(B,B0, D,B′) of lines at C is harmonic, too. Some pairs of lines of the
two considered quadruples share a point on the line BC ′, e.g., C ′ = AB′ ∩ CD or B or
X = AC∩C ′B. Hence, also the lines of the fourth pair meet on BC ′, i.e., A′ is the intersection
of lines CB′ and AD. The harmonicity at C shows that A′B′ is also parallel to GH . This
completes the proof of the proposition.

Since Ceva’s theorem stands in the middle of the subject and the theorem is a necessary
and sufficient criterion for three lines being concurrent, it is not surprising that the previous
construction exhausts all possibilities to inscribe periodic hexagons in triangles. In fact, the
corresponding property is in some sense another form of Ceva’s theorem. This is formulated
in the next proposition referring to Fig. 8.
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Figure 8: Periodicity and Ceva’s theorem

Proposition 5. Let KLMNOP be a hexagon whose sides are respectively parallel to three
directions (v0, v1, v2) and have their end-points on adjacent sides of the triangle with vertices
B,C,A. Let (w0, w1, w2) be the corresponding harmonic conjugate directions at these vertices.
Then the three lines B + t w0, C + t′w1 and A+ t′′w2 are concurrent at a point D.

Proof: In fact, the assumption implies that the coefficient a of the corresponding shift
function f(t) = at+ b is equal to −1:

a =
〈u0, J(v0)〉

〈u1, J(v0)〉
·
〈u1, J(v1)〉

〈u2, J(v1)〉
·
〈u2, J(v2)〉

〈u0, J(v2)〉
= −1.
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By the harmonicity relations this is equivalent to

〈u0, J(w0)〉

〈u1, J(w0)〉
·
〈u1, J(w1)〉

〈u2, J(w1)〉
·
〈u2, J(w2)〉

〈u0, J(w2)〉
= −1,

which, as noticed earlier, is Ceva’s condition for the concurrence of the three lines through
the vertices.

Corollary 1. A triangle A1B1C1 inscribed in a second triangle ABC is cevian if and only if
there is a hexagon inscribed in ABC, whose sides are respectively parallel to those of A1B1C1.

Remark 3. Given the triangle of reference ABC and the directions (v1, v2, v3), there are in
general two triangles A1B1C1/A2B2C2 respectively inscribed/circumscribed in ABC both
having sides parallel to the given {vi} (see Fig. 9). If now we rotate the system of {vi} so
that their mutual angles remain fixed, then we arive at the idea of pivoting a triangle A′B′C ′

(could be called of fixed similarity type) inside/outside the fixed triangle ABC ([7, p. 109]).
It turns out that when the triangle A1B1C1 is cevian, i.e., the joins of the vertices AA1, BB1

and CC1 intersect at a point D′, the same happens with the joins of the vertices AA2, BB2

and CC2 of the external triangle A2B2C2, which then intersect at another point D.
The last proposition shows that given the similarity type of the inscribed pivoting triangle,
its position, for which the corresponding parallels to its sides build doubly periodic hexagons,
is unique and coincides with the position for which the triangle becomes cevian.

B
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C2

A1
B1

C1

A2

A

Figure 9: Pivoting inside/outside ABC

Remark 4. The established relations have also another interpretation in terms of affine reflec-
tions ([5, p. 203]). In fact, given the triangle ABC and a point D′, not lying on its side-lines,
we have seen that the corresponding cevian triangle A1B1C1 defines, through the middles of
its sides, three other cevians intersecting at a point D (see Fig. 10).

Thus a system is created, which could be called constellar system of affine reflections,
consisting of three affine reflections with respective axes AD, BD, CD, passing through the
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same point D and conjugate directions B1C1, C1A1, A1B1, which define a triangular closed
orbit. The latter means that there is a point (B1) which, under the successive application of
the three reflections, maps to itself. The established form of the function f(t) = −t + b is
equivalent to the fact, that such a system of three reflections has a composition which is also
an affine reflection.

Remark 5. As noticed in Section 2, fixing the directions (v1, v2, v3), taking arbitrary points
X0 ∈ α0 = BC and projecting them successively parallel to the given directions onto the
sides, produces in each case a point X∗ = X0X1 ∩ X2X3 varying on a line L, which passes
through the vertex (A) opposite to the side α0 (see Fig. 12).
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Figure 11: Line L passing through A

In one case there is no closed polygonal path at all. This happens when line L is parallel
to α0. In this case the shift function f(t) = t + b has the form of a translation. For every
initial point X0 ∈ α0 the final point X3 is on α0 at a fixed distance and direction from X0 (see
Fig. 12). Considering the directions of the vi’s fixed relative to each other, but their system
rotating, i.e., pivoting the triangle DEF with sides parallel to the vi’s, this corresponds to the
position of the pivoting triangle A1B1C1 for which this becomes infinite. Equivalently, this is
the case when the joining lines {AA1, BB1, CC1} (see Fig. 9) become parallel to the opposite
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sides of the triangle of reference. In this case also the corresponding triangle A2B2C2, which
is circumscribed to ABC, degenerates to a point D′′ coinciding with its pivot.
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Figure 12: Line L parallel to α0 = BC

5. The complementary inscribed polygon

Referring to Proposition 3 and the notations introduced in its proof, Thomsen’s figure (see
Fig. 1) results by making the particular choice v0 = −u2, v1 = −u0, v2 = −u1, which in a
general notation can be written

vi = −u(i+2)mod 3, i = 0, 1, 2.

In this case, it turns out that a = −1, and the shift function f(t) = b− t satisfies f 2(t) = t.
Consequently for every t 6= b

2
the polygonal path starting at X0 = tu0 is doubly periodic,

whereas for t = b
2
we obtain the unique simply periodic path (corresponding to the medial

triangle).
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Figure 13: Doubly periodic inscribed polygons in odd-sided polygons

This example generalizes for polygons with an odd number of sides in a way illustrated by
Fig. 13, for the case of a convex pentagon, and by Fig. 14 for the case of a non-convex and self-
intersecting pentagon. In addition to the notations and conventions made in the introduction,
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the next proposition uses the idea of projection parallel to the sides of the enclosing polygon.
This is defined for polygons with an odd number of sides n = 2k + 1. The directions of the
sides of the inscribed polygons are simply given by those of the opposite sides of the enclosing
polygon:

vi = −u(i+k+1)modn, i = 0, 1, . . . , n− 1.

This means that every point X lying on side αi = PiPi+1 of p is projected parallel to vi onto
a point X ′ on the side αi+1. By its definition, vi is the direction of the side of the surrounding
polygon which lies opposite to Pi+1. This is also the common vertex of the side-pair (αi, αi+1).
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Figure 14: Doubly periodic inscribed polygons in a non-convex one

Proposition 6. For polygons p = P0P1P2P3 . . . Pn−1 with an odd number n of sides, starting
at any point X0 ∈ α0 = P0P1 and projecting successively parallel to the sides generates
a closed inscribed polygon. For a unique position X0 = X∗ on side α0 the corresponding
inscribed polygon is simply periodic, whereas, for all X0 6= X∗ the corresponding inscribed
polygon, starting at X0, is doubly periodic.

Proof: The proof is analogous to that of the preceding remark concerning Thomsen’s figure.
By assumption, the polygon has n = 2k + 1 sides, and the projecting directions satisfy
vi = −u(i+k+1)modn. Introducing these into the expression for the coefficient a of the function
f(t) = at + b, discussed in Section 3, we find easily that this reduces to a = −1. Thus, the
form of the linear function is now f(t) = b − t, and for every point t 6= b

2
we have f(t) 6= t

but f 2(t) = t, whereas for t0 =
b
2
we have f(t0) = t0, giving the simply periodic solution.

Figure 15 displays a case of the unique simply periodic inscribed pentagon defined by the
preceding proposition. The figure shows also the fact, directly deducible from the formulas,
that the vertices of the doubly periodic polygons on each side αi lie symmetrically with respect
to the vertex of this simply periodic polygon lying on the same side.

Remark 6. We call the simply periodic polygon, defined by the preceding proposition the
complementary polygon of the enclosing polygon p. Among the infinite many polygons in-
scribed in a fixed odd-sided polygon the complementary one is a singularium in the sense
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Figure 15: The dual inscribed polygon of an odd-sided polygon

that it has its sides parallel to those of the surrounding polygon p. The naming convention
conforms to the traditional one ([4, p. 81]), which singles out the medial triangle among the
multitude of triangles inscribed in a given triangle.

6. Conjugate polygons

Given a polygon p = P0P1 . . . Pn−1, there are several ways to define other related polygons.
An interesting and wide class of such polygons represent the conjugate polygons of p w.r.t.
points Q. These are defined by taking the harmonic conjugate lines βi of Q with respect to the
side-pairs (αi, αi+1). Figure 16 displays such a conjugate polygon s = S0 . . . S4 for the case of
a pentagon. The system of projecting directions (v0, . . . , vn−1), which are unit vectors along
the sides βi = SiSi+1, defines the directions of projections generating the inscribed polygons.

Q

P0
P1

P2

P3

P4

v0

v1

v2

v3

v4X0

X1

X2 X3

X4

X5

S0

S1

S2
S3

S4

Figure 16: Conjugate S0 . . . S5 of P0 . . . P5 with respect to Q

The shift-function f(t) = at+ b giving the coordinate of Xn in terms of the coordinate of
X0 along side α0 = P0P1 (see Section 3) is ruled by the following proposition.

Proposition 7. Given a polygon p = P0 . . . Pn−1 and a point Q, the inscribed polygonal paths
X0 . . .Xn, with sides parallel to those of the conjugate polygon s = S0 . . . Sn−1 of p w.r.t. Q,
define a shift function of the form f(t) = ±t+ b, where the sign is −1 for odd-sided polygons
(n = 2k + 1) and +1 for even sided polygons (n = 2k).



154 P. Pamfilos: On Polygons Inscribed in Other Polygons

Proof: The proof is given by interpreting the correspondences Xi 7→ Xi+1 in terms of affine
reflections. In fact, let the symbol ri = (QPi+1, vi) denote the affine reflection with axis along
line QPi+1 and conjugate direction parallel to vi (notation slightly different from the one in
[10, II, p. 109]). By definition such a reflection maps a point X to X ′, such that XX ′ is
parallel to vi and the middle of XX ′ is on QPi+1. In terms of these maps the relation of Xn

to X0 is given by the composition

Xn = rn−1 (. . . (r0(X0)) . . . ) .

The proposition follows immediately from next lemma.

Lemma 1. For odd-sided polygons the composition r = rn−1 ◦ · · · ◦ r0 is a reflection with
conjugate axis parallel to α0. For even-sided polygons r is a shear with axis parallel to α0.

P1 P0

P3

P2

R0
R1

R2

R3

X0 X4

Y0 Y4

Q

Figure 17: The affine map r = rn−1 ◦ · · · ◦ r0

Proof: The proof of the lemma follows from the fact that line α0 = P0P1 remains invariant
under r. The same happens for the corresponding sides of the parallel polygons R0 . . . Rn−1

with vertices defined from those of P0 . . . Pn−1 by defining for a fixed s 6= 0 (see Fig. 17):

Ri = (1− s)Q+ sPi.

Thus, taking an affine coordinate system whose x-axis coincides with α0 the affine map r has
the representation

x′ = Ax+By + C,

y′ = y.

Since r is a composition of affine reflections, its determinant is ±1 hence A = ±1. In the case
A = −1 the transformation of coordinates {u = x−(B/2)y−(C/2), v = y} reduces the above
matrix representation to {u′ = −u, v = v}, which is the representation of a reflection with
conjugate axis α0. In the case A = +1 it is easily seen that B 6= 0, since otherwise r would
be a pure translation by a constant vector parallel to the x-axis. But it is easily seen that the
image of Y0 = (1−s)Q+ sX0 is Y4 = (1−s)Q+ sX4, thus Y4−Y0 = s(X4−X0) showing that
r cannot be a pure translation. Thus B 6= 0 and in the case A = 1 the coordinate-change
{u = x, v = y + (C/B)} reduces the matrix representation to {u′ = u+ Bv, v′ = v}, which
is the representation of a shear with axis parallel to α0.
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Corollary 2. Let p = P0 . . . Pn−1 be a polygon and Q a point not lying on the side-lines of
p. Let also X0 . . .Xn be a polygonal path inscribed in p and with sides parallel to those of the
conjugate polygon s = S0 . . . Sn−1 of p with respect to Q. Then, if n is odd all these paths are
doubly periodic except one which is simple periodic. If n is even, then these paths are either
all open or all of them are closed.

Proof: Since Q is a fixed point of the affine map r, it follows that in both cases the axis
of fixed points of r passes through Q. In the case of odd-sided polygons this implies that
the intersection of the axis of r with α0 delivers the unique simply closed polygonal path of
the system, whereas for all other positions of X0 ∈ α0 we obtain doubly periodic inscribed
polygons. As we saw in Section 4, in the case of triangles the above procedure exhausts all
possibilities to produce doubly periodic inscribed polygons, examples for n ≥ 5, as those given
in the next sections, show that there are more cases of periodic inscribed polygons in the case
of greater (odd) numbers of sides.

Q

X0

Figure 18: Conjugate-directions paths in regular hexagons

In the case of even sided polygons the previous analysis shows that the procedure of
parallel projections along the sides of a conjugate polygon produces inscribed polygons, which
are either all non-closed or all are closed. The latter happens in the exceptional case in which
the shear r becomes the identity, i.e., in its normal-form representation {x′ = x+By, y′ = y}
the coefficient B = 0.

Remark 7. In [8] we showed that in the case of quadrilaterals the condition B = 0 happens
exactly when the point Q lies on the Newton line of the quadrilateral. In more general cases
the condition B = 0 is satisfied by the points of a certain algebraic curve whose equation
and geometric properties depend on the enclosing polygon p. In some cases of non-generic
polygons the corresponding curve can degenerate. For example, even sided polygons which
are also point-symmetric satisfy the corresponding equality B = 0 for every point of the plane.
This is due to Carnot’s theorem, by which, for every point X , the successive symmetrics to
the vertices of the symmetric polygon come back to the original point ([1, p. 37]). Taking
X on the conjugate axis of r0 through the vertex P1 and applying this theorem we obtain a
closed path and this suffices to show that B = 0. Figure 18 illustrates this behavior in the
case of a regular hexagon. The polygonal path closes for every possible position of the point
X0.
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7. Diagonal generated polygons

Given a polygon p = P0P1 . . . Pn−1, its diagonals d0 = P0P2, d1 = P1P3, . . . created by
skipping one vertex, define a system of corresponding projection-vectors (v0, . . . , vn1

). The
corresponding polygonal paths (see Fig. 17) demonstrate a typical behavior. For odd-sided
polygons they define a shift function of the form f(t) = −t+b, whereas for even sided polygons
they define a shift function of the form f(t) = t. Thus, in the first case for all positions of
X0 ∈ α0 but one the resulting inscribed polygons are doubly periodic, whereas in the second
case for all positions of X0 the resulting inscribed polygon is closed.

P0
P1

P2

P3

P4

X0 X5 P0P1

P2

P3

P4

P5

X6=X0

M0

Figure 19: Projecting parallel to diagonals

In the odd-sided case the coefficient of the shift function is easily seen to be a = −1
by realizing that this function interchanges the positions of P0 and P1, thus there are t0, t1
satisfying t1 = at0 + b and t0 = at1 + b. Analogous is the proof for the shift function in the
even-sided case. In that case namely points P0, P1 map to themselves, this implying again
the stated property.

Remark 8. An argument similar to the one used in the proof of Lemma 1 shows that in the
odd-sided case the composition r = rn−1 ◦ · · · ◦ r0 of affine reflections ri = (Pi+1Mi, di) is an
affine reflection, whereas in the case of even-sided polygons it is the identity. Mi denotes here
the middle of the diagonal di.

8. Stellar diagonal generated polygons

A slightly more complicated non-generic case of inscribed polygons is the one in which the
sides α0, . . . , αn−1 of the polygon p = P0P1 . . . Pn−1 are extended to build intersections and
create the stellar-formed polygon with vertices R0 = αn−1∩α1, R1 = α0∩α2, . . . (see Fig. 20).

Let the system of projecting directions be that of unit vectors (v0, . . . , vn−1) respectively
parallel to the sides β0 = R0R1, β1 = R1R2, . . . of the stellar polygon. Define also the affine
reflections ri = (Pi+1Mi+1, βi), where Mi+1 denotes the middle of the side βi. The following
proposition rules the closing properties of inscribed polygons in p generated by projecting
points X0 ∈ α0 parallel to the vi’s.

Proposition 8. For odd-sided polygons the composition r = rn−1 ◦ · · · ◦ r0 is a reflection with
conjugate axis parallel to α0. For even-sided polygons r is a shear whose axis is parallel to α0

and passes through R0.
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Figure 20: Projecting parallel to the stellar diagonal polygon

Proof: The proof is a variation of the one given for Lemma 1. In fact, consider the polygon
q = Q0 . . . Qn−1 created by drawing parallels to the sides of p from the vertices Ri of the
stellar polygon. Taking an arbitrary point S0 on P0Q0 and drawing successively parallels to
the sides of p, one can create polygons s = S0 . . . Sn−1, which, depending on the position of
S0, vary continuously from p to q. It is easily seen that the first side γ0 of these polygons is
preserved by r. Thus, selecting the x-axis along α0, we notice that r can be represented in
coordinates through equations of the form

x′ = ±x+By + C,

y′ = y,

the sign being positive for even-sided polygons and negative for odd-sided ones. By a reasoning
as the one for the proof of Lemma-1 we see that for odd-sided polygons r is a reflection whereas
for even-sided polygons it is a shear. The statement on the axis in the even-sided case results
by observing that R0 maps onto itself under r.

The consequences from this proposition regarding the inscribed polygons are almost the
same as those of Section 6 for the conjugate polygons.

Proposition 9. For odd-sided polygons the inscribed polygons created by successively project-
ing along the diagonals of the stellar polygon are all but one doubly periodic. In the case of
even-sided polygons the above procedure never closes.
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