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Abstract. The Kiepert hyperbola and the Kiepert parabola of a triangle in the
Euclidean plane are the background of this paper. Its main issue is the question
whether a similar phenomenon can be found in the hyperbolic plane. The consid-
erations are set in the disk model of hyperbolic geometry where classical projective
reasoning can also be employed.
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1. Introduction

We consider a geometry that obeys the axioms of Euclid except for the well-known parallel
postulate. The parallel postulate of Euclidean geometry is replaced by the statement: ’To
any given line g and point P not on g there are at least two distinct lines through P which
do not intersect g.’ This axiom gets us to hyperbolic geometry. As a model of that geometry
we use the disk model in the projective plane.

We start with the real projective plane equipped with a Euclidean structure. The real
projective plane — in turn — is embedded into the complex projective plane. Next, we elect
a circle called the absolute conic m. The interior points of m are (ordinary) points, the (open)
chords of m are the lines in the disk model of hyperbolic geometry. The points on the absolute
conic m itself are called ideal points whereas the points outside m are referred to as ultra-ideal
points of the model. So, a hyperbolic line in our geometry is basically a segment; we identify
it with the coinciding line in the projective plane. Depending on whether two lines intersect
at an ordinary point, an ideal point, or an ultra-ideal point, we call the lines intersecting,
asymptotically parallel, or ultra-parallel, respectively. This way we can formulate theorems of
hyperbolic geometry in the language of projective geometry and vice versa. E.g., the ultra-
ideal point in which ultra-parallel lines intersect is the pole of their common perpendicular
with regard to the absolute conic m (cp. [4, 1, 2, 8, 11]).

Kiepert conics and related issues are the germ of our investigation of a triangle in hyper-
bolic geometry. Section 2 contains a short roundup of properties of a triangle and its Kiepert
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hyperbola and Kiepert parabola in Euclidean geometry. The hyperbolic isogonal transforma-
tion (in short: h-isogonal transformation) with respect to a hyperbolic triangle is addressed
in Section 3. In Section 4 we construct the analogue to the Kiepert hyperbola, called first
Kiepert conic in the hyperbolic plane and reflect on some of their properties. Section 5 resorts
to a theorem on perspective triangles in the projective plane. This theorem is the background
of Section 6 where we prove the existence of the second Kiepert conic in the hyperbolic plane
which is the analogue to the Kiepert parabola. Finally, a summary and an outlook on further
investigations are given in Section 7.

2. Kiepert hyperbola and Kiepert parabola in the Euclidean plane

Let ABC be an arbitrary triangle and A′BC, AB′C, and ABC ′ isosceles triangles with some
base angle ρ, attached externally (or internally) to the edges AB, BC, and CA. The points
A′, B′, C ′ form a new triangle called Kiepert triangle to the base angle ρ. The triangle
ABC and each Kiepert triangle A′B′C ′ are perspective from some centre K(ρ) which is the
intersection point of AA′, BB′ and CC ′. If the base angle ρ varies between −π/2 and π/2 the
locus of K(ρ) is a rectangular hyperbola, called Kiepert hyperbola k (cp. [3, 5], see Fig. 1).
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Figure 1: The triangle ABC in the Euclidean plane and each Kiepert triangle A′B′C ′ are
perspective. The respective centres K lie on the Kiepert hyperbola k which also contains the
centre of gravity G, the orthocentre H and the vertices of the triangle ABC.

We refer to the well-known Desargues Theorem: As the triangles ABC and A′B′C ′ are
perspective from a centre K(ρ), there must be some Desargues axis d(ρ). The envelope of all
these axes d(ρ) is the Kiepert parabola p. In the Euclidean plane the Kiepert hyperbola and
the Kiepert parabola are closely linked to other remarkable points and lines of the triangle.
For instance, the vertices A, B, C, the centroid G and the orthocentre H are points on the
Kiepert hyperbola k. The image of the Kiepert hyperbola k under the isogonal transformation
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with respect to triangle ABC is the Brocard axis k∗ of ABC. The Lemoine line is among the
tangents to the Kiepert parabola p. If the isosceles triangles BCA′, CAB′, and ABC ′ are even
equilateral triangles attached externally to the edges of the given triangle ABC, the centroids
of these triangles are vertices of an equilateral triangle. This proposition is generally known
as Napoleon’s theorem.

We can find analogues to most of these statements in the hyperbolic plane. Napoleon’s
theorem, though, does not have a hyperbolic analogue.

3. Isogonal transformations

3.1. Isogonal transformation in the Euclidean plane

Two lines l, l∗ through the vertex of an angle are said to be isogonal if they are symmetric with
regard to the bisector of that angle. If ABC is a triangle and P is a point in the projective
plane, not on the edges of ABC, the connecting lines AP,BP,CP are called cevians of P .
The isogonal conjugate to P is the intersection point P ∗ of the lines isogonal to the cevians
through P . The three isogonal lines are concurrent due to Ceva’s theorem. The relation
of pairs of isogonal conjugate points is an involutoric quadratic Cremona transformation, its
fundamental points being A, B, and C. The transformation is well-defined for all points off
the edges of the triangle ABC.

3.2. Isogonal transformation in the hyperbolic plane

In the hyperbolic plane two lines l, l∗ through the vertex of an angle are said to be hyperboli-
cally isogonal (in short: h-isogonal) if they are symmetric in the hyperbolic plane with regard
to the h-bisector of this angle. We give the following

Definition 1. If ABC is a triangle and P is a point in the projective plane, off the edges of the
triangle, the hyperbolically isogonal conjugate to P (h-isogonal conjugate) is the intersection
point P ∗ of the lines h-isogonal to the cevians through P .

In order to show that the definition makes sense we have to prove that the three h-isogonal
lines of the cevians through the original point are concurrent. Let ABC be an arbitrary
triangle in the hyperbolic plane. The h-incentre I is the point of intersection of the inner
h-bisectors of the triangle (see Fig. 2). If U is the centre of the absolute circle m there exists
a hyperbolic reflection with some axis s which maps the point I onto U = I ′. As from now
we consider the image A′B′C ′ with incentre U = I ′. The h-bisectors of the triangle A′B′C ′

are diameters of the absolute circle m. The h-reflection and the Euclidean reflection in the
angle bisectors are identical. Accordingly, the three h-isogonal lines of the cevians through
the point P ′ are concurrent and the h-isogonal conjugate P ′∗∗ is well-defined. Applying the
above-mentioned h-reflection once more we get the h-isogonal conjugate P ∗ to the original
point P . The previous considerations show that the relation between h-isogonal points is
associated with some involutoric quadratic Cremona transformation with fundamental points
A, B, and C. As the absolute circle m is a conic not incident with the points A, B, and C, the
image of m is a curve of order 4 and a hyperbolic point will not necessarily be mapped onto a
hyperbolic point. Thus, it will only be reasonable to speak of an h-isogonal transformation if
the range of the map is extended to the underlying projective plane. Under such assumptions
the transformation is well-defined for all points which are not incident with one of the triangle
edges.
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Figure 2: Applying the h-reflection in s provides: The h-isogonal transformation with its fun-
damental points A,B,C is conjugate to the Euclidean isogonal transformation with A′, B′, C ′

as fundamental points.

4. First Kiepert conic in hyperbolic geometry

We get the analogue to the Kiepert hyperbola of an arbitrary triangle ABC in the hyperbolic
plane in much the same way as in the Euclidean plane by consistently interpreting each step in
hyperbolic geometry and hyperbolic metrics. If ABC is an arbitrary hyperbolic triangle and
if A′BC, AB′C, and ABC ′ are h-isosceles triangles with base angle ρ attached externally (or
internally) to the edges AB, BC, CA, respectively, the points A′B′C ′ form another triangle
called hyperbolic Kiepert triangle to ABC. We prove the following

Theorem 1. The triangle ABC and each hyperbolic Kiepert triangle A′B′C ′ are perspective
from some centre K(ρ): AA′, BB′, and CC ′ have one point K(ρ) in common. If the base
angle ρ varies between −π/2 and π/2 the point K(ρ) remains on a conic k called the first
Kiepert conic in the hyperbolic plane (see Fig. 3). The conic k is distinguished as the conic
through the vertices A, B, C, the hyperbolic centroid G and the hyperbolic orthocentre H of
the triangle ABC.

Proof. Let A′BC, AB′C be h-isosceles triangles with base angle ρ = ∠
hA′BC = ∠

hCAB′.
So, lines BA′ and AB′ of the pencils centred at B and A are linked projectively and the
vertices A′ and B′ are projectively related elements of the point ranges on the h-perpendicular
bisectors sA′ of BC and sB′ of CA. The two lines AA′ and BB′ are pairs of a projective
mapping between the pencils of lines centred at A and B. These two pencils generate a conic
kAB = kAB(K

∗) consisting of all intersection points AA′∩BB′. This conic kAB contains A and
B. The h-centroid G(ρ = 0), the h-orthocentre H (ρ = π/2), and the third vertex C (ρ = −γ)
of the triangle ABC are points on the conic kAB. Hence, the conic kAB is determined by the
five points A, B, C, G, and H .
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Figure 3: In the hyperbolic plane each Kiepert triangle A′B′C ′ is perspective to the given
triangle ABC from a centre K. All these centres K constitute the first Kiepert conic k. k
contains the h-centre of gravity G, the h-orthocentre H , and the vertices A,B,C

By cyclic permutation of A,B,C we get another conic kBC = kBC(K
∗∗) consisting of all

intersection points BB′ ∩CC ′. Again, kBC contains the five points B, C, A, G, and H which
is why the conics kAB(K

∗) and kBC(K
∗∗) coincide. We denote kAB(K

∗) = kBC(K
∗∗) =: k(K)

which we name the first Kiepert conic. As AA′, BB′, and CC ′ are concurrent, any pair of
triangles ABC and A′B′C ′ is perspective from a point K on the first Kiepert conic k.

In Euclidean geometry the Kiepert triangle with base angle ρ = π/2 degenerates into the
three points at infinity on the h-perpendicular bisectors of ABC. In the hyperbolic plane the
Kiepert triangle A′B′C ′ with base angle ρ = π/2 is the polar triangle of the triangle ABC
with respect to the absolute conic m. But in both cases — Euclidean and hyperbolic —
the intersection point of the lines AA′, BB′, and CC ′ is the orthocentre H of the triangle
ABC and H is a point on the Kiepert hyperbola and on the first Kiepert conic. In Euclidean
geometry the orthocentre H and the circumcentre O of a triangle are a pair of isogonal points.
This is not true in the hyperbolic plane (see Fig. 3). Nonetheless, we can prove

Theorem 2. Let ABC be a triangle, F1, D1, E1 the midpoints of the edges AB,BC,CA and
m = F1D1, n = D1E1, l = E1F1 their connecting lines. The polar1 triangle A′B′C ′ to the
trilateral lmn is a Kiepert triangle to ABC. These two triangles are perspective from the
point O∗ which is the h-isogonal point to the h-circumcentre O of ABC.
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Proof. The following considerations are set in hyperbolic Cayley-Klein geometry. As opposed
to hyperbolic geometry all points of the projective plane — apart from those on the absolute
conic m — are points of the model. In this geometry each edge of a triangle ABC determines
two h-midpoints. The three pairs of h-midpoints of a triangle constitute a complete quadri-
lateral consisting of the three pairs of points (F1, F−1), (D1, D−1), (E1, E−1), and four lines
m,n, l, and o with collinear triples (F1, D1, E−1), (D1, E1, F−1), (E1, F1, D−1), (D−1, E−1, F−1)
([8, pp. 434]). F1, D1, E1 are interior points of m, i.e., the uniquely determined h-midpoints in
the hyperbolic plane — see Fig. 4. Applying the polarity we obtain a new configuration. The
six h-midpoints are mapped onto the six h-perpendicular bisectors; the four lines are mapped
onto the four h-circumcentres A′, B′, C ′, and O of the triangle. A′, B′, C ′ are ultra-ideal points
in the hyperbolic disk model, but O can either be an ordinary, an ideal or an ultra-ideal point.

m
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Figure 4: The triangles ABC and A′B′C ′ are perspective from O∗ which is h-isogonal
to the h-circumcentre O of ABC.

For the following computation in the projective plane we employ homogeneous coordinates
X = (x1 : x2 : x3)

t; we also use the vector representation X = λ(x1, x2, x3)
t, λ ∈ R. The

points at infinity are given by (x1 : x2 : 0)
t. The absolute circle m with centre (0 : 0 : 1)t has

the equation

−x2

1
− x2

2
+ x2

3
= X t





−1 0 0
0 −1 0
0 0 1



X = X tAX = ΩX = 0. (1)

Interior points of the disk m, i.e., points of the disk model of the hyperbolic plane are char-
acterized by ΩX = −x2

1
− x2

2
+ x2

3
> 0. The h-midpoints of the edges AB, BC, CA are

represented by
Fσ1

=
√
ΩBA+ σ1

√
ΩAB

Dσ2
=

√
ΩCB + σ2

√
ΩBC

Eσ3
=

√
ΩAC + σ3

√
ΩCA

(2)

1Throughout this paper the concept of polarity relates to the absolute conic m of hyperbolic geometry.
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with σi ∈ {1,−1}. The values σi = 1 deliver ordinary points in the hyperbolic disk model.
Moreover, the points Fσ1

, Dσ2
, and Eσ3

are collinear iff σ1σ2σ3 = −1. The equations of the
connecting lines m = F1D1, n = D1E1, l = E1F1 and o = D−1E−1 are

m . . .
√
ΩB |A,C,X|+

√
ΩC |A,B,X|+

√
ΩA |B,C,X| = u11x1 + u12x2 + u13x3 = 0

n . . .
√
ΩC |B,A,X|+

√
ΩA |B,C,X|+

√
ΩB |C,A,X| = u21x1 + u22x2 + u23x3 = 0

l . . .
√
ΩA |C,B,X|+

√
ΩB |C,A,X|+

√
ΩC |A,B,X| = u31x1 + u32x2 + u33x3 = 0

o . . . −
√
ΩB |A,C,X|+

√
ΩC |A,B,X|+

√
ΩA |B,C,X| = u41x1 + u42x2 + u43x3 = 0.

(3)
For the coordinates of the absolute poles to these lines we have

B′ = (−u11 : −u12 : u13)
t

C ′ = (−u21 : −u22 : u23)
t

A′ = (−u31 : −u32 : u33)
t

O = (−u41 : −u42 : u43)
t.

(4)

To compute these points we can put — without loss of generality – A = (0 : 0 : 1)t, B =
(cos β : sin β : b)t and C = (cos γ : sin γ : c)t and we arrive at

B′ = λ





(c−
√
−1 + c2) sin β − (b+

√
−1 + b2) sin γ

−(c−
√
−1 + c2) cosβ + (b+

√
−1 + b2) cos γ

− sin(β − γ)



 λ ∈ R (5)

and

C ′ = λ





(c+
√
−1 + c2) sinβ − (b−

√
−1 + b2) sin γ

−(c+
√
−1 + c2) cos β + (b−

√
−1 + b2) cos γ

− sin(β − γ)



 λ ∈ R. (6)

Properties of polarity w.r.t. a conic deliver that B′ is a point on the h-perpendicular bisector
of AC and C ′ is a point on the h-perpendicular bisector of AB.

To prove the equivalence ρ = ∠
hCAB′ = ∠

hBAC ′ it is sufficient to show that the lines
AB′ and AC ′ are symmetric w.r.t. the hyperbolic angle bisectors wA, wA, i.e., the cross ratio
of the lines AB′, AC ′, wA, wA equals −1. Their equations are

AB′ . . . u12x1 − u11x2 = 0

AC ′ . . . u22x1 − u21x2 = 0

wA . . . −(sin β + b sin γ)x1 + (cos β + cos γ)x2 = 0

w̄A . . . (sin β − b sin γ)x1 − (cos β − cos γ)x2 = 0

(7)

and, as anticipated, their cross ratio is

cr(AB′, AC ′, wA, wA) = −1. (8)

Thus, the triangles ∆1 = AB′C and ∆2 = AC ′B are isosceles with the same base angle ρ.
Cyclic permutation of the vertices in ABC conveys that C ′ and A′ are vertices of triangles

∆2 = BC ′A and ∆3 = BA′C which again are isosceles with base angle ρ = ∠
hABC ′ =

∠
hCBA′. As ∆2 appears in both cases, the first and the third triangle are isosceles with the

same base angle ρ. A′B′C ′ is a Kiepert triangle to ABC, perspective with respect to a centre
K = AA′ ∩ BB′ ∩ CC ′.
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To verify that K = O∗ is the h-isogonal image point to the h-circumcentre O of ABC
we have to replace B′, C ′ by A′, O and repeat the respective calculations. AA′ and AO
are h-symmetric w.r.t. wA, w̄A, i.e., h-isogonal. Cyclic permutation delivers (BB′, BO) and
(CC ′, CO) are again two pairs of h-isononal lines. This delivers K = O∗ and finishes the
proof.

In Euclidean geometry the centre of gravity G of a triangle ABC is isogonal to the
symmedian point G∗. The orthocentre H and the circumcentre O are a further pair of
isogonal points. The Brocard axis r of a triangle ABC is defined as the straight line through
the circumcentre O and the symmedian point G∗. The isogonal image of r is a conic through
the fundamental points A,B,C of the isogonal quadratic transformation and through the
images of O and G∗, i.e., the points O∗ = H and G. This conic is the Kiepert hyperbola.

In hyperbolic geometry the h-Brocard axis r to a triangle ABC is again defined as the
straight line through the h-circumcentre O and the h-symmedian point G∗. As opposed
to the Euclidean case, the h-isogonal image of the h-circumcentre O is different from the
h-orthocentre H .

Thanks to Theorem 2 we can still prove

Theorem 3. Let ABC be an arbitrary triangle in the hyperbolic plane. The h-isogonal image
of the h-Brocard axis r is the first Kiepert conic (Fig. 3).

Proof. The h-isogonal image of the h-Brocard axis r is a conic through the fundamental points
A,B,C of the h-isogonal quadratic transformation and through the h-centre of gravity G as
does the first Kiepert conic k. According to Theorem 2 the h-isogonal point O∗ to the h-
circumcentre O lies on k and, obviously, on the h-isogonal image of r. This image conic and
the first Kiepert conic k coincide as they have five points in common.

5. A theorem on perspective triangles

The following considerations are set in the real projective plane.

Theorem 4. Let k be a conic and ABC an inscribed triangle. a′, b′, c′ be three different
straight lines through a point R, a′ 6∋ A, b′ 6∋ B, c′ 6∋ C. Every point K ∈ k defines a further
triangle A′ = KA∩a′, B′ = KB ∩ b′, C ′ = KC ∩ c′, i.e., K ∈ k determines a triangle A′B′C ′

which is perspective to ABC (see Fig. 5). Then we have

a) The edges AB,BC,CA of ABC and d1 := [(AB ∩ a′), (CB ∩ c′)], d2 := [(BC ∩ b′),
(AC ∩ a′)], d3 := [(CA ∩ c′), (BA ∩ b′)] are tangents to a conic l.

b) To any pair of perspective triangles ABC and A′B′C ′ the corresponding Desargues axis
d(K) is tangent to the conic l.

Proof. Ad a) It is possible to choose some appropriate projective coordinate system in the
real projective plane such that the conic k is described by

k . . . x1x2 − x2

3
= 0. (9)

The vertices of the triangle ABC can be chosen as A = (0: 1 : 0)t, B = (0: 0 : 1)t, C =
(1: 1 : 1)t. Additionally, the equations of the straight lines a′, b′, c′ can be written as

a′ . . . a1x1 + a2x2 + a3x3 = 0

b′ . . . b1x1 + b2x2 + b3x3 = 0 (10)

c′ . . . c1x1 + c2x2 + c3x3 = 0.
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Figure 5: Each Desargues axis d(K) is tangent to the conic l.

The lines a′, b′, c′ are concurrent but different. Hence, the rank of the system of linear equations
is 2 and its coefficient determinant ∆ (10) vanishes, i.e.

∆ = −a3b2c1 + a2b3c1 + a3b1c2 − a1b3c2 − a2b1c3 + a1b2c3 = 0. (11)

The conic l is defined by the tangents AB,BC,CA, and the lines d1 = [AB ∩ a′, BC ∩ c′] and
d2 = [AC ∩ a′, BC ∩ b′]. We compute its equation in terms of dual coordinates u1, u2, u3

q(u1, u2, u3) := B12(u
2

2
+ u1u2) +B13(u

2

3
+ u1u3) +B23u2u3 = 0 (12)

with
B12 = b3[−a3(c1 + c2) + (a1 + a2)c3]
B13 = a2[b3(c1 + c2)− (b1 + b2)c3]
B23 = a3(b1 + b2)(c1 + c2)− (a1 + a3)b3(c1 + c2)− (a2 − a3)(b1 + b2)c3.

(13)

The dual coordinates of d3 are

d3 . . . (b2c1 − b3c2 + b2c3 : b2c2 : b3c2). (14)

Due to (11) the coordinates (14) fulfill the equation (12). This implies: d3 is tangent to l.

Ad b) The conic k can be parameterized as K = K(t0, t1) = (t0t1 : t
2

0
: t2

1
). The Desargues axis

d(t0, t1) to the perspective triangles ABC and A′B′C ′ coincides with the points I = BC∩B′C ′,
II = CA ∩ C ′A′ and III = AB ∩ A′B′. In order to determine the the dual coordinates of
d(t0 : t1) we compute

II(t0 : t1) =





a2(c2t
2

0
+ c1t0t1 + c3t

2

1
)

(∗)
a2(c2t

2

0
+ c1t0t1 + c3t

2

1
)



 (15)



10 S. Mick, J. Lang: On Kiepert Conics in the Hyperbolic Plane

with

(∗) = −a2(c1 + c3)t
2

0
− [a1(c1 + c2 + c3)− a2c1]t0t1 − [a3(c1 + c2 + c3)− a3c3]t

2

1
(16)

and

III(t0 : t1) =





0
−b3(a2t

2

0
+ a1t0t1 + a3t

2

1
)

a2(b2t
2

0
+ b1t0t1 + b3t

2

1
)



 . (17)

The dual coordinates ui = ui(t0 : t1), i = 1, 2, 3, are homogeneous polynomials of degree 4 in
the variables t0 : t1.





u1

u2

u3



 =





(∗∗)
−a2(b2t

2

0
+ b1t0t1 + b3t

2

1
)(c2t

2

0
+ c1t0t1 + c3t

2

1
)

−b3(a2t
2

0
+ a1t0t1 + a3t

2

1
)(c2t

2

0
+ c1t0t1 + c3t

2

1
)



 (18)

with

(∗∗) = −t1(a1t0 + a3t1) {b2(c1 + c2 + c3)t
2

0
+ b1(c1 + c2 + c3)t0t1 − b3(t0 − t1)·

· [c1t1 + c2(t0 + t1)]} − a2 {b2t20(t0 − t1)[c1t0 + c3(t0 + t1)] + b1t0(t0 − t1)t1·
· [c1t0 + c3(t0 + t1)]− b3[c2t

4

0
+ t1(c3t

3

1
+ c1t0(t

2

0
− t0t1 + t2

1
))]} .

(19)

Eq. (18) describes the complete set of Desargues axes {d(K)|K ∈ k}. Substituting the dual
coordinates (18) of all Desargues axes d(K) into the polynomial function q(u1, u2, u3) defined
by (12) we obtain

q(u1(t0, t1), u2(t0, t1), u3(t0, t1)) = q∗(t0, t1) = a2b3(c1 + c2 + c3)
3∆·

·t3
0
(t0 − t1)

5 t2
1
(a2t

2

0
+ a1t0t1 + a3t

2

1
)(b2t

2

0
+ b1t0t1 + b3t

2

1
)(c2t

2

0
+ c1t0t1 + c3t

2

1
).

(20)

As one of the factors of (20) is the determinant ∆ from (11) the polynomial function (20)
vanishes identically. As a consequence, each Desargues axis d(K) belongs to l which finishes
the proof.

As an application of Theorem 4 we can now prove the existence of the second Kiepert
conic in the hyperbolic plane.

6. Second Kiepert conic in hyperbolic geometry

According to Theorem 1 a triangle ABC and each Kiepert triangle A′B′C ′ are perspective
from a centre K(ρ) on the first Kiepert conic k which is circumscribed to the triangle ABC.
The h-perpendicular bisectors sc, sa, sb of the triangle edges AB, BC, and CA are three
straight lines through the h-circumcentre O.

This is why the preconditions of Theorem 4 are fulfilled and the following theorem can
be viewed as a direct consequence of Theorem 4.

Theorem 5. Let ABC be a triangle in the hyperbolic plane and A′B′C ′ any of its Kiepert
triangles. Then the envelope of the axis d(ρ) is a conic l inscribed to the triangle ABC. l is
called the second Kiepert conic in the hyperbolic plane.
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7. Summary and outlook

In this paper we have shown that any triangle in hyperbolic geometry determines a first
and a second Kiepert conic. These two conics are the hyperbolic counterpart to the Kiepert
hyperbola and Kiepert parabola in Euclidean geometry.

It takes a combination of synthetic considerations and analytical methods to find out
propositions in real projective geometry which permit an interesting interpretation in a non-
Euclidean context.

Having gathered this experience we are determined to investigate triangles and their
Kiepert conics in the more general context of regular Cayley-Klein geometries. The more
general viewpoint leads to a quadruple of first Kiepert conics and, consequently, a quadruple
of second Kiepert conics.

In affine Cayley-Klein geometries, however, the results are a good deal different. There are
some investigation for the Euclidean geometry and the isotropic plane revealing phenomenons
which do not have an analogon in regular Cayley-Klein geometries. E.g., Napoleon’s theorem
holds in the Euclidean as well as in the isotropic plane (cp. [7], [9]), pretty much in contrast
to the hyperbolic and elliptic case.
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