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Abstract. This paper aims at giving a self-contained description of the focal
surfaces of the normal congruence of a triangular Bézier patch in terms of the
control points of the patch. The normal congruence of a surface is an Euclidean
concept and it is algebraic, if the original surface is algebraic. To calculate the
parameter representation of the normal congruence of a triangular Bézier patch
we need derivatives and normal vectors of the patch. For calculating the pair of
so called focal points on each generator of the congruence, one has to investigate
the curvature lines of the patch in addition. Thus the results become already of
high algebraic order even for quadratic or cubic patches. Therefore the treatment
is restricted to quadratic and cubic triangular Bézier patches and focal points of
its normal congruence are calculated only for the normals at very special points
of the patch: the corner points and the “midpoint”. Therewith one can deduce
control point systems for ’low’ order approximations of the two patches of focal
surfaces of the normal congruence. Finally the calculations are applied to a nu-
merical example. The paper is a first attempt to deal with the focal surfaces of
a line congruence explicitly and might deliver fundamentals to treat refraction
congruences, which have applications in geometric optics.

Key Words: triangular Bézier patch, normal congruence, curvature lines, focal
points and surfaces.
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1. Introduction

Gaussian curvature and mean curvature of a rectangular or triangular Bézier patch is already
well discussed, see e.g. [2, 12]. Even triangular Bézier patches (TBP) belong to common
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knowledge in CAGD, we here again recall basic facts for TBP as well as for differential
geometric concepts to make the paper self contained. Most of Bézier-type approaches to
describe an arbitrary surface S rely on piecewise defined surface patches over more or less
regular triangulations, because it is always possible to triangulate an object. In fact, there
are well-defined methods in computational geometry for constructing triangulations of a set
of points (or more generally a simplex grid of hypersurfaces in n-spaces). Via smoothness
conditions for the transitions from one patch to adjacent patches follow “inner control points”
and finally, by subdivision one can create any desired refinement of the triangular grid on S,
see [3, 9].

While TBP belongs to affine geometry, the normal congruence of a surface is an Euclidean
concept and it is algebraic, if the original surface is algebraic. To calculate the parameter
representation of the normal congruence of a triangular Bézier patch we need derivatives and
normal vectors of the patch. Calculating the pair of so called focal points on each generator
of the congruence affords another differentiation step. Thus the results become already of
high algebraic order even for quadratic or cubic patches. So one might aim at a description
of the focal surfaces by approximating patches of low order and rather improve the situation
by subdividing the given TBP. Therefore the treatment here is restricted to quadratic and
cubic triangular Bézier patches and the pair of focal points (and planes) of its normals are
calculated only for the normals at very special points of the patch: the corner points and the
“midpoint”. By this one can deduce the control schemes for low order approximations of the
pair of focal surfaces. There remain still many problems to be solved: e.g., detection of focal
curves or how to handle ideal focal points and transition of the focal surfaces through infinity.
Problems like these are reserved to another place.

Let us start with collecting well-known statements for TBP to introduce the symbols
and the calculus we shall use: Univariate Bernstein polynomials are terms of the binomial
expansion of [t+ (1− t)]n. In the two-dimensional case, (generalized) Bernstein polynomials
Bn

ijk are defined by

Bn
ijk(u, v, w) =

n!

i! j! k!
uivjwk, i+ k + j = n,

whereby 0 ≤ u, v, w ≤ 1 and u+ v + w = 1.
(1)

We define Bn
ijk(u, v, w) = 0 if some of the indices in (i, j, k) are negative. Bernstein polyno-

mials satisfy the following recursion:

Bn
ijk(U) = uBn−1

i−1,j,k(U) + vBn−1
i,j−1,k(U) + wBn−1

i,j,k−1(U) (2)

whereby U abbreviates the parameter triplet (u, v, w). The Bernstein polynomials fulfill the
following conditions:

(A)

i+j+k=n
∑

i,j,k≥0

Bn
ijk(U) ≡ 1, u+ v + w = 1.

(B) Bn
ijk(U) ≥ 0 ∀U ∈ ∆; ∆ is a triangle.

A “triangular” Bézier patch (TBP) is defined in terms of such trivariate Bernstein poly-
nomials with an additional linear condition for the parameters (see Eq. (1)) as a set of convex
combinations of control points Pijk:

P (u, v, w) =
∑

i+j+k=n

PijkB
n
ijk(u, v, w), 1 ≤ u, v, w ≥ 0, u+ v + w = 1. (3)
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Such a triangular patch is the result of a mapping of a “parameter triangle” with barycentric
coordinates (u, v, w) into the d-space spanned by Pijk. In case d = 3 the patch (4) belongs to
an algebraic surface of order n.

Triangular patches can be joined smoothly along their common edge, see [2] and [4],
whereby the order r of Gr-continuity depends on the r rows of control points of both patches
along this common edge.

Remark 1. If we apply the local reparametrization:

s = u, t =
v

1− u
=

v

v + w
, i+ j + k = n,

to P (u, v, w), the domain of the triangular patch {(u, v) | 0 ≤ u, v, u+ v ≤ 1} is transformed
into the square [0, 1]× [0, 1], and we have

v = t(1− s), w = (1− t)(1− s).

Hence,

n!

i! j! k!
uivjwk =

n!

i! j! k!
sitj(1− s)j(1− s)k(1− t)k

=
n!

i! j! k!
si(1− s)j+ktj(1− t)k

=
n!

i!j!(n− i− j)!
si(1− s)n−itj(1− t)n−i−j

=
n!

i!(n− i)!
·

(n− i)!

j! (n− i)− j)!
si(1− s)n−itj(1− t)(n−i)−j

= Bn
i (s)B

n−i
j (t).

It is clear that this describes the same patch as a (“rectangular”) tensor product Bézier patch
(TP-BP), but the re-parametrization changed the degree of the patch and it is singular in
one corner.

Remark 2. Given three non-collinear points A, B, C in a plane, any other point P is deter-
mined by its barycentic coordinates (α, β, γ) as the linear combination

P = αA+ βB + γC,

where α + β + γ = 1. Recall, if 0 ≤ α, β, γ ≤ 1, then the point P lies within the triangle
formed by vertices A, B, C. The construction of a triangular patch is based upon deriving
a de Casteljau’s type algorithm with recursion based on triangles instead of quadrangles.
The structure of the control points is defined by a triply indexed set of points Pi,j,k with
i+ j + k = n forming a triangular grid of size n (see Fig. 1).

2. Directional derivatives and normal vectors

Even one knows the tangent plane at each of the corner points of the triangular patch, namely
the plane spanned by the corner and the two adjacent control points, it might be useful
to recall the concept of the so-called “directional derivative” of a patch in general. When
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Figure 1: A cubic triangular patch grid.
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Figure 2: The segment A (“direction”) is mapped onto a curve on the surface.

we discussed derivatives for tensor product (TP-) Bézier patches [10], we considered partial
derivatives. The situation is different for triangular patches; the appropriate derivatives here
are the “directional derivatives”.

In Fig. 2, a geometric interpretation of the notion of the directional derivative shows
that a straight line U(t) = U + tA through a point U in the domain with direction vector
A := U2 − U1 is mapped onto a curve X(U(t)) on the surface X . The tangent vector of this
curve atX(U) is the desired directional derivative. We follow [2] and use “Farin abbreviations”

for index triplets denoting the point Pijk by Pi . We also use the abbreviations e1 = (1, 0, 0),
e2 = (0, 1, 0), e3 = (0, 0, 1) and |i| = i+ j + k, i, j, k ≥ 0.

Then we can give the rth directional derivative of a Bézier triangle in a point P (U) as
follows:

Dr
AP

n(U) =
n!

(n− r)!

∑

|j|=r

P n−r
j (U)Br

j (A). (4)

A dual result is given by

Dr
AP

n(U) =
n!

(n− r)!

∑

|j|=n−r

P r
j (A)B

n−r
j (U). (5)

For r = 1, the terms P 1
j (A) in Eq. (5) have a simple geometric interpretation, since P 1

j (A) =
dPj+e1 + ePj+e2 + fPj+e3, whereby d, e, f are “barycentric coordinates” with respect to the
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triangles Pj+e1, Pj+e2, Pj+e3 and |j| = n−1. The directional derivative of P n is thus a triangular
patch whose coefficients are the images of A on each sub-triangle in the control net (see Fig. 1).

Again, let us set r = 1 in Eq. (4). Then,

DAP
n(U) = n

∑

|j|=1

P n−1
j (U)B1

j (A) = n(dP n−1
e1

+ eP n−1
e2

+ fP n−1
e3

). (6)

Since this is true for all directions A ∈ E2, it follows that P n−1
e1

, P n−1
e2

, P n−1
e3

define the tangent
plane at P n(U), in particular the three vertices P0n0, P0,n−1,1, P1,n−1,0 span the tangent plane at
P0n0 with analogous results for the remaining two corners. Also, we see that the de Casteljau
algorithm produces derivative information as a byproduct of the iteration process.

Now, we can compute the first directional derivative at the corner control points of a
triangular Bézier patch in the direction of the two boundary curves ending at each corner
and then we can compute the normal vectors at these points: The directional derivative with
respect to A1 and A2 along u = 0 is given by

DA1
Xn(0, v, 1− v) = n

∑

j+k=n−1

P0jk(A1)B
n−1
0jk (0, v, 1− v),

DA2
Xn(0, 1− w,w) = n

∑

j+k=n−1

P0jk(A2)B
n−1
0jk (0, 1− w,w),

(7)

and for v = 0 and w = 0 we have similar expressions

DA1
Xn(u, 0, 1− u) = n

∑

i+k=n−1

Pi0k(A1)B
n−1
i0k (u, 0, 1− u),

DA2
Xn(1− w, 0, w) = n

∑

i+k=n−1

Pi0k(A2)B
n−1
i0, (1− w, 0, w),

and

DA1
Xn(u, 1− u, 0) = n

∑

i+j=n−r

Pij0(A1)B
n−1
ij0 (u, 1− u, 0),

DA2
Xn(1− v, v, 0) = n

∑

i+j=n−r

Pij0(A2)B
n−1
ij0 (1− v, v, 0).

Now, we will specialize the point (u, v, w) to a corner point and the vectors Ai passing
through shall belong to the borders of the Bézier patch. (In the following we will restrict the
explicit calculation to the cubic case only.)

The cubic case (n = 3):

Directional derivatives with respect to the vectors A1 and A2 evaluated along u = 0 are

DA1
X3(0, v, 1− v) = 3 {P 1

002(A1)B
2
002(0, v, 1− v) + P 1

020(A1)B
2
020(0, v, 1− v)

+P 1
011(A1)B

2
011(0, v, 1− v)}

= 3 {(d1P102 + e1P012 + f1P003) (1− v)2

+ (d1P120 + e1P030 + f1P021) v
2

+2 (d1P111 + e1P021 + f1P012) v(1− v)}

(8)
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DA2
X3(0, 1− w,w) = 3

{

P 1
0,0,2(A2)B

2
0,0,2(0, 1− w,w) + P 1

0,2,0(A2)B
2
0,2,0(0, 1− w,w)

+P 1
0,1,1(A2)B

2
0,1,1(0, 1− w,w )}

= 3 {(d2P102 + e2P012 + f2P003)w
2

+ (d2P120 + e2P030 + f2P021) (1− w)2

+2 (d2P111 + e2P021 + f2P012)w(1− w)}

(9)

The directional derivatives along v = 0 and along w = are similar expressions.

Specializing the coefficient triplets di, ej , fk in equations (8) and (9) according to the
coordinates of the corner points as well as of the tangent directions and using the forward
difference operator D we receive the directional derivatives at these special Bézier control
points as expected (see Fig. 3):

At P300 : D(1,−1,0)X
3(1, 0, 0) = 3∆ (P300, P210) ,

D(1,0,−1)X
3(1, 0, 0) = 3∆ (P300, P201) .

(10)

At P030 : D(−1,1,0)X
3(0, 1, 0) = 3∆ (P030, P120) ,

D(0,1,−1)X
3(0, 1, 0) = 3∆ (P030, P021) .

(11)

At P003 : D(0,−1,1)X
3(0, 0, 1) = 3∆ (P003, P012) ,

D(−1,0,1)X
3(0, 0, 1) = 3∆ (P003, P102) .

(12)

The normal vectors
−→
N at these points are simply the cross products of each tangent vector

pair.

Figure 3: Directional derivatives: the coefficients of the directional derivative
of a triangular cubic Bézier patch.

3. First and second fundamental form, main curvature directions

Even the calculation of main curvatures of a triangular Bézier patch (TBP) remains algebraic,
it seems to be of no practical use to calculate them in general, as they would be of extremely
high order even when starting with a low order TBP. Therefore we finally will restrict the
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calculations to the corner points of a cubic triangular Bézier patch only. Because of the special
use of indices i, j and the restriction to dimension 3 we use the old-fashioned symbols E, F,G

instead of the more modern gij . Analogously, L,M,N will denote the coefficients of the 2nd

fundamental form.

Starting from the scheme of Bernstein polynomials B(u, v, w)

B(u, v, w) =















w3

3uw2 3vw2

3u2w 6uvw 3v2w
u3 3u2v 3uv2 v3

Re-parametrising the patch in an (u, v)-representation (w = 1−u−v) we receive the schemes
of the first and second partial derivatives as

∂B(u, v, w)

∂u
=















−3w2

3w2 − 6uw −6vw
6uw − 3u2 6vw − 6uw −3v2

3u2 6uv 3v2 0

∂B(u, v, w)

∂v
=















−3w2

−6uw 3w2 − 6vw
−3u2 6uw − 6uv 6vw − 3v2

0 3u2 6uv 3v2

∂2B(u, v, w)

∂u2
=















6w
6u− 12w 6v

6w − 12u −12v 0
6u 6v 0 0

∂2B(u, v, w)

∂v2
=















6w
6u 6v − 12w

0 −12u 6w − 12v
0 0 6u 6v

∂2B(u, v, w)

∂u∂v
=















6w
6u− 6w 6v − 6w

−6u 6w − 6u− 6v −6v
0 6u 6v 0

By the (u, v)-representation (w = 1−u−v) the triangular patch is treated as a tensor product
Bézier patch and we have to exclude one corner, where the new parameter net is singular.
By additionally using the (v, w)-representation (u = 1−w− v) and the (w, u)-representation
(v = 1 − u − w), we cover the whole patch and keep some cyclic symmetry in our formulas.
We are now in a position to calculate the coefficients of the 1st and 2nd fundamental forms,
at first for the (u, v)-representation:
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At P300:





E

F

G



 =





|3(P300 − P201)|
2

9(P300 − P201) · (P210 − P201)

|3(P210 − P201)|
2



 , ~N = 9(P300 − P201)× (P210 − P201),





L

M

N



 =











6 ~N

‖ ~N‖
((P300 − P201) + (P102 − P201))

6 ~N

‖ ~N‖
((P102 − P111) + (P210 − P201))

6 ~N

‖ ~N‖
((P102 − P111) + (P120 − P111))











.

At P030:





E

F

G



 =





|3(P120 − P021)|
2

9(P120 − P021) · (P030 − P021)

|3(P030 − P021)|
2



 , ~N = 9(P120 − P021)× (P030 − P021),





L

M

N



 =











6 ~N

‖ ~N‖
((P012 − P111) + (P210 − P111))

6 ~N

‖ ~N‖
((P012 − P021) + (P030 − P021))

6 ~N

‖ ~N‖
((P012 − P111) + (P120 − P021))











.

At P003:





E

F

G



 =





|3(P102 − P003)|
2

9(P102 − P003) · (P012 − P003)

|3(P012 − P003)|
2



 , ~N = 9(P102 − P003)× (P012 − P003),





L

M

N



 =











6 ~N

‖ ~N‖
((P003 − P102) + (P201 − P102))

6 ~N

‖ ~N‖
((P003 − P012) + (P111 − P102))

6 ~N

‖ ~N‖
((P003 − P012) + (P021 − P012))











.

Analogue results would follow for the other two representations, the (u, w)-resp. the (v, w)-
representation.

Now we calculate the main curvatures κ1, κ2 and the orthogonal pairs of curvature direc-
tions λ1, λ2 at these corner points in the same way as in [10]:

λ1, λ2 =

−

∣

∣

∣

∣

E G

LN

∣

∣

∣

∣

±

√

∣

∣

∣

∣

EG

LN

∣

∣

∣

∣

2

− 4

∣

∣

∣

∣

F G

M N

∣

∣

∣

∣

.

∣

∣

∣

∣

E F

LM

∣

∣

∣

∣

2(FN −MG)

κi(λi) =
L+ 2Mλi +Nλ2

i

E + 2Fλi +Gλ2
i

, i = 1, 2.

Finally we calculate the focal points F1, F2 of each corner normal and the normal of at P111

of the normal congruence by

~Fi = P (u, v, w) +
1

κi

·
~N

‖ ~N‖
, i = 1, 2.



M. Saad, G. Weiss: Curvature Lines and Normal Congruences of Triangular Bézier Patches 37

Therewith, for each of the patches of the two focal surfaces Φ1,Φ2 belonging to the TBP
S we again get a corner triangle and an additional point and in each of these four points
the tangent plane of Φi is given, too. Even so the interpolation of these data by a TBP of
low degree might deviate extremely from the true focal surface Φi ! To avoid large distance
between the focal points of adjacent congruence rays one had to subdivide the given TBP
S and use the presented calculation for the partial triangles of S. For parabolic points of S
one of the focal points Fi is a point at infinity and the presented apparatus cannot directly
be used for providing correct data to interpolate both focal surfaces of S. For regions of S
with points “close to parabolic points”, i.e. one of the κi-values is almost zero the calculation
should restrict to one focal patch only; subdivision of S should consider such a region for its
own.

4. Computational example

The cubic triangular Bézier patch in Fig. 4 is created by considering all values of the param-
eters u, v, w with 0 ≤ u, v, w ≤ 1 and u + v + w = 1. Let the family of points Pi,j,k where
i+j+k ≤ 3 which are called a (triangular) control net, or Bézier net denoted by the following
grid of 10 points and we will consider the standard frame ((1, 0, 0), (0, 1, 0), (0, 0, 1)):

(3, 6, 0)

(2, 4, 2) (4, 4, 2)

(1, 2, 2) (3, 2, 3) (5, 2, 2)

(0, 0, 0) (2, 0, 2) (4, 0, 2) (6, 0, 0)

003

102 012

201 111 021

300 210 120 030

P

P P

P P P

P P P P

We can compute the normal vectors and focal points at three corner control points and the
“midpoint” on the patch:

At P300:




E

F

G



 =





81
27
45



, ~N = [−36, 18, 36] ,





L

M

N



 =





−8
4
−8



,

(

λ1

λ2

)

=

(

−7.6056
−0.3944

)

.

At P030:




E

F

G



 =





45
27
81



, ~N = [−36, −18, 36] ,





L

M

N



 =





−85
4
−8



,

(

λ1

λ2

)

=

(

−0.13141
−2.53525

)

.
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At P003:





E

F

G



 =





81
63
81



, ~N = [0, 36, 36] ,





L

M

N



 =





−8.4852
−4.2426
−8.4852



,

(

λ1

λ2

)

=

(

1
−1

)

.

At P111:

P111 =





3
2
2



,





E

F

G



 =





45
27
45



, ~N = [0, 0, 36] ,





L

M

N



 =





−126
−62
−12



,

(

λ1

λ2

)

=

(

−1
1

)

.

Hence we have the quantities λ1, λ2 which define directions in the uv-plane and the principal
curvature directions, through the points P300, P030, P003 and P111, which are defined as those
directions and the normal curvature κ(λ) obtains extreme values for directions λ1 and λ2.
Finally we get the two focal points at each point as follow (see Fig. 4):

Fi(u, v, w) = P (u, v, w) +
1

κi(λi)
,

~N

‖ ~N‖
, i = 1, 2.

At P300:

(

κ1(λ1)
κ2(λ2)

)

=

(

−0.18032
−0.09129

)

, F1 = [3.6972, 1.8485, −3.6972] , F2 = [7.3020, 3.6510, −7.3020] .

At P030:

(

κ1(λ1)
κ2(λ2)

)

=

(

−0.18032
−0.09129

)

, F1 = [2.3029, 1.8485,−3.6971] , F2 = [−1.3027, 3.6513,−7.3027] .

At P003:
(

κ1(λ1)
κ2(λ2)

)

=

(

−0.08839
−0.23570

)

, F1 = [3, −2, −8] , F2 = [3, 3, −3] .

At P111:
(

κ1(λ1)
κ2(λ2)

)

=

(

−0.3325005
−1.8194333

)

, F1 = [3, 2, −1] , F2 = [3, 2, −2] .
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Figure 4: A cubic triangular Bézier patch with normals and their focal points
at the corner control points and the “midpoint” P111 of the patch.
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