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Abstract. In this paper we treat convex hypersurfaces in the Euclidean space
R

n+1 which are relatively normalized. The relative normalizations are either in-
dependent of geometric magnitudes of the considered convex hypersurface Φ or
characterized by the fact that the corresponding support functions depend on ele-
mentary symmetric functions of the (Euclidean) principal curvatures of Φ. In the
first case two characterizations of Euclidean hyperspheres are given via inequali-
ties. In the second case it is proved that if the Pick-invariant vanishes identically,
then Euclidean hyperspheres are obtained too.
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1. Preliminaries

In the Euclidean space Rn+1 let Φ = (M, x̄) be a Cr-hypersurface defined by an n-dimensional,
oriented, connected Cr-manifold M (r ≥ 3) and by a Cr-immersion x̄ : M → R

n+1. In the
sequel, we suppose that the principal curvatures of Φ are positive (convex hypersurface). A
Cs-mapping ȳ : M → R

n+1 (r > s ≥ 1) is called a Cs-relative normalization1 if

ȳ(a) /∈ TPΦ,
∂ȳ

∂ui
(a) ∈ TPΦ (i = 1, 2, . . . , n), P = x̄(a) (1)

at every point P ∈ Φ, where TPΦ is the tangent vector space of Φ at P and u1, u2, . . . , un are
local coordinates. The covector X̄ of the tangent vector space is defined by

〈X̄,
∂x̄

∂ui
〉 = 0 (i = 1, 2, . . . , n) and 〈X̄, ȳ〉 = 1, (2)

1For the basic concepts of relative Differential Geometry see [3].
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where 〈 , 〉 denotes the standard scalar product in R
n+1. Using X̄ , the (definite) relative

metric G is introduced by

Gij = 〈X̄,
∂2x̄

∂ui∂uj
〉 (3)

and without loss of generality let it be positive definite. From now on we shall use Gij as
the fundamental tensor for “raising and lowering the indices” in the sense of classical tensor
notation. Let ξ̄ : M → R

n+1 be the Euclidean normalization of Φ. The support function of
the relative normalization ȳ is defined by

q := 〈ξ̄, ȳ〉 : M → R, q ∈ Cs(M). (4)

By virtue of (1) we have q 6= 0 (without loss of generality let q > 0); moreover, because of (2)
holds

X̄ = q−1ξ̄. (5)

From (3) and (5) we obtain
Gij = q−1hij , (6)

where hij are the components of the second fundamental form of Φ. We mention that, when
the support function q is given, the relative normalization ȳ is uniquely determined and
possesses the following parametrization (see [2, p. 197])

ȳ = −h(ij) ∂q

∂ui

∂x̄

∂uj
+ qξ̄, (7)

where h(ij) are the components of the inverse tensor of hij.
Let G∇if denote the covariant derivative of a differentiable function f : M → R with

respect to G. The (symmetric) Darboux-tensor is defined by

Ajkl := 〈X̄, G∇l
G∇k

∂x̄

∂uj
〉, (8)

and the Pick-invariant by

J :=
1

n (n− 1)
AjklA

jkl, (9)

where J is non-negative because G is positive definite.
The relative curvature theory is based on the symmetric tensor

Bij = 〈∂X̄
∂ui

,
∂ȳ

∂uj
〉. (10)

Especially, the mean relative curvature H is defined as follows

H =
1

n
tr
(

Bj
i

)

(with Bj
i = BikG

kj). (11)

We denote by KI the Gaussian curvature, HI the mean curvature of Φ, SII the scalar curva-
ture of the second fundamental form II of Φ and S the scalar curvature of relative metric.
Furthermore, let ∇II resp. △II denote the first resp. second Beltrami differential operator
with respect to the fundamental form II. According to [4] the following formula holds true

SII = HI −
∇II (lnKI)

4n (n− 1)
+Q, (12)
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where Q is some non-negative function. For the relative magnitudes S,H and J the following
metric formulae are valid (see [2]):

S = qSII +
1

n
q△II (ln q) +

2− n

4n
q∇II (ln q) , (13)

H = qHI +
1

n

[

△II q −∇II

(

q, lnK
1/2
I

)]

, (14)

J =
3 (n + 2)

4n (n− 1)
q∇II

(

ln q, ln q − lnK
2/(n+2)
I

)

+ qQ. (15)

2. Arbitrary relative normalizations

Let the considered hypersurface in the previous section be closed. In [6] the following integral
formulae were proved:

(A)

∫

M

qν−1 (S − qSII) doII =
2− n− 4ν

4n

∫

M

qν∇II (ln q) doII ,

(B)

∫

M

qν−1 (H − qHI) doI =
1− ν

n

∫

M

qν∇II (ln q) doI ,

where doI resp. doII is the element of area with respect to the first resp. second fundamental
form of Φ and ν ∈ R. From these formulae one obtains immediately the result [6]:

If one of the functions S−qSII , H−qHI does not change sign on M , then we have q = const.,
i.e., the relative normalization ȳ is constantly proportional to the Euclidean normalization (see
also [2]).

Besides the formulae (A) and (B), one can prove that the following formulae also hold
true:

(C)

∫

M

qν−1

(

S − qSII +
n− 1

3
J

)

doI =
1− ν

n

∫

M

qν∇II (ln q) doI +
n− 1

3

∫

M

qνQdoI ,

(D)

∫

M

qν−1

(

H − qHI −
n− 1

3
J

)

doII =
2− n− 4ν

4n

∫

M

qν∇II (ln q) doII

−
n− 1

3

∫

M

qνQdoII .

To prove this, we firstly verify that the above mentioned curvatures of Φ and the Pick-invariant
are related as follows:

S − qSII = H − qHI −
n− 1

3
J +

n− 1

3
qQ. (16)

After multiplication of (16) by the function qν−1, we integrate over all M and taking into
account (A) and (B), we obtain the integral formulae (C) and (D). Applying these formulae
we can prove the following
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Proposition 1. Let Φ = (M, x̄) be a relatively normalized closed convex C3-hypersurface in
the space R

n+1 with the support function of the relative normalization q ∈ C2, for which one
of the following conditions on M is valid:

(a) S − qSII ≤ −
n− 1

3
J,

(b) H − qHI ≥
n− 1

3
J.

Then q = const. and Φ is an Euclidean hypersphere.

Proof. Let the condition (a) and ν < 1 hold. From the integral formula (C) we deduce
q = const. and Q = 0. The latter relation means that the covariant derivative of the second
fundamental form with respect to the first fundamental form of Φ vanishes (see [4, p. 232]).
This fact characterizes, according to [5, p. 142], the Euclidean hyperspheres. We prove anal-
ogously the assertion of the Proposition, if the condition (b) holds. In this case we apply the
integral formula (D).

3. Special relative normalizations

In this section we consider special relative normalizations of the hypersurface Φ = (M, x̄) and
we suppose that the Pick-invariant vanishes. A result in this direction has been proved by F.

Manhart [2, p. 200] which asserts:

A (not necessarily closed) convex C3-hypersurface Φ ⊂ R
n+1, which is relatively normalized

by (α)ȳ with the corresponding support function (α)q = Kα
I (α 6= 1/(n + 2)) and whose Pick-

invariant vanishes identically, lies on an Euclidean hypersphere.

This result is generalized by the following

Proposition 2. Let Φ = (M, x̄) be a (not necessarily closed) convex C3-hypersurface in the
space R

n+1 and f : M → R
+ be a C2-function. Furthermore, let Φ be relatively normalized

by ȳ with the corresponding support function q = f(KI).

If ȳ is not constantly proportional to the equiaffine normalization and if the Pick-invariant
vanishes identically on M , then Φ lies on an Euclidean hypersphere.

Proof. It can be proved by the same arguments as those used in the above mentioned Propo-
sition of F. Manhart. Setting q = K

1/(n+2)
I in (15) we find the affine Pick-invariant

JAFF =
1

4n(n+ 2)
K

1/(n+2)
I ∇II(lnKI) +K

1/(n+2)
I (SII −HI) . (17)

On account of (12) and (17) for q = f(KI) we obtain from (15)

J =
3f(KI)

4n(n− 1)(n+ 2)

[

(n+ 2)KI
f ′(KI)

f(KI)
− 1

]2

∇II(lnKI) (18)

+ f(KI)K
−1/(n+2)
I JAFF.

Let J = 0 on M . Due to the fact that each term on the right-hand side of (18) is non-
negative, it follows that both terms vanish. However, the vanishing of JAFF characterizes
hyperquadrics in case of locally strongly convex hypersurfaces. By assumption q 6= cK

1/(n+2)
I

(c = const. > 0), thus we obtain KI = const. But the local constancy of the Gaussian
curvature of a hyperquadric means that it lies on an Euclidean hypersphere.
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From (15) one obtains

J = 0 ⇐⇒ 3q(n+ 2)∇II(ln q)− 6∇II (q, lnKI) + 4n(n− 1)qQ = 0. (19)

Let now q = g(HI), where g : M → R
+ is a C2-function. Then (19) leads to

3(n+ 2)g(HI)∇II (ln g(HI)) + 4n(n− 1)g(HI)Q = 6g′(HI)
∇II (HI , KI)

KI
. (20)

Let g′ (HI) ≤ 0. If g′ (HI)|a0 < 0 at a point a0 ∈ M , then it follows from (20)

∇II (HI , KI)

KI

∣

∣

a0
≤ 0. (21)

Let g′ (HI)|a1 = 0 at a point a1 ∈ M . We prove that the above inequality is also valid at this
point. Let, contrary to (21),

∇II (HI , KI)

KI

∣

∣

a1
> 0. (22)

Due to continuity reasons, there exists a neighbourhood M1 ⊂ M of the point a1, so that

∇II (HI , KI)

KI

∣

∣

a > 0 ∀ a ∈ M1. (23)

Then, the right-hand side of (20) is non-positive for each a ∈ M1 and both terms on the
left-hand side of (20) must vanish. Consequently, we have g(HI)|a = const. and Q(a) = 0
∀ a ∈ M1. This means that the hypersurface Φ1 := (M1, x̄) lies on an Euclidean hypersphere.
But in this case we would have

∇II (HI , KI)

KI

= 0 ∀ a ∈ M1, (24)

i.e., a contradiction to assumption (22). From the above process it follows that the inequality
∇II (HI ,KI)

KI

≤ 0 is satisfied for all points of M and hence

∫

M

∇II (HI , KI)

KI
doI ≤ 0. (25)

Let now the convex hypersurface Φ be closed. Besides (25) and according to [1, p. 52], the
following inequality holds true

∫

M

∇II (HI , KI)

KI
doI ≥ 0. (26)

The equality holds iff Φ is an Euclidean hypersphere. From (25) and (26) we deduce:

Proposition 3. Let Φ = (M, x̄) be a closed convex C3-hypersurface in the space R
n+1 and

g : M → R
+ be a C2-function with g′ (HI) ≤ 0. Furthermore, let Φ be relatively normalized

with the support function of the relative normalization q = g(HI).

If the Pick-invariant vanishes identically on M , then Φ is an Euclidean hypersphere.
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Let Hn−1 denote the (n− 1)-th mean curvature of the convex hypersurface Φ, defined by

Hn−1 =
(

n

n− 1

)−1 ∑

1≤i1≤i2≤···≤in−1≤n

n−1
∏

j=1

kij , (27)

where k1, k2, . . . , kn are the (Euclidean) principal curvatures of Φ. Let q = h
(Hn−1

KI

)

, where

h : M → R
+ is a C2-function with h′

(Hn−1

KI

)

≥ 0. We suppose that the corresponding

Pick-invariant vanishes on M . Following similar arguments, we obtain the inequality

∫

M

∇II

(

Hn−1

KI

, KI

)

doI ≥ 0. (28)

However, according to [1, p. 52], the following inequality also holds

∫

M

∇II

(

Hn−1

KI
, KI

)

doI ≤ 0 (29)

and the equality is valid iff Φ is an Euclidean hypersphere. From these inequalities we con-
clude:

Proposition 4. Let Φ = (M, x̄) be a closed convex C3-hypersurface in the space R
n+1 and

h : M → R
+ be a C2-function with h′

(Hn−1

KI

)

≥ 0. Furthermore, let Φ be relatively normalized

with the support function q = h
(Hn−1

KI

)

of the relative normalization.

If the Pick-invariant vanishes identically on M , then Φ is an Euclidean hypersphere.
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