Journal for Geometry and Graphics
Volume 16 (2012), No. 1, 41-46.

Characterizations of Euclidean Hyperspheres
Under Relatively Normalized
Convex Hypersurfaces

Georg Stamou

Department of Mathematics, Aristotle University of Thessaloniki
54124 Thessaloniki, Greece
email: stamoug@math.auth.gr

Abstract. In this paper we treat convex hypersurfaces in the Euclidean space
R™*! which are relatively normalized. The relative normalizations are either in-
dependent of geometric magnitudes of the considered convex hypersurface ® or
characterized by the fact that the corresponding support functions depend on ele-
mentary symmetric functions of the (Euclidean) principal curvatures of ®. In the
first case two characterizations of Euclidean hyperspheres are given via inequali-
ties. In the second case it is proved that if the Pick-invariant vanishes identically,
then Euclidean hyperspheres are obtained too.
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1. Preliminaries

In the Euclidean space R"! let ® = (M, Z) be a C"-hypersurface defined by an n-dimensional,
oriented, connected C"-manifold M (r > 3) and by a C"-immersion z: M — R"". In the
sequel, we suppose that the principal curvatures of ® are positive (convex hypersurface). A
C*-mapping §: M — R™ (r > s > 1) is called a C*-relative normalization® if

o
§(a) ¢ Tp®, S%(a) € Tp® (i=12,....n), P=2(a) (1)
at every point P € ®, where Tp® is the tangent vector space of ® at P and ub u?, ... u™ are
local coordinates. The covector X of the tangent vector space is defined by
07 _
<X,8—$.>:0 (i=1,2,...,n) and (X, =1, 2)
ul

For the basic concepts of relative Differential Geometry see [3].
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where (, ) denotes the standard scalar product in R"*!. Using X, the (definite) relative
metric G is introduced by
o 0z
Gy = (X ) (3)

" OutOu?
and without loss of generality let it be positive definite. From now on we shall use Gj; as
the fundamental tensor for “raising and lowering the indices” in the sense of classical tensor
notation. Let £: M — R™! be the Euclidean normalization of ®. The support function of
the relative normalization g is defined by

qg=&9): M =R, qecC5(M). (4)

By virtue of (1) we have ¢ # 0 (without loss of generality let ¢ > 0); moreover, because of (2)
holds

X=q'¢ (5)
From (3) and (5) we obtain
Gij = q " hij, (6)
where h;; are the components of the second fundamental form of ®. We mention that, when
the support function ¢ is given, the relative normalization 7 is uniquely determined and
possesses the following parametrization (see [2, p. 197])
. 0q 0% _
y = —h(”)—.—. ‘l— 5 7
J 5 9 T4 (7)
where h() are the components of the inverse tensor of hij.
Let “V,f denote the covariant derivative of a differentiable function f: M — R with
respect to G. The (symmetric) Darbouz-tensor is defined by
0T

Ajkl = <X, le GVk%% (8)

and the Pick-invariant by
1 )
Ji=—— A A 9
nin—1)" M ()
where J is non-negative because G is positive definite.
The relative curvature theory is based on the symmetric tensor

0X 0y
/ <8u2 8uﬂ> (10)
Especially, the mean relative curvature H is defined as follows
H = %tr (BI) (with B} = ByGh). (11)

We denote by K; the Gaussian curvature, H; the mean curvature of ®, S;; the scalar curva-
ture of the second fundamental form I7 of ® and S the scalar curvature of relative metric.
Furthermore, let V;; resp. A;; denote the first resp. second Beltrami differential operator
with respect to the fundamental form /7. According to [4] the following formula holds true

V[[ (ln K[)

Sir=Hi = dn (n —1)

+Q, (12)
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where @ is some non-negative function. For the relative magnitudes S, H and .J the following
metric formulae are valid (see [2]):

1 2—n
S = ¢Sir+—qlg; (110 q) +—qVis (110 Q) ) (13)
n 4n
B 1 1/2
H = qH[+E|:A[[q—Vj[ (q, ll’lKI )}, (14)
3(n+2) 2/(n+2)
J mqvn (hlfb Ing—InK; ) + ¢@Q. (15)

2. Arbitrary relative normalizations

Let the considered hypersurface in the previous section be closed. In [6] the following integral
formulae were proved:

2—n—4v
(A) / ¢"' (S —qSi)doy; = 47/ q"Vir (Ingq) doyy,
M n M
v—1 1—v v
(B) ¢" (H —qH;)do; = ¢’V (Ing)doy,
M n M

where doy resp. doyy is the element of area with respect to the first resp. second fundamental
form of ® and v € R. From these formulae one obtains immediately the result [6]:

If one of the functions S—qSy;, H—qHy does not change sign on M, then we have ¢ = const.,
i.e., the relative normalization y is constantly proportional to the Euclidean normalization (see

also [2]).

Besides the formulae (A) and (B), one can prove that the following formulae also hold
true:

n—1 1—v n—1
(C) / g <5 —qSir + —J) dor / ¢"Vir(Ing)dor + —/ q"Q doy,
M 3 M 3 Ju

n

n—1 2—n—4v
(D) / q”_1 (H—qHI— 3 J) do;; = 47/ q¢"V i (Inq) doy;
M n M

n—1

- 3 /quQdOH-

To prove this, we firstly verify that the above mentioned curvatures of ® and the Pick-invariant
are related as follows:

n—1 n—1
S—qSH:H—qHI— 3 J+ 3 qQ. (16)

After multiplication of (16) by the function ¢”~!, we integrate over all M and taking into

account (A) and (B), we obtain the integral formulae (C) and (D). Applying these formulae
we can prove the following
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Proposition 1. Let ® = (M, Z) be a relatively normalized closed convex C3-hypersurface in
the space R™' with the support function of the relative normalization ¢ € C?, for which one
of the following conditions on M 1is valid:

n—1

(a) S—qSr < —

J,

Then q = const. and ® is an Fuclidean hypersphere.

Proof. Let the condition (a) and v < 1 hold. From the integral formula (C) we deduce
q = const. and () = 0. The latter relation means that the covariant derivative of the second
fundamental form with respect to the first fundamental form of ® vanishes (see [4, p. 232]).
This fact characterizes, according to [5, p. 142], the Euclidean hyperspheres. We prove anal-
ogously the assertion of the Proposition, if the condition (b) holds. In this case we apply the
integral formula (D). O

3. Special relative normalizations

In this section we consider special relative normalizations of the hypersurface ® = (M, z) and
we suppose that the Pick-invariant vanishes. A result in this direction has been proved by F.
MANHART [2, p. 200] which asserts:

A (not necessarily closed) convexr C3-hypersurface ® C R™™L which is relatively normalized
by (Vg with the corresponding support function (¥q = K¢ (a # 1/(n +2)) and whose Pick-
invariant vanishes identically, lies on an Euclidean hypersphere.

This result is generalized by the following

Proposition 2. Let ® = (M, Z) be a (not necessarily closed) convex C®-hypersurface in the
space R" and f: M — R be a C?-function. Furthermore, let ® be relatively normalized
by y with the corresponding support function q = f(Kj).

If y is not constantly proportional to the equiaffine normalization and if the Pick-invariant
vanishes identically on M, then ® lies on an Fuclidean hypersphere.

Proof. 1t can be proved by the same arguments as those used in the above mentioned Propo-

sition of F. MANHART. Setting ¢ = KII/ +2) i (15) we find the affine Pick-invariant
1 1/(n42) 1/(n+2)
=—K In K K — Hyp). 1
JAFF In(n 2y M Vii(nKy)+ K; (S1r I) (17)
On account of (12) and (17) for ¢ = f(K) we obtain from (15)
3f(Ki) KD 7
= 2Q)Kj——— —1 In K 18
i -Dm+2) | TR Ry Vir(ln &) (18)

+ f(KI)KI_l/(nH) JAFF-

Let J = 0 on M. Due to the fact that each term on the right-hand side of (18) is non-

negative, it follows that both terms vanish. However, the vanishing of Japp characterizes
. . 1/(n+2)

hyperquadrics in case of locally strongly convex hypersurfaces. By assumption g # cK;

(¢ = const. > 0), thus we obtain K; = const. But the local constancy of the Gaussian

curvature of a hyperquadric means that it lies on an Euclidean hypersphere. O
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From (15) one obtains
J=0 < 3q(n+2)V(Ing) — 6V (q,In K1) +4n(n —1)g@Q = 0. (19)
Let now q = g(Hj), where g: M — R is a C*-function. Then (19) leads to

Vi (Hy, Kr)

3(n+2)g(H)Vir (Ing(Hr)) +4n(n — 1)g(H1)Q = 64'(Hy) e : (20)
Let ¢’ (Hy) < 0. If ¢’ (Hy)jq, < 0 at a point ag € M, then it follows from (20)
Vi (Hr, Kr)
T\QO <0. (21)

Let ¢’ (Hp)ja, = 0 at a point a; € M. We prove that the above inequality is also valid at this
point. Let, contrary to (21),

VII (HI>KI)
T}al > 0. (22)

Due to continuity reasons, there exists a neighbourhood M; C M of the point a;, so that

Vi (Hr, Kr)

% >0 Vae M. (23)
I

Then, the right-hand side of (20) is non-positive for each a € M; and both terms on the
left-hand side of (20) must vanish. Consequently, we have g(Hy)|, = const. and Q(a) = 0
Va € M. This means that the hypersurface ®; := (M;, Z) lies on an Euclidean hypersphere.
But in this case we would have

Vi (Hr, Kr)

KI =0 VaEMl, (24)

i.e., a contradiction to assumption (22). From the above process it follows that the inequality
Vi (Hr, Kr)

e < 0 is satisfied for all points of M and hence
I

/ wdol <0. (25)
M K

Let now the convex hypersurface ® be closed. Besides (25) and according to [1, p. 52], the
following inequality holds true

H;, K
/ Mdojzo‘ (26)
M K

The equality holds iff ® is an Euclidean hypersphere. From (25) and (26) we deduce:

Proposition 3. Let ® = (M, Z) be a closed convexr C3-hypersurface in the space R"™ and
g: M — RT be a C*-function with ¢’ (H;) < 0. Furthermore, let ® be relatively normalized
with the support function of the relative normalization g = g(Hy).

If the Pick-invariant vanishes identically on M, then ® is an Euclidean hypersphere.
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Let H,_; denote the (n — 1)-th mean curvature of the convex hypersurface ®, defined by
1 n—1
Hyy = (nﬁ 1) Z H i (27)
1<in<ip <+ <ip—1<n j=1

where kq, ko, ..., k, are the (Euclidean) principal curvatures of ®. Let ¢ = h(HI’;1
I

) , where

h: M — Rt is a C?-function with h’(%) > 0. We suppose that the corresponding
I

Pick-invariant vanishes on M. Following similar arguments, we obtain the inequality

H,_
/ VI[ ( 1,K[) dO[ Z 0. (28)
M K
However, according to [1, p. 52], the following inequality also holds
H,_
/ VI] (—1, K]) dO] S 0 (29)
M K

and the equality is valid iff ® is an Euclidean hypersphere. From these inequalities we con-
clude:

Proposition 4. Let ® = (M, Z) be a closed convexr C3-hypersurface in the space R"™ and

h: M — R* be a C*-function with h’(%) > 0. Furthermore, let ® be relatively normalized
I
anl) of the relative normalization.

Kr
If the Pick-invariant vanishes identically on M, then ® is an Euclidean hypersphere.

with the support function q = h(
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