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Abstract. The paper presents a method of construction of deterministic frac-
tals based on uniform polyhedra using a contraction mapping procedure and an
iterated function system algorithm. It was shown that the contraction mapping
procedure, which implies the construction of fractals with non-overlapped and
non-disjointed contractions, could produce only a limited number of fractals from
uniform polyhedra, which is resulted by geometric specificity of some uniform
polyhedra. The lists of uniform polyhedra from which fractals either can be
constructed and not were presented and discussed. The contraction ratios and
fractal dimensions of the constructed fractals were determined, some of uniform
polyhedra-based fractals were presented graphically.
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1. Introduction

The fractal geometry became popular and found topical scientific interest when B. Man-

delbrot introduced his works on complex fractals and fractal dimension and its application
in statistical mathematics. Deterministic fractals found an application in some disciplines of
science and engineering. They are used for testing ray-tracing algorithms during the rendering
of spatial scenes [3], in description of dynamical systems [1], in light diffraction problems [10],
hydrologic modeling [2], materials science [14], and many others.

The first strictly self-similar fractals were known much earlier before B. Mandelbrot.
Two-dimensional deterministic fractals proposed by W. Sierpiński and his student [11,

ISSN 1433-8157/$ 2.50 c© 2012 Heldermann Verlag



130 A. Katunin, D. Kurzyk: General Rules of Fractals Construction from Polyhedra

12], known as Sierpiński triangle and Sierpiński carpet, were developed in 1915 and 1916,
respectively. Later, these fractals were generalized into the three-dimensional space and known
as Sierpiński gasket and Menger sponge. Only the above-presented fractals are well-known
and presented in many references [9]. However, there is much more deterministic geometric
objects which are able to construct fractals from them. The authors of [7] generalized the
fractal construction procedure from regular polygons, while the authors of [8] constructed
fractals from Platonic solids. These works implied the interest of a generalization of 3D
deterministic fractals. The results presented in [5] showed that among the 13 Archimedean
solids only from 9 fractals can be constructed. This study stimulated the investigation of
more general polyhedra with these properties.

For the generation of fractals two approaches can be used: deterministic or stochastic
generation procedures. The deterministic generation procedure is based on the Iterated Func-
tion System (IFS) algorithm or the Multiple Reduction Copy Machine (MRCM), while the
stochastic generation procedure is based on Barnsley’s Chaos Game or its combination with
IFS, e.g., Chaos Game for IFS connected in the net [9]. Both approaches represent complex
geometry and have their own advantages: IFS-based algorithms use relatively simple math-
ematical operations on sets, while the Chaos Game-based algorithms are useful when high
iterations of the fractal’s attractor should be computed.

The aim of this paper is to determine new fractals based on uniform polyhedra, to deter-
mine from which uniform polyhedra fractals can be constructed and from which not, and to
describe general rules of 3D fractals construction based on the investigated polyhedra. Based
on a weak formulation of the fractal construction theorem presented in [5] it was generalized
to all polyhedra with a description of cases when the polyhedron is not suitable for fractal
construction.

2. Statements and algorithm

2.1. General considerations

Following the Sopov theorem [13] there are 75 possible uniform polyhedra (except prismatic
polyhedra and Skilling’s figure): 5 Platonic solids, 13 Archimedean solids, 4 Kepler-Poinsot
solids and 53 other non-convex (star-)polyhedra. From most of them fractals can be con-
structed, which we prove further. In this study Platonic and Archimedean solids were excluded
from consideration, because related results were already presented in [8] and [5]. Concerning
the remaining 57 non-convex polyhedra, the possibility of fractal construction was studied in
terms of the following definition of fractals.

Definition 1. Let AW
0 be a uniform polyhedron with a set of vertices vn of AW

0 with coordinates
vn,a (a = 1, 2, 3) in the Euclidean space R3, where W denotes an index of a uniform polyhedron
following Wenninger’s notation assumed in [15]; the subscript symbol of A denotes the number
of contraction mapping iterations. Thus, the fractal based on a given polyhedron is defined as
the attractor AW

∞
of IFS, which is the set of

AW
∞

=
∞
⋂

i=0

hi

(

AW
0

)

, (1)

where hi() is an elementary similarity transformation.
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The contraction process from Ak to Ak+1, k ≥ 0, was realized using the Hutchinson operator:

H
(

AW
∞

)

=

Nk
⋃

i=1

hi

(

AW
k

)

, (2)

where Nk is a number of subsets for k-th iteration, thus

∀vn∈A
W

k

hi (vn) =
vn

r(W )
− vi (1− r(W ))

r(W )
, (3)

where r(W ) is the contraction ratio of a polyhedron W , which ensures that the contractions
of hi are non-overlapped and non-disjointed: hi

(

AW
k

)

∩ hj

(

AW
k

)

= ∅, i 6= j. Such an object
is the fractal of AW

0 in R
3 with contraction ratio r(W ).

The dimension of fractals D is mostly fractional (with few exceptions) and for 3D fractals
it should be 2 ≥ D ≥ 3. For the definiton of fractal dimension a lot of formulations exist, but
the most general one was proposed by F. Hausdorff in [4], which is defined as a power law:

D (W ) =
ln
(

N
(

AW
k

))

r (AW
k )

. (4)

Basing on the above-presented Definition 1, the method of fractals construction was proposed.

2.2. Algorithm of fractals construction

The proposed algorithm of construction of fractals based on uniform polyhedra consists of
the following steps:

• A given uniform polyhedron AW
0 with vertices vn ∈ R

3 was inscribed in a unit sphere
P ∈ R

3 with the central point placed in the origin c0. Having AW
0 inscribed in P , the

vertices vn were determined.

• Then an basic edge of AW
0 was chosen and an orthogonal projection onto R

2 was per-
formed.

• In the orthogonal projection of AW
0 onto R

2 the vector ~a between the chosen basic edge
and the most distant left/right vertex was determined. The angle between ~a and a plane
perpendicular to the base was determined.

• The maximal width of the orthogonal projection of AW
0 was determined. The ratio

between the basic edge length and maximal width of AW
0 ’s orthogonal projection was

computed, which is the contraction ratio r
(

AW
0

)

.

• The central points ci(N) of contractions hi

(

AW
0

)

were determined and AW
0 was replaced

by AW
1 .

By repeating these operations i times the next iterations till AW
i could be obtained. The

algorithm implies that the number of contractions hi

(

AW
0

)

is equal to the number of vertices
vn,i .

3. Construction of fractals from polyhedra and discussion

3.1. Uniform polyhedra

Applying the algorithm desribed in 2.2 we construct fractals from uniform polyhedra. It turns
out that among in total 75 uniform polyhedra there are only 41 from which fractals can be
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derived. Furthermore, these 41 fractals can be grouped by common contraction ratios and
common fractal dimension. Let us investigate this phenomenon.

Theorem 1. There exist groups of fractals constructed from uniform polyhedra in terms of
Definition 1, which have identical values of contraction ratio and fractal dimension.

Proof: The fractals are grouped by the identical number of vertices of AW
0 with identical

coordinates of these vertices. That is, the polyhedra of each group have the same convex hull,
e.g., conv

(

vn,a
(

AW002
0

))

≡ conv
(

vn,a
(

AW067
0

))

.

The complete list of uniform polyhedra from which we are able to construct fractals were
presented in Table 1 and grouped by the contraction ratio r(W ) and fractal dimension D(W ).
Some of aesthetically attractive initial iterations of fractals were shown in Fig. 1.

Table 1: Uniform polyhedra able for the construction of fractals

Index r(W ) D(W ) Index r(W ) D(W ) Index r(W ) D(W )

W001 2.0000 2.0000 W006

3.0000 2.2618

W010

6.8538 2.1271
W002

2.0000 2.5849
W011 W081

W067 W068 W088

W003 2.0000 3.0000 W078 W101

W016 8.4721 2.2404 W013

3.4142 2.5882

W012

4.2361 2.3561

W004

2.6180 2.5819

W069 W073

W020 W086 W089

W021 W092 W091

W041 W014

5.2361 2.4729

W094

W005

3.6181 2.3296

W072 W100

W022 W074 W102

W070 W097 W106

W087 W007 4.0000 2.2945 W107

W080 W009 5.8544 2.3168

There are 34 residual uniform polyhedra, from which no fractals can be constructed,
because the contractions of AW

0 were overlapping or disjointed and there is more than one
contraction ratio for these polyhedra.

Theorem 2. For any uniform polyhedron AW
0 there exists a fractal construction based on

Definition 1 iff the contraction ratio r(W ) is unique.

Proof: Following the above-presented algorithm of fractal construction, the ratio between
the basic edge length and the maximal width of the orthogonal projection of AW

0 must be the
same regardless of a chosen basic edge. Since the points of vn

(

AW
0

)

are the prisoner points
of AW

∞
(see [9, p. 74] for the definition) there is a relation between points of contractions

for arbitrary two iterations: vn
(

AW
k

)

≡ vn
(

AW
l

)

, where 0 ≤ k, l ≤ ∞. Thus, hi

(

AW
k

)

has
exactly one common point with AW

k .
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Figure 1: First interations of fractals of a) W021, b) W005, c) W087, d) W068,
e) W092, f) W074, g) W007, h) W009, i) W010, j) W073, k) W094, l) W107.
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Figure 2: First iterations of non-fractals of W008 with a) r1 = 2 +
√
2, b) r2 ≈ 3.8476

and other examples of non-fractals with genus of c) W079, d) W075, e) W095, f) W076.

Lemma 1. If the affine transformation T of AW
0 does not exist, then AW

0 (T, r(W )) also does
not exist.

Proof: Let us consider regular and quasi-regular polyhedra, which are genera of non-convex
uniform polyhedra through tessellation, truncation, stellation or other operations. As it is
proved, they create groups of uniform polyhedra, where from every polyhedron with a single
group a fractal can be constructed or can’t. The ability of fractal construction for a given
group of polyhedra depends on the existence of affine transformations and the possibility of
isomorphic transformations on edges and vertices, which is closely connected with symmetry
properties. If these statements do not hold (e.g., lack of affine transformation), AW

0 has more
than one r(W ).

For instance, let us consider W008, which has two types of possible basic edges: on the tri-
angular face and the octagonal face. Depending on the choice, two contraction ratios could be
obtained: r1(W008) = 2+

√
2 and r2(W008) ≈ 3.8476. The attempts of fractal constructions

with these contraction ratios give overlapped contractions for r1 and disjointed contractions
for r2 (see Fig. 2a,b). Additional cases of polyhedra, which do not fulfill Theorem 2, were
presented in Fig. 2 c–f.
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Figure 3: First iterations of fractals a) on rhombidodecahedral convex hull with genus
of W043, b) with genus of W019, c) on dodecahedral convex hull with genus of W032,
d) on icosahedral convex hull with genus of W027, e) on truncated icosahedral convex
hull with genus of 13th stellation of W005, f) on dodecahedral convex hull with genus
of 20th stellation of W005, g) on dodecahedral convex hull with genus of 23rd stellation
of W005, h) on dodecahedral convex hull with genus of 34th stellation of W005, i) on
icosahedral convex hull with genus of 50th stellation of W005.
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3.2. Wenninger’s stellations and non-uniform polyhedra

Apart from uniform polyhedra Wenninger [15] proposed non-uniform ones obtained by
stellation of regular and semi-regular polyhedra — total 44 stellations. With some exceptions
(i.e., W019÷W022) these polyhedra cannot be genera for fractals in terms of Definition 1.
However, fractals could be constructed using these polyhedra following the assumption, that
only vn ∈ P are considered for the contraction process from AW

k to AW
k+1.

Theorem 3. Fractals can be constructed from any non-uniform polyhedron A
Q
0 , where Q is an

arbitrary non-uniform polyhedron, iff conv
(

A
Q
0

)

is suitable for the construction of a fractal.

Proof: When the convex hull conv
(

A
Q
0

)

of a polyhedron satisfies Theorem 2 and Lemma 1,

then vn

(

A
Q
0

)

≡ vn

(

conv
(

A
Q
0

))

for vn ∈ P , which guarantees that hi

(

A
Q
k

)

∩ hj

(

A
Q
k

)

= ∅
for i, j ≥ 0 .

The convex hulls of non-uniform Wenninger’s polyhedra are regular and semi-regular
polyhedra in most cases. However, some of them are Catalan polyhedra or Archimedean
duals, which contain only three polyhedra suitable for fractal construction: the rhombic
dodecahedron, the tetrakis hexahedron and the pentakis dodecahedron [6]. Exemplary fractals
constructed from non-uniformWenninger’s polyhedra were presented in Fig. 3. There is a very
big number of non-uniform polyhedra (including Johnson solids, Stewart toroids, compounds
of polyhedra, geodesic domes etc.), so it is not possible to classify all of them with regard
to the ability of fractals construction on their convex hulls. However, if a given polyhedron
satisfies Theorem 3 the fractal can be constructed as well.

4. Conclusions

The polyhedra, both uniform and non-uniform ones, were analyzed in terms of their pos-
sibility of fractal construction. It was determined, that fractals could be constructed from
41 uniform solids, the list of them was presented. For uniform polyhedra, both genera and
non-genera, the comments for factors which have an influence on the ability of fractals con-
struction were presented. It was proved, that the uniqueness of a contraction ratio regardless
of the choice of a basic edge is an absolutely necessary condition for the construction of frac-
tals with non-adjacent and non-overlapped contractions. The genera of fractals were grouped
by values of contraction ratio and fractal dimension. It was also shown, that fractals could
be constructed from non-uniform polyhedra by using their convex hulls for placing contrac-
tions. Further research will be focused on the ability of fractals construction from polytopes
of higher dimensions.
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[4] F. Hausdorff: Dimension und äußeres Maß. Math. Ann. 79, 157–159 (1918).

[5] A. Katunin: Deterministic fractals based on Archimedean solids. Sci. Res. Inst. Math.
Comput. Sc. 10, 93–100 (2011).

[6] A. Katunin: Construction of fractals based on Catalan solids. Bull. Pol. Soc. Geom.
Eng. Graph. (in press).

[7] B. Khang, J. Davis: Maximal dimensions of uniform Sierpinski fractals. Fractals 18,
451–460 (2010).

[8] A. Kunnen, S. Schlicker: Regular Sierpinski polyhedra. Pi Mu Epsilon J. 10, 607–619
(1998).

[9] H.-O. Peitgen, H. Jürgens, D. Saupe: Fractals for the classroom. Part I: Introduc-
tion to fractals and chaos. Springer-Verlag, New York 1992.

[10] D. Rodrigues Merlo, J.A. Rodrigo Mart́ın-Romo, T. Alieva, M.L. Calvo:
Fresnel diffraction by deterministic fractal gratings: an experimental study. Opt. Spec-
trosc. 95, 131–133 (2003).
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