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Abstract. The main aim of this paper is to show one application of dual quater-
nions in one of the challenging problem of geodesy. The Bursa-Wolf similarity
transformation model is presented as a seven parameter model for transforming
co-located 3D Cartesian coordinates between two datums. The transformation in-
volves three translation parameters, three rotation elements and one scale factor.
We will briefly introduce the theory of quaternions and dual quaternions. Conse-
quently, it is shown that mathematical modelling based on dual quaternions is an
elegant mathematical method which is used to represent rotation and translation
parameters and a compact formula is derived for the Bursa-Wolf model.
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1. Introduction

A coordinate transformation allows us to take the coordinates of a point in one coordinate
system and find the new coordinates of the same point in a second coordinate system. This
mathematical operation is mainly used in geodesy but we can find its using in photogramme-
try, Geographical Information Science (GIS), computer vision and other research areas.

Spatial data are connected to the geographical location which are expressed by coordinates
based on a coordinate system. The basis of the coordinate system is called a geodetic datum
which defines the size and shape of the Earth, and the origin and orientation of the coordinate
systems used to map the Earth. There are many datums because different countries use their
own datum. We can mention, for instance, that in geodesy datum transformations are used to
convert coordinates related to the Czech national reference frame S-JTSK to the new reference
frame WGS 841 (World Geodetic System).

Similarity transformation is a type of transformation, where the scale factor is the same in
all directions. The seven parameter2 similarity transformation is widely used for the datum

1Dating from 1984 and last revised in 2004.
2This transformation is also known as 3D similarity transformation or Helmert transformation.
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transformation since it, more or less, satisfies simplicity, efficiency, uniqueness and rigor.
This transformation is composed of three translation parameters, one scale factor, and three
rotation parameters. Therefore, coordinates from a three dimensional coordinate frame can
be transformed into coordinates in another frame by translating the origin, applying rotation
and modifying the scale. In practice, the seven transformation parameters are not always
known. But if for some control points the coordinates with respect to two coordinate frames
are known we can estimate the transformation parameters mentioned above. We can say that
common coordinates of three points are sufficient for the solution of the seven parameters
transformation. There are some popular seven parameter similarity transformation models
such as the Bursa-Wolf, which we deal with, or the Molodensky model (see [9]). The similarity
transformation model is often simplified to a linear one because its parameters can be easily
computed (see [8]).

Existing solutions of seven parameter models solved by traditional algorithms based on
rotation angles or recently quaternions are replaced by a new model based on dual quaternions.
We will briefly present how to represent and improve the datum transformation by dual
quaternions.

The remainder of the paper is organized as follows. Section 2 recalls some basic notions
and facts from the quaternion geometry which are consequently used for introduction of dual
quaternions. We introduce the definition of dual numbers and dual quaternions. Furthermore,
dual quaternions are used for describing rigid transformations in the special Euclidean group.
The following part is devoted to a practical application of dual quaternions. Subsequently,
transformation model based on quaternion algorithm is reminded. Then the formula for the
computation of rotation, translation and scale parameters in the Bursa-Wolf geodetic datum
transformation model from two sets of co-located three-dimensional coordinates is derived.
Furthermore, we will focus on comparing this algorithm with another algorithm based on
quaternions.

2. Preliminaries

As we have mentioned, our results are based on fundamentals of quaternions. This paper
explores the basics of the quaternion algebra, particularly its description of the three dimen-
sional rotations. Let us therefore start our discussion with recalling some fundamental facts
(see e.g., [4]).

2.1. Quaternions and rotations

A quaternion Q can be defined as follows

Q = 1q0 + i q1 + j q2 + k q3, (1)

where 1, i, j,k are basis elements called quaternion units satisfying the relations i2 = k2 =
j2 = i j k = −1, i j = k, j i = −k and q0, q1, q2, q3 are real numbers. Otherwise, it can be
written as comprising scalar and vector parts q0 and q = q1i + q2j + q3k. All units commute
with real numbers. The set of quaternions is denoted H. Hence, we write Q = (q0,q). A pure

quaternion is a quaternion with zero scalar part, i.e., Q = (0,q) (see Fig. 1). The set of pure
quaternions3 is denoted by Hp.

3Sometimes called imaginary quaternions.
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Figure 1: Representation of relation between quaternions and vectors in R3

The corresponding conjugate quaternion is

Q∗ = q0 − i q1 − j q2 − k q3 = q0 − q. (2)

From the definition we immediately have

(Q∗)∗ = q0 − (−q), (3)

Q+Q∗ = 2q0. (4)

The product of two quaternions Q and P is defined in a concise form as

QP = [ q0p0 − q · p, q× p+ q0p+ p0q ], (5)

where the symbols · and × are the standard dot product and the cross product in R3. Given
two quaternions Q and P, we can easily verify that

(QP)∗ = P∗Q∗. (6)

The norm of a quaternion is defined as

‖Q‖ =
√
q20 + q21 + q22 + q23 =

√
QQ∗. (7)

The norm of the product of two quaternions Q and P is the product of the individual norms,
for we have

‖QP ‖2 = ‖Q‖2‖P ‖2. (8)

The multiplicative inverse of each Q 6= 0 is computed as

Q−1 =
Q∗

‖Q‖2 . (9)

We can easily verify that Q−1Q = QQ−1 = 1. A quaternion is called the unit quaternion if
‖Q‖= 1. If Q is the unit quaternion then there exists a unit vector n, an angle θ

2
∈ 〈−π, π〉

such that

Q =

(
cos

θ

2
, n sin

θ

2

)
. (10)

The special orthogonal group is defined as

SO(3) = {A ∈ GL(3,R) |ATA = I ∧ detA = 1}. (11)
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Figure 2: Rotation of a point P through the angle θ about the axis o given by the vector n

The matrix A represents a rotation in R3 about the origin if and only if A ∈ SO(3) (see [10]
and the references therein). In the following statement we can easily see how the unit quater-
nions can represent rotations.

A unit quaternion Q =
(
cos θ

2
, n sin θ

2

)
represents the rotation of a vector p through the

angle θ about an axis through the origin in direction of the vector n (see Fig. 2). The vector
p is represented by the pure quaternion P = (0,p). The rotated vector, represented as a pure
quaternion, is

P̂ = QPQ∗. (12)

We can find an elegant proof of this in [4]. First, it is shown how a vector p is rotated by θ
along n, using Sine, Cosine and the scalar and the vector products. Then it is shown that
the same result is obtained by a rotation described by quaternions. Each element in SO(3)
can be expressed using quaternions as (12) (see [5], for instance).

2.2. Dual numbers and dual quaternions

This section provides a brief introduction to the theory of dual numbers and dual quaternions.
We focus only on the basics of this algebra. More details can be found in [2], [3] or [13].

Dual numbers

Dual numbers were invented by Clifford in 1873 but their first applications to mechanics
are due to Alexandr Petrovič Kotelnikov (1865–1944) (see [2] or [7] for more details). They
are similar to complex numbers because any dual number zd can be written as

zd = a+ εaε, (13)

where a is the non-dual part, aε the dual part and ε is a basis element called dual unit. The
defining condition for the dual unit is ε2 = 0. The set of dual numbers is denoted by D. The
dual conjugate is analogous to the complex conjugate, i.e.,

zd = a− εaε. (14)
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The multiplication of two dual numbers is given as

zdẑd = aâ + ε(aâε + aεâ). (15)

Finally, note that pure dual numbers, i.e., dual numbers with the a = 0, do not have an
inverse. This is a fundamental difference from complex numbers because every non-zero
complex number has the inverse defined. An example of dual number is the dual angle

between two skew lines in three dimensional space defined as

α = β + εs, (16)

where β is the angle between their directions and s is the minimal distance between the lines
along their common perpendicular line.

Dual quaternions

A dual quaternion Qd can be written as the sum of two standard quaternions

Qd = Q+ εQε, (17)

where
Q = q0 + q1i+ q2j+ q3k and Qε = q0ε + q1εi + q2εj+ q3εk, (18)

are real quaternions and 1, i, j,k are usual quaternion units. The dual unit ε commutes with
quaternion units, for example i ε = εi. The set of dual quaternions is denoted Hd. A dual
quaternion can also be considered as an 8-tuple of real numbers, or as

Qd = q0d + q1di + q2dj+ q3dk

= (q0 + εq0ε) + (q1 + εq1ε)i+ (q2 + εq2ε)j+ (q3 + εq3ε)k , (19)

where q0d is the scalar part (a dual number), (q1d, q2d, q3d) is the vector part (a dual vector)

(see [13]). The product of two dual quaternions Qd and Q̂dis defined as

QdQ̂d = Q̂+ ε(QQ̂ε +QεQ̂).

The multiplication of dual quaternions is associative, distributive, but not commutative. The
conjugation of a dual quaternion is defined using the classical quaternion conjugation

Qd
∗ = Q∗ + εQ∗

ε. (20)

However, the dual number conjugation (14) can be applied to dual quaternion conjugation
and we get the dual conjugate dual quaternion

Q∗
d = Q∗ − εQ∗

ε. (21)

The norm of the dual quaternion is the dual scalar and is defined as

‖Qd ‖ =
√

(q0 + εq0ε)2 + (q1 + εq1ε)2 + (q2 + εq2ε)2 + (q3 + εq3ε)2 =
√

Q∗
dQd . (22)

If the norm has a nonvanishing real part, then the dual quaternion Qd has an inverse, which
can be defined as

Q−1
d =

Q∗
d

‖Qd ‖2
. (23)
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A dual quaternion is called dual unit quaternion if ‖Qd ‖ = 1. Note that a dual quaternion
Qd is unit if and only if

‖Q‖ = 1 ∧ Q · Qε = 0. (24)

If we have a vector p = (p1, p2, p3), we define the associated dual unit quaternion as

Pd = 1 + ε(p1i+ p2j + p3k), (25)

which satisfy the previous statement. The special Euclidean group is defined as

SE(3) =

{
A | A =

[
R t

0 1

]
, R ∈ SO(3), t ∈ R

3

}
, (26)

i.e., SE(3) is the set of all rigid transformations in three dimensions.

A new method to represent the rigid transformations is based on the use of dual quater-
nions (see [11]). Dual quaternions capture in their inner structure basic information about
these transformations — namely the axis of rotation and the rotation angle about the axis
and the translation about the axis. The composition of these transformations corresponds to
the multiplication of the associated dual quaternions.

Suppose that p = (p1, p2, p3) is a position vector of a point P , t = (t1, t2, t3) is a translation

vector and Q =
(
cos

θ

2
, n sin

θ

2

)
is a unit quaternion (see Fig. 3). Then we can express the

image of the point P after this translation and this rotation as

P̂d = QdPd Q∗
d, (27)

where Pd, Qd are the dual unit quaternions and T is the pure quaternion fulfilling

Qd = Q+ εQε = Q+ ε
T Q
2

, T = t1i+ t2j+ t3k and Pd = 1 + ε(p1i + p2j + p3k). (28)

To sum up, a dual unit quaternion naturally represents a rotation when the dual part Qε = 0
(see (12)).

nm0

P

θ

P̂

t

o

Figure 3: Transformation of a point P given by translation vector t and rotation
through the angle θ about the axis o given by vector n and position vector m
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3. Dual quaternion datum transformation model

In this section, we will present a particular application of dual quaternions in the field of
geodesy.

Bursa-Wolf similarity transformation model

One of the most commonly used transformation methods in the geodetic applications is the
Bursa-Wolf similarity transformation model. The similarity transformation is popular due
to the small number of parameters involved and the simplicity of the model. Our goal is to
estimate all required parameters from co-located coordinates on two different datums. The
Bursa-Wolf similarity transformation model can be written as

si = t+ kRpi, (29)

where si = (s1i, s2i, s3i)
T ∈ R3 and pi = (p1i, p2i, p3i)

T ∈ R3, i = 1, . . . , n , are two sets of the
co-located coordinates in the two different systems. t = (t1, t2, t3)

T ∈ R3 denotes the three
translation parameters, k denotes the scale parameter and R ∈ SO(3) is the rotation matrix
containing three rotation parameters. In order to determine the mentioned parameters, the
number n of the co-located coordinates si,pi must be greater than or equal to three.

3.1. Quaternion method

First, we remind one of the newest approaches which is used for solving this problem. In this
case, the solution of Bursa-Wolf transformation model is based on quaternions. Since they
are widely used to express the rotation which is in this model included. Let us therefore start
with reminding this procedure. For a deeper discussion of this method we refer the reader
to [12].

We define centrobaric coordinates △si = (△s1i,△s2i,△s3i)
T , △pi = (△p1i,△p2i,△p3i)

T ,
i = 1, . . . , n , for the sets of the co-located coordinates as

△si = si −
1

n

n∑

i=1

si, and △pi = pi −
1

n

n∑

i=1

pi . (30)

Notice, that the centrobaric coordinates satisfy the equality

n∑

i=1

△si =

n∑

i=1

△pi = 0. (31)

If we substitute Eq. (30) into (29), we obtain

△si = t+ kR

(
△pi +

1

n

n∑

i=1

pi

)
− 1

n

n∑

i=1

si (32)

= △t+ kR△pi, where △t = t+ kR
1

n

n∑

i=1

pi −
1

n

n∑

i=1

si. (33)

Equation (32) is over-determined; therefore we denote the residual vectors vi ∈ R3 for i =
1, . . . , n as

vi = △si −△t− kR△pi . (34)
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Now we get the following optimization problem to solve for the required parameters

min
k,△t,R

n∑

i=1

vT
i vi = min

k,△t,R

n∑

i=1

(△si −△t− kR△pi)
T (△si −△t− kR△pi) (35)

= min
k,△t,R

[
n△tT△t+

n∑

i=1

(△si − kR△pi)
T (△si − kR△pi)

]
. (36)

Subsequently, it must be satisfied

△t = 0, i.e., t =
1

n

n∑

i=1

si −
k

n
R

n∑

i=1

pi . (37)

Equation (35) is modified and re-arranged

min
k,R

[
n∑

i=1

△sTi △si − 2k

n∑

i=1

△sTi R△pi + k2
n∑

i=1

△pT
i △pi

]
. (38)

It should be noted that a necessary condition for an extremum of the function

F (k, x1, . . . , xn) = k2A− kB(x1, . . . , xn)

with a constant A is an extremum of the function B and 2kA − B = 0, i.e., k = B/2A.
Therefore, we get the new optimization problem

max
R

n∑

i=1

△sTi R△pi (39)

and a new equation which allows us to determine the scale parameter k as

k =

n∑

i=1

△sTi R△pi/

n∑

i=1

△pT
i △pi. (40)

As we have mentioned before, quaternions can represent rotation. Therefore, we substitute
the quaternion Q = q0 + q to represent the rotation matrix R. Then the maximization
problem can be solved as

max
R

n∑

i=1

△sTi R△pi = max
Q

n∑

i=1

(q0,q
T )N

(
q0
q

)
, (41)

where

N =

n∑

i=1

[
△sTi △pi −△sTi C(△pi)

−C(△si)△pi △si △pT
i +C(△si)C(△pi)

]
, (42)

and C(q) is the skew-symmetric matrix

C(q) =




0 −q3 q2
q3 0 −q1
−q2 q1 0


. (43)
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The matrix N is real-symmetric and it contains four real-valued eigenvalues and their corre-
sponding eigenvectors. Then the solution of the maximization problem of Eq. (41) is equal
to the eigenvector corresponding to the maximal eigenvalue of N . Thus we get the solution
of the unit quaternion Q, i.e., the unit quaternion representing the best rotation is the eigen-
vector associated with the eigenvalue of a symmetric matrix. This quaternion is determined
uniquely up to its sign. Then we compute the rotation matrix R as

R =
[
q20 − qTq

]
I+ 2[qqT + q0C(q)], (44)

where I denotes the 3× 3 identity matrix. The rotation angles can be computed by using

θx = arctan
r23
r33

, θy = arcsin(−r13), θz = arctan
r12
r11

, (45)

where rij is the element of the rotation matrix R in the i-th row and j-th column and θx, θy, θz
are the rotation angles around corresponding coordinate axes. Then the scale parameter k is
computed by Eq. (40). Finally, by (37) we get the translation parameters.

3.2. Improved method using dual quaternions

Now we use dual quaternions for a description of the datum transformation, where the matrix
representation of dual quaternions helps us to simplify manipulations of equations (see[14] for
the definition of the matrix form).

The previous model based on quaternions is now adjusted to the use of dual quaternions.
The dual quaternion transformation algorithm can be summarized in the following steps:

Algorithm 1 Dual quaternion transformation algorithm

Input: Cartesian coordinates of n stations given in a local and a global reference system.

1: Compute centrobaric coordinates △si = (△s1i,△s2i,△s3i)
T , △pi = (△p1i,△p2i,△p3i)

T

using (30).

2: Express the dual unit quaternion Vdi with the parameters q0, · · · , q3,△t1, · · · ,△t3, k us-

ing (47) and determine the corresponding vector vi = (v1i, v2i, v3i)
T .

3: Compute the required parameters q0, · · · , q3,△t1, · · · ,△t3, k by (52) determined by con-

ditions (53).

4: Compute the rotation matrix R by (44) and then the rotation angles θx, θy, θz using (45).

5: Compute the translation vector t using the modified Eq. (33).

Output: Three rotation parameters θx, θy, θz, three translation parameters t1, t2, t3 and the

scale parameter k.

It is possible to express the residual vector vi in the form of dual quaternions. First, we
modify (34). The scale parameter k ∈ R is a constant, therefore

vi = △si −△t− kR△pi = △si −△t−Rk△pi = −(△li +R△ri), (46)

where △li = △t−△si and △ri = k△pi .

Equation (46) expresses a rotation of the vector △ri and then a translation given by the
translation vector △li. We can express this equation according to (27) using dual quaternions
in the form

Vdi = −QdiRdiQ∗
di
, (47)
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where Rdi is a dual unit quaternion

Rdi = 1 + ε(△r1ii+△r2ij +△r3ik) = 1 + kε(△p1ii+△p2ij+△p3ik), (48)

and Qdi is a dual unit quaternion

Qdi = Q+ εQε = Q+ ε
LiQ
2

, where Q = q0 + q1i+ q2j + q3k (49)

and Li = (△t1 −△s1i)i+ (△t2 −△s2i)j+ (△t3 −△s3i)k. (50)

The quaternion Q is a unit quaternion and L is a pure quaternion. Since Qdi is a dual unit
quaternion, we must apply the conditions (24), i.e.,

‖Q ‖= 1 ∧ Q · Qε = 0. (51)

From Eq. (47) we get the dual unit quaternion of the form Vdi = 1 + ε(v1ii + v2ij + v3ik)
corresponding to the vector vi = (v1i, v2i, v3i)

T , where the terms v1i, v2i, v3i contain seven pa-
rameters to be solved, i.e., q0, · · · , q3,△t1, · · · ,△t3, k. Further, the transformation parameters
can be determined by solving this optimization problem

min
q0,··· ,q3,△t1,··· ,△t3,k

n∑

i=1

vT
i vi = (v1i, v2i, v3i)

T (v1i, v2i, v3i), (52)

‖Q‖ = 1 ∧ Q · Qε = 0. (53)

We can use a nonlinear method to solve this minimization problem, i.e., Lagrange multipliers.
This method can also be accommodated to multiple constraints. Thus the problem (52) under
the condition (24) can be expressed as minimizing the following Lagrange function

L(q0, · · · , q3,△t1, · · · ,△t3, k, α, β) =

n∑

i=1

vT
i vi + α(

√
QQ∗ − 1) + β(Q · Qε), (54)

where α and β are the Lagrange multipliers to be determined. The solution by minimizing the
Lagrange function (54) is equivalent to solving the following non-linear system of equations

∂L

∂q0
= 0,

∂L

∂q2
= 0,

∂L

∂△t1
= 0,

∂L

∂△t3
= 0,

∂L

∂k
= 0,

∂L

∂q1
= 0,

∂L

∂q3
= 0,

∂L

∂△t2
= 0,

∂

∂α
= 0,

∂L

∂β
= 0,

(55)

where q0, · · · , q3,△t1, · · · ,△t3, k, α, β denotes the unknowns parameters to be solved. Since
Eq. (55) is non-linear, we can find the solution numerically, e.g., by using the CA-system
Mathematica. Finally, the translation vector t can be determined using (33).

4. Example

We consider Cartesian coordinates of seven stations given in the local and global reference
systems (WGS 84) as in Table 1. Values of this stations are taken from [6]. We are looking
for the seven parameters of the datum transformation. This numerical example is presented
to demonstrate the functionality of the designed method. The values of these stations are
frequently used as in [12] or [15].
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Table 1: Coordinates for local system (system A), coordinates for WGS 84 (system B)

System A System B

Station name X(m) Y (m) Z(m) X(m) Y (m) Z(m)

Solitude 4157870.237 664818.678 4775416.524 4157222.543 664789.307 4774952.099

Buoch Zeil 4149691.049 688865.785 4779096.588 4149043.336 688836.443 4778632.188

Hohenneuffen 4173451.354 690369.375 4758594.075 4172803.511 690340.078 4758129.701

Kuehlenberg 4177796.064 643026.700 4761228.899 4177148.376 642997.635 4760764.800

Ex Mergelaec 4137659.549 671837.337 4791592.531 4137012.190 671808.029 4791128.215

Ex Hof Asperg 4146940.228 666982.151 4784324.099 4146292.729 666952.887 4783859.856

Ex Kaisersbach 4139407.506 702700.227 4786016.645 4138759.902 702670.738 4785552.196

Now we compute the transformation parameters θx, θy, θz, t1, t2, t3, k from the local geode-
tic system to WGS 84. We use the CA-system Mathematica to find the transformation pa-
rameters, where it is convenient to express dual quaternions in the 8 × 8 matrix form. The
optimization problem was solved using Lagrange multipliers.

The quaternion Q and the translation △t are shown in Table 2. The final list of results
given from Eqs. (45), (33) and Lagrange multipliers are listed in Table 3.

In addition to this transformation, we compute the residual value to each point, i.e., the
difference between coordinates of the system A and the new coordinates of the system A′. The
coordinates of the system A′ are determined using the computed transformation parameters
R, t, k and the substitution (29). The residuals and the new values of the stations are given in
Table 4. Transformation parameters and transformed coordinates are equal to the parameters
described in [6] and [12].

Table 2: Quaternion and translation parameter

Quaternion Q Translation △t

q0 −0.9999999987474 △t1 −6.649× 10−10

q1 −0.0000024204319 △t2 −3× 10−13

q2 0.0000021663738 △t3 2.658× 10−10

q3 0.0000024073178

Table 3: Final results of the dual quaternion transformation algorithm

Rotation angles Translation t Scale k

θx −0.99850′′ t1 641.8908m

θy 0.89370′′ t2 68.6570m k 1.0000055825199

θz 0.99309′′ t3 416.4101m
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Table 4: Transformed Cartesian coordinates of System A into System B (Table 1)
using the seven datum transformation parameters of Table 3 computed with the dual
quaternion algorithm

Station name X (m) Y (m) Z (m)

System A: Solitude 4157870.237 664818.678 4775416.524

System B 4157222.543 664789.307 4774952.099

Transformed value: A′ 4157870.143 664818.543 4775416.384

Residual 0.0940 0.1351 0.1402

System A: Buoch Zeil 4149691.049 688865.785 4779096.588

System B 4149043.336 688836.443 4778632.188

Transformed value: A′ 4149690.990 688865.835 4779096.574

Residual 0.0588 −0.0497 0.0137

System A: Hohenneuffen 4173451.354 690369.375 4758594.075

System B 4172803.511 690340.078 4758129.701

Transformed value: A′ 4173451.394 690369.463 4758594.083

Residual −0.0399 −0.0879 −0.0081

System A: Kuehlenberg 4177796.064 643026.700 4761228.899

System B 4177148.376 642997.635 4760764.800

Transformed value: A′ 4177796.044 643026.722 4761228.986

Residual 0.0203 −0.0221 −0.0875

System A: Ex Mergelaec 4137659.549 671837.337 4791592.531

System B 4137012.190 671808.029 4791128.215

Transformed value: A′ 4137659.641 671837.323 4791592.536

Residual 0.0919 0.0139 −0.0055

System A: Ex Hof Asperg 4146940.228 666982.151 4784324.099

System B 4146292.729 666952.887 4783859.856

Transformed value: A′ 4146940.240 666982.145 4784324.154

Residual −0.0118 0.0065 −0.0546

System A: Ex Kaisersbach 4139407.506 702700.227 4786016.645

System B 4138759.902 702670.738 4785552.196

Transformed value: A′ 4139407.535 702700.223 4786016.643

Residual −0.0294 0.0041 0.0017

5. Algorithm test

In this part of the article we will focus on testing two different approaches to solve the datum
transformation model. We found a new formula for the Bursa-Wolf transformation model
above and our purpose is to compare this algorithm based on dual quaternions with the
algorithm based on quaternions.
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5.1. Descriptive statistics

This section provides a simple view at the descriptive statistics obtained from 3070 tested
points at algorithm mentioned above, i.e., dual quaternion algorithm (DQ algorithm) and
quaternion algorithm (Q algorithm). The tested points were given in a local and a global
system. To find the difference or distance between two sets of coordinates we use Euclidean

metric.

Comparing the algorithms can be summarized in the following steps, which are the same
for both of them:

Algorithm 2 Differences between systems

Input: Cartesian coordinates of 3070 stations given in a local (system A) and a global

(WGS 84–system B) reference system.

1: Compute rotations, translations and scale parameters using DQ/Q algorithm.

2: Compute new coordinates A′ of the system A. The coordinates of the system A′ are

determined using computed transformation parameters R, t, k and substitution (29).

3: Compute difference between system A and system A′ using Euclidean metric.

Output: Set of values which indicates the difference between the system A and the system

A′ for both algorithms.

Furthermore, we get the set of values for the DQ algorithm and for the Q algorithm. To
get some information about these data, we use descriptive statistics. An overview of these
values can be found in Table 5. We can see from the descriptive statistics that we are not
dealing with normally distributed data but rather the log-normally distributed data and this
is the reason why we apply nonparametric test, a sign test (see [1] for more details).

Table 5: Descriptive statistics

DQ algorithm Q algorithm

minimum 0.2708 0.3333

maximum 9.2231 8.7695

average 3.4163 3.2243

sample standard deviation 1.7049 1.6847

sample variance 2.9075 2.8390

sample quantile05 1.0087 0.9058

sample quantile25 2.1176 1.8654

sample quantile50 3.2470 3.0371

sample quantile75 4.3874 4.3317

sample quantile95 6.7545 6.3291

5.2. Sign test — DQ and Q algorithm

The sign test is used to test the null hypothesis about a median Z̃ of a continuous distribution.
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The observations in a sample of size n are Z1, Z2, . . . , Zn. Observations are obtained as
the difference d(A′

Q, A)− d(A′
DQ, A)

4, where A′
Q and A′

DQ are new sets of points in WGS 84
and A is the original set of points in WGS 84.

The null hypothesis is that the median Z̃ is equal to the given value 0. Suppose that Z+

is a sum of values, where Zi > 0 and Z− is a sum of values, where Zi < 0. Values of Z which
are exactly equal to 0 are ignored. The sum Z+ + Z− may therefore be less than n. The
null hypothesis H0 : Z̃ = 0 is tested that two set of values are of equal size, i.e., there is no
significant difference between the methods. We use only values outside of the interval [−1, 1],
which we consider as a significant difference. We get

∑
Z+ = 580 and

∑
Z− = 487. In fact

these values count how often one method gives better results.

One-sided hypotheses:

• For one-sided hypothesis H1 : Z̃ > 0, we obtained FZ+(x) = 0, 9978. While 0, 9978 >
0, 05 ⇒ we do not reject H0 on the significance level 0, 05. It means that there is no
significant difference between the methods.

• For one-sided hypotheses H1 : Z̃ < 0, we obtained FZ−(x) = 0, 0022. While 0, 0022 <
0, 05 ⇒ we reject H0 on the significance level 0, 05 and we accept H1 that DQ algorithm
is better if we take into account only significant differences.

6. Conclusion

This paper is focused on one particular example of practical applications of dual quaternions.
Since the algebra of this structure is very popular and frequently used in various mathematical
fields nowadays we try to show some of their modern applications. The next part of the
paper is devoted to dual quaternions and their application. There is a strong motivation for
dealing with the problem of finding parameters of transformation of two coordinate systems,
the local and the world one. Datum transformation is widely used in geodesy. This paper
describes one of the methods for the determination of the datum transformation parameters.
We use a nonlinear transformation model. In this model we can easily use a description
by dual quaternions. Dual quaternions allow us to describe any rigid transformation, i.e.,
a composition of rotations and translations. The main advantage of this approach is the
simplification of the original solution of the datum transformation. The maximum error of
this method can be estimated by the error matrix and it is similar to other methods, e.g.,
based on quaternions.

This paper presents one numerical example to demonstrate the introduced formula de-
scribing the datum transformation. There exist various modifications of this model, therefore
we try to compare the latest approaches, i.e., the model based on dual quaternions with the
model based on quaternions. Descriptive statistics shows that both models have probably a
log-normal distribution. In order to deal with comparing both algorithms, we have applied
a non parametric test, a sign test. By comparing known algorithms it was found that the
accuracy of our algorithm based on dual quaternions is higher if we take into account only
significant differences. Consequently, advantages of the novel approach lie in the fact that
there is no need for a linearization of the nonlinear transformation model and the accuracy
of this model is better considering given conditions.

4The Euclidean distance between two points A,B is denoted by d(A,B).
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