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Abstract. We construct a triangle given its incenter, nine-point center and a
vertex by locating the circumcenter as an intersection of two rectangular hyperbo-
las. Some special configurations leading to solutions constructible with ruler and
compass are studied. The related problem of construction of a triangle given its
circumcenter, incenter, and one vertex is revisited, and it is established that such
a triangle exists if and only if the incenter lies inside the cardioid relative to the
circumcircle.
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1. Introduction

In this note we solve the construction problem of a triangle ABC given its incenter I, its
nine-point center N , and one vertex A. This is Problem 35 in Harold Connelly’s list of
construction problems [1]. We shall show that the triangle is in general not constructible
with ruler and compass, but can be easily obtained by intersecting conics. Some special
configurations of I, N , A from which the triangle can be constructible with ruler and compass
are studied in details in §§ 2, 6 – 8.

2. The isosceles case

We assume equal lengths AB = AC. In this case, I, N , A are collinear. The incircle and the
nine-point circle are tangent to each other internally at the midpoint of the base BC. We
set up a rectangular coordinate system with N at the origin, I at (p, 0), and A at (a, 0), and
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Figure 1: Construction in the isosceles case with collinear {I, N,A}

seek the inradius r. We shall assume p > 0 so that it is the distance between I and N . The

circumradius is R = 2(p + r). On the other hand, sin
A

2
=

r

p− a
. The circumradius is also

given by

R =
2(p− a + r) tan A

2

2 sinA
=

p− a + r

2 cos2 A
2

=
(p− a+ r)

2

(

1−
(

r

p− a

)2
) =

(p− a)2

2(p− a− r)
.

Equating this to 2(p+ r), and simplifying, we have

f(r) := 4r2 + 4ar + (a− p)(a+ 3p) = 0. (1)

This equation has two real roots if and only if a ≤ 3p

2
.

(i) If p ≤ a ≤ 3p

2
, both roots are negative.

(ii) If −3p < a < p, there is exactly one positive root r. Since f(0) < 0 and f(p − a) =
(p− a)2 > 0, the positive root r < p− a. There is a unique solution.

(iii) If a < −3p, this equation has two positive roots. Since

f(0) = f(−a) = (a− p)(a+ 3p) > 0 and f
(

a

2

)

= p(2a− 3p) < 0,

the two roots are in the range 0 < r < −a. Rewriting (1) as

r(−a− r) =
p− a

2
· −a− 3p

2
,

we are led to the following construction:

Let M be the midpoint of IA, and M ′ the reflection of M in N .

(1) Construct a circle C of diameter −a (> 0) passing through M and M ′. Its center
is a point K on the perpendicular bisector of MM ′.

(2) Join IK to intersect the circle C at P and Q (see Fig. 1).

Each of the circles, center I, passing through P (respectively Q), is the incircle of an
isosceles triangle with nine-point center N .
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3. Construction of triangle from O, I, A

In the general case we shall solve the construction problem of triangle ABC from I, N , A
by locating the circumcenter O. In the present section we revisit the construction problem
of a triangle from its circumcenter O, incenter I, and one vertex A. The problem has been
solved, for example, in [5, § 4.1]; see also [3]. Here, we study the locus of I (relative to O and
A) for which an inscribed triangle exists, and distinguish between the possibilities of I as the
incenter or one of the excenters of the triangle. We adopt the notation P (Q) for the circle,
center P , passing through the point Q.

O

A

I

A′

B

C

Figure 2: Illustration to Proposition 1

Proposition 1. Given distinct points O, A, and I, construct
(1) the circle O(A) to intersect the line AI at a point A′ different from A,

(2) the circle A′(I).
If the two circles intersect at two distinct points B and C, then I is the incenter or an excenter
of triangle ABC according as it lies inside or outside the circle O(A).

Proof: We shall only prove the case when I is inside the circle. With reference to Fig. 2, we
have
(i) ∠BAI = ∠CAI =

A

2
since A′B = A′C,

(ii) ∠A′BC = ∠A′AC = ∠A′AB =
A

2
, and ∠A′BI = ∠A′IB =

A+B

2
.

From these,

∠CBI = ∠A′BI − ∠A′BC = ∠A′IB − ∠A′AB = ∠ABI.

Therefore, BI bisects angle B. Similarly, CI bisects angle C, and I is the incenter of triangle
ABC.

Proposition 2. Given distinct points O and A, and a point I not on the circle O(A), there is
a triangle ABC with circumcenter O and incenter (or excenter) I if and only if I lies inside
the cardioid with cusp A relative to the circle O(A).

Proof: Set up a rectangular coordinate system with A at the origin and O at (0,−b), b < 0.
The circle O(A) has equation

x2 + (y + b)2 = b2.
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O

A

Figure 3: Given O,A, I, there is a triangle ABC with circumcenter O and
incenter or excenter I if and only if I lies inside the cardioid.

Consider a point I with coordinates (p, q), not on the given circle. The line AI intersects the
circle again at

A′ =

(

− 2bpq

p2 + q2
, − 2bq2

p2 + q2

)

.

The circle A′(I) has equation

(p2 + q2)(x2 + y2) + 4bpqx+ 4bq2y − (p2 + q2)(p2 + 4bq + q2) = 0.

The radical axis of the two circles is the line

4bpqx− 2b(p2 − q2)y − (p2 + q2)(p2 + 4bq + q2) = 0.

The two circles intersect at two real points if and only if the square distance from (0,−b) to
the radical axis is less than b2:

0 >
(2b2(p2 − q2)− (p2 + q2)(p2 + 4bq + q2))2

(4bpq)2 + (2b(p2 − q2))2
− b2

=
(p2 + 2bq + q2)2

4b2(p2 + q2)2
· ((p2 + q2)2 + 4bq(p2 + q2)− 4b2p2).

This is equivalent to
(p2 + q2)2 + 4bq(p2 + q2)− 4b2p2 < 0.

In polar coordinates, we write (p, q) = (r cos θ, r sin θ) and obtain

r2(r2 + 4br sin θ − 4b2 cos2 θ) < 0,

r2(r + 2b sin θ + 2b)(r + 2b sin θ − 2b) < 0,

−2b(1 + sin θ) < r < 2b(1− sin θ).

This is the region, shown in Fig. 3, bounded by the cardioid r = 2b(1− sin θ).

Remarks. (1) A point I inside the cardioid, but outside the circle O(A), is the A-excenter of
a triangle ABC if and only if I and O are on the same side of the tangent to the circle at A.

(2) Figure 4 shows two examples when I lies outside O(A), and realized as an excenter of a
triangle ABC inscribed in the given circle.
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Figure 4: Two examples where point I lies inside the cardioid and outside O(A),
hence I is an excenter of a triangle ABC.

4. Circumcenter from I, N , A

Given three distinct points I, N , A, we set up a rectangular coordinate system with N at
the origin, I at (p, q), and A at (a, q), assuming without loss of generality that q ≥ 0. We
establish Proposition 3 below by making use of three well known conditions (in §§ 4.1–3) to
construct equations governing the coordinates of O.

Proposition 3. If triangle ABC is nonisosceles, the circumcenter O is an intersection of the
two curves

H : xy = aq,

and

K : (x− 2p)2 − (y − 2q)2 = 3p2 − 2ap− q2.

These curves are rectangular hyperbolas except when

(i) a = 0, i.e., ∠IAN = 90◦,

(ii) q = 0, or

(iii) q2 = p(3p− 2a).
In these cases, the triangle is constructible with ruler and compass (see §§ 6 – 8 below).

The proof of Proposition 3 consists of several steps, worked out in §§ 4.1–3 below. We
begin by noting that if the circumcenter O has coordinates (u, v), then the orthocenter H has
coordinates (−u,−v), since N is the midpoint of OH .

4.1. I is equidistant from AO and AH

The incenter I is equidistant from the lines AO and AH , since these lines make equal angles
with the sidelines AC and AB (see Fig. 5). Now, the line AO is represented by the equation

(q − v)x− (a− u)y = qu− av.
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The square distance from I to the line AO is

((q − v)p− (a− u)q − (qu− av))2

(a− u)2 + (q − v)2
. (2)

I

A

B C

O

H

N

Figure 5: The incenter I is equidistant from the lines AO and AH

By replacing (u, v) by (−u,−v), we obtain the square distance from I to the line AH as

((q + v)p− (a + u)q + (qu− av))2

(a+ u)2 + (q + v)2
. (3)

Equating the expressions in (2) and (3), and simplifying, we obtain, after clearing denominator
and cancelling 4(a− p)2,

(qu− av)(uv − aq) = 0.

Note that qu − av 6= 0, for otherwise, O = (u, v) lies on the line AN , and the triangle is
isosceles. This means that uv − aq = 0, and the circumcenter O lies on the curve H .

4.2. Euler’s formula and Feuerbach’s theorem

The famous Euler’s formula relates the centers and radii of the circumcircle and the incircle:

OI2 = R(R − 2r).

By the Feuerbach theorem, the nine-point circle is tangent internally to the incircle, i.e.,

IN =
R

2
− r. It follows that OI2 = 2R · IN . This means

(

(u− p)2 + (v − q)2
)2

= 4((u− a)2 + (v − q)2)(p2 + q2).

Now,
((u− p)2 + (v − q)2)2 − 4((u− a)2 + (v − q)2)(p2 + q2)

= 4(uv − aq)(uv − 2qu− 2pv + (2p+ a)q) + f1(u, v) · f2(u, v).
where

f1(u, v) = (u− 2p)2 − (v − 2q)2 − 3p2 + 2ap+ q2, (4)

f2(u, v) = u2 − v2 + p2 − 2ap+ q2.

Since uv = aq, we conclude that f1(u, v) = 0 or f2(u, v) = 0.
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4.3. A third relation

Since AH = 2R cosA and sin
A

2
=

r

AI
, we also have

AO · AH = 2R2 cosA = 2R2

(

1− 2 sin2
A

2

)

= 2R2 − (2Rr)2

(a− p)2
= 2R2 − (R2 −OI2)2

(a− p)2

= 2((u− a)2 + (v − q)2)− (u− a)2 + (v − q)2 − (u− p)2 − (v − q)2

(a− p)2

= 2(u− p)2 − 2(v − q)2 − (a− p)2.

Squaring, we obtain

((u− a)2 + (v − q)2)((u+ a)2 + (v + q)2) = (2(u− p)2 − 2(v − q)2 − (a− p)2)2.

Now, it can be verified that

((u− a)2 + (v − q)2)((u+ a)2 + (v + q)2)− (2(u− p)2 − 2(v − q)2 − (a− p)2)2

= 4(uv − aq)2 − f1(u, v) · f3(u, v)

where f1(u, v) is given in (4) above, and

f3(u, v) = 3u2 − 3v2 − 4pu+ 4qv + p2 + 2ap− q2 − 2a2.

Since uv = aq, we conclude that f1(u, v) = 0 or f3(u, v) = 0.

Proposition 3 follows from the combined results of §§ 4.1–3.

5. Solutions of the construction problem from I, N , A

We shall assume a 6= 0 and q2 6= a(3a − 2p) so that the curves H and K are rectangular
hyperbolas. Counting multiplicity, the number of real intersections is between 2 and 4, since
elimination of y leads to the quartic equation

f(x) = x4 − 4px3 + (p2 + 2ap− 3q2)x2 + 4aq2x− a2q2 = 0. (5)

5.1. Nonconstructibility

The intersections of two rectangular hyperbolas are in general not constructible using ruler
and compass. For example, with a = 3, p = 1, q = 1, the quartic polynomial in (5) becomes
x4−4x3+4x2+12x−9. It cannot be factored into the product of two quadratic polynomials
in x (with rational coefficients), nor can it be expressed as a quadratic polynomial in a
polynomial in x.

Remark. The quartic equation

a0x
4 + a1x

3 + a2x
2 + a3x+ a4 = 0

is solvable by quadratic equations in two stages if and only if

a3
1
= 4a0(a1a2 − 2a0a3).
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5.2. Number of intersections of the rectangular hyperbolas

The quartic polynomial (5) has multiple roots if and only if

3p4 − 18p2q2 + 27q4 + 16ap3 + 144apq2 + 24a2p2 − 72a2q2 − 16a4 = 0.

Let a be a fixed positive number. The number of real intersections of the rectangular hyper-
bolas is 2, 3, or 4 according as I lies inside, on, or outside the region

3x4 − 18x2y2 + 27y4 + 16ax3 + 144axy2 + 24a2x2 − 72a2y2 − 16a4 ≤ 0, y ≥ 0. (6)

2a

3
−2a N a

A

I

p

O1

O2

O3

H

H

K

K

Figure 6: Case with three real intersections of the rectangular hyperbolas

Figure 6 shows a point I on the boundary of the region defined by (6), with the cor-
responding three locations O1, O2, and O3 for the circumcenter. The point O1 is a double
point defined by the rectangular hyperbolas H and K . Since I lies outside the cardioid of
the circle O1(A), there is no solution with O1 as circumcenter. On the other hand, since I

is outside the circle O2(A) and inside the corresponding cardioid, there is a triangle ABC

with nine-point center N , circumcenter O2, and excenter I. Finally, O3 yields a triangle with
incenter I since I clearly lies inside the circle O3(A).

6. Constructible case q = 0

Suppose q = 0. This means that I, N , A are collinear. We shall avoid the isosceles case,
which has been treated in § 2. In this case, the circumcenter is an intersection of the line
x = 0 and the rectangular hyperbola

K0 : (x− 2p)2 − y2 = 3p2 − 2ap.
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By symmetry, we need only consider

O =
(

0,
√

p(p+ 2a)
)

for a > −p

2
. This can be constructed as follows. Let I ′ be the reflection of I in N . Construct

the circle A(I ′), and the perpendicular to NI at N . One of these intersections can be taken
as O. This leads to a triangle ABC with

B =

(

−a

2
−
√

3p(p+ 2a)

2
,

√
3a

2
+

√

p(p+ 2a)

2

)

,

C =

(

−a

2
+

√

3p(p+ 2a)

2
, −

√
3a

2
+

√

p(p+ 2a)

2

)

,

and sidelengths

a =
√
3(a + p), b =

∣

∣

∣

√
3a−

√

p(p+ 2a)
∣

∣

∣
, c =

√
3a+

√

p(p+ 2a) .

Here are the various possibilities of the triangle depending on the range of a :

range of a b angle A I

−p

2
< a < −p

3

√

p(p+ 2a)−
√
3a 120◦ B − excenter

−p

3
< a < p

√
3a−

√

p(p+ 2a) 120◦ B − excenter

a > p
√

p(p+ 2a)−
√
3a 60◦ incenter

The observation that angle A is either 60◦ or 120◦ suggests the following simpler con-
struction of the triangle, given a > −p

2
(see Fig. 7).

N
A

I
F

B

C

Z

Y
C′

B′

Figure 7: Constructible case q = 0 with a > −p

2
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Given I, N , A on a line, let F be the midpoint of IA. Construct

(1) the circle I(F ),

(2) the circle F (A) to intersect the circle I(F ) at Y and Z,

(3) the circle N(F ) to intersect the line AY at C ′ and the extension of AZ at B′ (or AZ
at B′ and the extension of AY at C ′),

(4) B on AZ such that AB = 2 · AB′ and C on AY such that AC = 2 · AC ′.

ABC is the triangle with I as the incenter or B-excenter.

7. Constructible case a = 0

Suppose a = 0. This means that ∠IAN = 90◦. In this case, uv = 0. If u = 0, then I, N ,
A are collinear, a case we have treated in § 6. If v = 0, then (u − 2p)2 − (2q)2 = 3p2 − q2;
u = 2p±

√

3(p2 + q2). There are two possible positions for the circumcenter:

O =
(

2p+
√

3(p2 + q2), 0
)

, O′ =
(

2p−
√

3(p2 + q2), 0
)

.

These points can be constructed as follows.

(1) Construct the line ℓ throughN parallel toAI, and the pointN ′ on ℓ such that IN ′ = IN .

(2) Extend IN ′ to I ′ such that II ′ = 2 · IN ′.

(3) Construct an equilateral triangle II ′P .

(4) Construct the circle N ′(P ) to intersect ℓ at O and O′ (see Fig. 8).

A

I

N N ′

I ′

P

OO′
ℓ

Figure 8: Construction of O and O′

(i) For O, we have

B =

(

2p+
√
3q +

√

3(p2 + q2)

2
, −2

√
3p+ q +

√

3(p2 + q2)

2

)

and

C =

(

2p−
√
3q +

√

3(p2 + q2)

2
,
2
√
3p− q +

√

3(p2 + q2)

2

)

.
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The triangle ABC has sidelengths

a = 3p+ 2
√

3(p2 + q2) ,

b = 2p−
√
3q +

√

3(p2 + q2) ,

c = 2p+
√
3q +

√

3(p2 + q2) ,

and A = 120◦, with circumradius R =
√
3p+ 2

√

p2 + q2. In this case, I is the incenter, with

inradius r =

√
3

2
p .

(ii) For O′, we have

B′ =

(

2p−
√
3q −

√

3(p2 + q2)

2
,
2
√
3p− q −

√

3(p2 + q2)

2

)

and

C ′ =

(

2p+
√
3q −

√

3(p2 + q2)

2
, −2

√
3p+ q −

√

3(p2 + q2)

2

)

.

The triangle ABC has sidelengths

a′ = −3p+ 2
√

3(p2 + q2),

b′ = 2p+
√
3q −

√

3(p2 + q2),

c′ =
∣

∣

∣
−2p +

√
3q +

√

3(p2 + q2)
∣

∣

∣
,

and A = 60◦, with circumradius R = −
√
3p+2

√

p2 + q2. I is the A- or B-excenter according

as p > 4
√
3 q or p < 4

√
3 q . The corresponding exradius is

√
3

2
p . If p = 4

√
3 q , the point B′

coincides with A.
Figure 9 illustrates the case q =

√
3 p .

N

A

B′

C′

C

B

OO′

I

Figure 9: Constructible case q =
√
3 p
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8. Constructible case 3p2 − 2ap− q2 = 0

Given N and I, we first determine the position of A satisfying this condition, so that the
curve K is the union of the two lines y− 2q = ±(x− 2p). Recall that the origin is at N . We
may assume I in the first quadrant, with coordinates (p, q). Complete the rectangle NI ′IN ′

with I ′ = (p, 0) and N ′ = (0, q). Construct

(i) the perpendicular to N ′I ′ at I ′, to intersect the line N ′I at D,

(ii) the midpoint E of N ′D,

(iii) the reflection A of E in I (see Fig. 10).

If A = (a, q), then E = (2p − a, q), and D = (4p − 2a, q). Since N ′I · I ′D = II ′2, we have
p(3p− 2a) = q2.

A I EN ′

I ′N

D

Figure 10: Construction of A satisfying 3p2 − 2ap− q2 = 0

(1) The line y − 2q = −(x− 2p) intersects the hyperbola

H0 : xy =
(3p2 − q2)q

2p

at two real points

O1 =

(

p+ q +

√

(2p+ q)(p2 + q2)

2p
, p+ q −

√

(2p+ q)(p2 + q2)

2p

)

,

O2 =

(

p+ q −
√

(2p+ q)(p2 + q2)

2p
, p+ q +

√

(2p+ q)(p2 + q2)

2p

)

.

(2) If 2p > q, the line y − 2q = (x− 2p) intersects the hyperbola H at two real points

O3 =

(

p− q +

√

(2p− q)(p2 + q2)

2p
, −p + q +

√

(2p− q)(p2 + q2)

2p

)

,

O4 =

(

p− q −
√

(2p− q)(p2 + q2)

2p
, −p+ q −

√

(2p− q)(p2 + q2)

2p

)

.

If 2p = q, O3 = O4 = (−p, p). In this case, A =
(

−p

2
, 2p

)

, and I = (p, 2p). Figure 11
illustrates this case, when there are three locations of the circumcenter. Clearly, there is a
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O3

O1

O2

N

I
A

H0

H0

Figure 11: Three locations of circumcenter for 2p = q

triangle with circumcenter O1 and incenter I. For O2, there is one with excenter I since I lies
in the cardioid for the circle O2(A). But there is no such triangle with circumcenter O3, the
point of tangency of the hyperbola xy = −p2 and the line x− y+ 2p = 0, since I lies outside
the cardioid corresponding to O3(A).
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