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Abstract. We construct a triangle given its incenter, nine-point center and a
vertex by locating the circumcenter as an intersection of two rectangular hyperbo-
las. Some special configurations leading to solutions constructible with ruler and
compass are studied. The related problem of construction of a triangle given its
circumcenter, incenter, and one vertex is revisited, and it is established that such
a triangle exists if and only if the incenter lies inside the cardioid relative to the
circumcircle.
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1. Introduction

In this note we solve the construction problem of a triangle ABC' given its incenter [, its
nine-point center N, and one vertex A. This is Problem 35 in Harold CONNELLY’s list of
construction problems [1]. We shall show that the triangle is in general not constructible
with ruler and compass, but can be easily obtained by intersecting conics. Some special
configurations of I, N, A from which the triangle can be constructible with ruler and compass
are studied in details in §§ 2, 6-8.

2. The isosceles case

We assume equal lengths AB = AC'. In this case, I, N, A are collinear. The incircle and the
nine-point circle are tangent to each other internally at the midpoint of the base BC'. We
set up a rectangular coordinate system with N at the origin, I at (p,0), and A at (a,0), and

* The author thanks the referees for their excellent suggestions leading to improvements of the present paper.
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Figure 1: Construction in the isosceles case with collinear {/, N, A}

seek the inradius r. We shall assume p > 0 so that it is the distance between I and N. The

circumradius is R = 2(p + 7). On the other hand, sing = i . The circumradius is also
given by
R:2(p—a—|—r)tan§:p—a+r: (p—a+r) (p—a)? '
2sin A 2 cos? 4 2<1_< r )2> 2(p—a—r)
p—a
Equating this to 2(p + r), and simplifying, we have
f(r) = 4r* +4dar + (a — p)(a + 3p) = 0. (1)
3p

This equation has two real roots if and only if a < 5

(i) fp<a< %p, both roots are negative.

(ii) If —3p < a < p, there is exactly one positive root r. Since f(0) < 0 and f(p — a) =
(p — a)? > 0, the positive root r < p — a. There is a unique solution.

(iii) If a < —3p, this equation has two positive roots. Since
f(0) = f(=a) = (a=p)(a+3p) >0 and f (%) =p(2a—3p) <0,

the two roots are in the range 0 < r < —a. Rewriting (1) as
p—a —a—3p

r(—a—r)= 5 5

we are led to the following construction:
Let M be the midpoint of I A, and M’ the reflection of M in N.

(1) Construct a circle € of diameter —a (> 0) passing through M and M’. Its center
is a point K on the perpendicular bisector of MM’.
(2) Join I K to intersect the circle ¢ at P and @ (see Fig. 1).

Each of the circles, center I, passing through P (respectively @), is the incircle of an
isosceles triangle with nine-point center V.
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3. Construction of triangle from O, I, A

In the general case we shall solve the construction problem of triangle ABC from I, N, A
by locating the circumcenter O. In the present section we revisit the construction problem
of a triangle from its circumcenter O, incenter I, and one vertex A. The problem has been
solved, for example, in [5, §4.1]; see also [3]. Here, we study the locus of I (relative to O and
A) for which an inscribed triangle exists, and distinguish between the possibilities of I as the
incenter or one of the excenters of the triangle. We adopt the notation P(Q) for the circle,
center P, passing through the point Q.

A

AV
el

Figure 2: Illustration to Proposition 1

Proposition 1. Given distinct points O, A, and I, construct

(1) the circle O(A) to intersect the line Al at a point A’ different from A,

(2) the circle A'(I).
If the two circles intersect at two distinct points B and C, then I is the incenter or an excenter
of triangle ABC' according as it lies inside or outside the circle O(A).

Proof: We shall only prove the case when [ is inside the circle. With reference to Fig. 2, we
have n
(i) £LBAI = LCAI = 5 since A'B=AC,

(i) ZA'BC = LAAC = ZA'AB =%, and ZABI = ZATB =212

From these,
/CBI = L/A'BI — /ABC = /A'IB — ZA'AB = /ABI.

Therefore, BI bisects angle B. Similarly, C'I bisects angle C'; and I is the incenter of triangle
ABC. 0

Proposition 2. Given distinct points O and A, and a point I not on the circle O(A), there is
a triangle ABC' with circumcenter O and incenter (or excenter) I if and only if I lies inside
the cardioid with cusp A relative to the circle O(A).

Proof: Set up a rectangular coordinate system with A at the origin and O at (0, —b), b < 0.
The circle O(A) has equation
2%+ (y +b)? = b
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Figure 3: Given O, A, I, there is a triangle ABC with circumcenter O and
incenter or excenter [ if and only if I lies inside the cardioid.

Consider a point I with coordinates (p, q), not on the given circle. The line ATl intersects the

circle again at
s ( 2bpq 2bq? )
p2 + q2’ p2 + q2 :

The circle A’(I) has equation
(0" + @) (2® + y) + dbpgz + 4bg*y — (0 + ¢*)(* + 4bg + ¢°) = 0.
The radical axis of the two circles is the line
Abpgr — 2b(p* — ¢*)y — (1 + ¢*) (P + 4bg + ¢*) = 0.

The two circles intersect at two real points if and only if the square distance from (0, —b) to
the radical axis is less than b?:

20 = ¢*) — (P + )P +4bg + ¢*)*
(4bpq)? + (2b(p* — ¢*))?

(p* + 2bq + ¢*)?
A2 (p? + ¢2)2 : ((p2 + q2)2 + 4bQ(P2 + q2) - 4b2p2).

0 > b?

This is equivalent to
(p? + ¢*)? + 4bq(p* + ¢*) — 4b*p* < 0.

In polar coordinates, we write (p,q) = (rcos@, rsinf) and obtain

r?(r? + 4br sin 6 — 40 cos? 0) < 0,
r2(r + 2bsin 6 + 2b)(r + 2bsin § — 2b) < 0,
—2b(1 +sinf) < r < 2b(1 — sinh).

This is the region, shown in Fig. 3, bounded by the cardioid r = 2b(1 — sin§). O

Remarks. (1) A point [ inside the cardioid, but outside the circle O(A), is the A-excenter of
a triangle ABC' if and only if I and O are on the same side of the tangent to the circle at A.

(2) Figure 4 shows two examples when [ lies outside O(A), and realized as an excenter of a
triangle ABC' inscribed in the given circle.
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Figure 4: Two examples where point I lies inside the cardioid and outside O(A),
hence I is an excenter of a triangle ABC.

4. Circumcenter from I, N, A

Given three distinct points I, N, A, we set up a rectangular coordinate system with N at
the origin, I at (p,q), and A at (a,q), assuming without loss of generality that ¢ > 0. We
establish Proposition 3 below by making use of three well known conditions (in §§ 4.1-3) to
construct equations governing the coordinates of O.

Proposition 3. If triangle ABC' is nonisosceles, the circumcenter O is an intersection of the
two curves

JC . Ty = aq,
and
H o (x—2p)° = (y —29)* = 3p> — 2ap — ¢°.
These curves are rectangular hyperbolas except when
(i) a=0,ie, ZIAN =90°,
(i) ¢=0, or
(i) ¢* =p(3p — 2a).

In these cases, the triangle is constructible with ruler and compass (see §§ 68 below).

The proof of Proposition 3 consists of several steps, worked out in §§ 4.1-3 below. We
begin by noting that if the circumcenter O has coordinates (u, v), then the orthocenter H has
coordinates (—u, —v), since N is the midpoint of OH.

4.1. I is equidistant from AO and AH

The incenter I is equidistant from the lines AO and AH, since these lines make equal angles
with the sidelines AC' and AB (see Fig. 5). Now, the line AO is represented by the equation

(g —v)r — (a —u)y = qu — av.
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The square distance from I to the line AO is

(g =v)p— (a—u)g - (qu—av))* @)

(@ —u)*+ (¢ —v)?

C
Figure 5: The incenter [ is equidistant from the lines AO and AH

By replacing (u,v) by (—u, —v), we obtain the square distance from I to the line AH as
((g +v)p — (a+u)g + (qu — av))?
(a+u)?+ (¢+v)?

Equating the expressions in (2) and (3), and simplifying, we obtain, after clearing denominator

and cancelling 4(a — p)?,

(3)

(qu — av)(uv — aq) = 0.

Note that qu — av # 0, for otherwise, O = (u,v) lies on the line AN, and the triangle is
isosceles. This means that uv — ag = 0, and the circumcenter O lies on the curve JZ.

4.2. Euler’s formula and Feuerbach’s theorem

The famous Euler’s formula relates the centers and radii of the circumecircle and the incircle:
OI’ = R(R — 2r).

By the Feuerbach theorem, the nine-point circle is tangent internally to the incircle, i.e.,
IN =% — 7. Tt follows that OI* = 2R - IN. This means

((w—p)*+ @ —q)?)°

=4((u—a)’ + (v = )*)(P* + &*).
Now,
(u=p)*+(—a?)° —4(u—0a)+ (v - )*)(P* + &)
= 4(uv — aq)(uv — 2qu — 2pv + (2p + a)q) + fi(u,v) - fo(u,v).
where
filu,v) = (u—2p)* — (v—2q¢)* = 3p* + 2ap + ¢*, (4)
folu,v) = u? —v*+p* —2ap + ¢*

Since uv = aq, we conclude that fi(u,v) =0 or fo(u,v) = 0.
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4.3. A third relation

Since AH = 2R cos A and sin;1 AI’We also have
2 2 oA
AO-AH = 2R°cosA=2R (1—251n 5)
2 2 _ )72)2
oR? _ (2R7’)2_2R2_(R 012)
(a —p) (a —p)
( (u—a)P+@w=9)7*—(u—p)?*—(v—0q)?

= 2((u—a)*+ (v—q)?) —

(@ —p)?
= 2(u—p)?*-2(v—9q)?*—(a—p)?*

Squaring, we obtain

((u—=a)’+ (v =q)*)((u+a)’+ (v+q)?) = 2u—p)°-2(v—0q)°—(a—p)?)>
Now, it can be verified that

(u—a)* + (v —=q))(u+a)’ + (v+q)*) = 2(u—p)* = 2(v — q)* = (a — p)*)*

= 4(“” - CLQ) - fl(u>v) ) f3(ua U)

where fi(u,v) is given in (4) above, and

fa(u,v) = 3u® — 3v* — dpu + 4qu + p* + 2ap — ¢* — 2a*.

Since uv = aq, we conclude that fi(u,v) =0 or fs(u,v) =0.
Proposition 3 follows from the combined results of §§ 4.1-3.

5. Solutions of the construction problem from I, N, A

We shall assume a # 0 and ¢*> # a(3a — 2p) so that the curves 2 and % are rectangular
hyperbolas. Counting multiplicity, the number of real intersections is between 2 and 4, since
elimination of y leads to the quartic equation

f(x) = 2" — 4pa® + (p* + 2ap — 3¢°)2” + dag’x — a’¢* = 0. (5)

5.1. Nonconstructibility

The intersections of two rectangular hyperbolas are in general not constructible using ruler
and compass. For example, with a = 3, p =1, ¢ = 1, the quartic polynomial in (5) becomes
xt — 423 + 422 + 122 — 9. Tt cannot be factored into the product of two quadratic polynomials
in x (with rational coefficients), nor can it be expressed as a quadratic polynomial in a
polynomial in x.

Remark. The quartic equation
aort + a1 + asr® + asr + a4 =0
is solvable by quadratic equations in two stages if and only if

a? = dag(ayay — 2apas).
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5.2. Number of intersections of the rectangular hyperbolas
The quartic polynomial (5) has multiple roots if and only if

3p* — 18p%¢* + 27¢* + 16ap® + 144apq® + 24a*p?* — 72a*¢* — 16a* = 0.

Let a be a fixed positive number. The number of real intersections of the rectangular hyper-
bolas is 2, 3, or 4 according as [ lies inside, on, or outside the region

3zt — 1822y? + 27y* + 16ax® + 144azxy® + 24a®2? — 72a%y* — 16a* <0, y > 0. (6)

Figure 6: Case with three real intersections of the rectangular hyperbolas

Figure 6 shows a point I on the boundary of the region defined by (6), with the cor-
responding three locations Oy, Oy, and O3 for the circumcenter. The point O; is a double
point defined by the rectangular hyperbolas 77 and £ . Since [ lies outside the cardioid of
the circle O;(A), there is no solution with O; as circumcenter. On the other hand, since I
is outside the circle Oy(A) and inside the corresponding cardioid, there is a triangle ABC
with nine-point center N, circumcenter O,, and excenter I. Finally, O3 yields a triangle with
incenter I since I clearly lies inside the circle O3(A).

6. Constructible case ¢ =0

Suppose ¢ = 0. This means that I, N, A are collinear. We shall avoid the isosceles case,
which has been treated in §2. In this case, the circumcenter is an intersection of the line
x = 0 and the rectangular hyperbola

Ky (z—2p)* —y? = 3p” — 2ap.
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By symmetry, we need only consider
0= (O, p(p + 2a)>

for a > —g . This can be constructed as follows. Let I’ be the reflection of I in N. Construct

the circle A(I’), and the perpendicular to NI at N. One of these intersections can be taken
as O. This leads to a triangle ABC' with

B - <_2_¢W \/§a+\/m>
t |

2 2 2
a +/3pp+2a) V3a p(p+ 2a)
¢ =127 5 2 T 2 !

and sidelengths

a=3(a+p), b:‘\/ga—\/p(p—l—Qa), c=V3a+/plp+2a).

Here are the various possibilities of the triangle depending on the range of a:

range of a b angle A I
—L<a< =8| pp+2a)—+v3a| 120° | B — excenter

—f<a<p V3a —/p(p+2a)| 120° | B — excenter

a>p Vp(p+2a) —V3a | 60° incenter

The observation that angle A is either 60° or 120° suggests the following simpler con-
struction of the triangle, given a > —g (see Fig. 7).

Figure 7: Constructible case ¢ = 0 with a > —g
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Given I, N, A on a line, let F' be the midpoint of IA. Construct

(1) the circle I(F),
(2) the circle F'(A) to intersect the circle I(F') at Y and Z,
(3) the circle N(F) to intersect the line AY at C” and the extension of AZ at B’ (or AZ

at B" and the extension of AY at C”),
(4) B on AZ such that AB =2- AB’ and C on AY such that AC =2- AC".

ABC' is the triangle with I as the incenter or B-excenter.

7. Constructible case a =0
Suppose a = 0. This means that ZIAN = 90°. In this case, uv = 0. If uw = 0, then I, N,

A are collinear, a case we have treated in §6. If v = 0, then (u — 2p)? — (2¢)* = 3p* — ¢%;

u=2p+ /3(p?> + ¢?). There are two possible positions for the circumcenter:

0= (204307 ), 0), O = (20— 307+ ), 0).
These points can be constructed as follows.
(1) Construct the line £ through N parallel to A, and the point N’ on ¢ such that IN' = IN

Extend IN' to I' such that II' =2 - IN'.

(2)
(3) Construct an equilateral triangle I1'P.
(4) Construct the circle N'(P) to intersect ¢ at O and O’ (see Fig. 8).

///
~
/// N =
s _
7/ -~ /I \\
/ _ - / \
7 - s N
/ - / | \
/ -~ / / \
/ -7 4 ] \
Al - ,/ | \
s - / | \
/ // I \\ / | \
/ / ~ / | \
! P AN // | \
| e AN y | |
Ny I b\ E
O'N N~ ; 0
AN I
\\ |
A |
~
N
T

Figure 8: Construction of O and O’

B

(i) For O, we have
(229 +V3a+ 3+ %) 2v3p+g+ /B + q2)>
2 ’ 2

and

C

(229 —V3q+ 3P+ 2V3p—q+ /300 + q2)>
2 ’ 2 '
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The triangle ABC' has sidelengths

a = 3p+2/3(p2+ ¢?),
b = 2p—V3¢+ 3>+ %),
c = 2p+V3q+ V3 +¢?),
and A = 120°, with circumradius R = v/3p + 2\/m. In this case, [ is the incenter, with
V3

inradius r = 5P

(ii) For O, we have

B - <2p—\/§q—\/w zﬁp_q_\/w>
2 I

2

and

2 ’ 2
The triangle ABC' has sidelengths
d = =3p+2\3(0*+¢),
Vo= 2+ Vig— V30 + ),
d = ‘—2p—|—\/§q—|— V3(? +¢?)

and A = 60°, with circumradius R = —v/3p+ 2+1/p? + ¢2. I is the A- or B-excenter according

as p > 4v/3q or p < 4v/3¢q. The corresponding exradius is ?p. If p=4+/3¢q, the point B’
coincides with A.
Figure 9 illustrates the case ¢ = V3 p.

C,:<2p+\/5q—\/3(p2+q2) C2V3ptag- 3(p2+q2)>‘

Y

B

Figure 9: Constructible case ¢ = V3 p
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8. Constructible case 3p*> — 2ap — ¢*> = 0

Given N and I, we first determine the position of A satisfying this condition, so that the
curve £ is the union of the two lines y — 2¢ = +(x — 2p). Recall that the origin is at N. We
may assume [ in the first quadrant, with coordinates (p,q). Complete the rectangle NI'I N’
with I’ = (p,0) and N’ = (0, q). Construct

(i) the perpendicular to N'I" at I, to intersect the line N'I at D,
(ii) the midpoint £ of N'D,
(iii) the reflection A of E in I (see Fig. 10).
If A= (a,q), then E = (2p —a,q), and D = (4p — 2a,q). Since N'I - I'D = II", we have
p(3p — 2a) = ¢*.

N’ A

N I

Figure 10: Construction of A satisfying 3p? — 2ap —¢*> =0

(1) The line y — 2¢ = —(x — 2p) intersects the hyperbola

(3p* — ¢*)q

Hy o wy = o

at two real points

o - <p+q+\/<2p+q><p2+q2>,p+q_\/<2p+q><p2+q2>>’

2p 2p
2 + 2+ 2 2 + 2_|_ 2
Oy = <p+q—\/(p Q);; q>,p+q+\/(p q)Q(; q)>.

(2) If 2p > q, the line y — 2¢ = (x — 2p) intersects the hyperbola J# at two real points

0, — <p_q+\/(2p—q)2(p2+q2)’_p+q+\/(2p—q)(p2+q2)>’

D 2p

Oy = (p—q—\/@P—Q)Q(;”qz)’ _p+q_\/(2p—q)2(;2+q2)).

If 2p = q, O3 = Oy = (—p,p). In this case, A = (—g, 2p), and I = (p,2p). Figure 11
illustrates this case, when there are three locations of the circumcenter. Clearly, there is a
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<

6

O1

Figure 11: Three locations of circumcenter for 2p = ¢

triangle with circumcenter O, and incenter I. For Oy, there is one with excenter I since I lies
in the cardioid for the circle Oy(A). But there is no such triangle with circumcenter Os, the
point of tangency of the hyperbola xy = —p? and the line x — y + 2p = 0, since I lies outside
the cardioid corresponding to Os(A).
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