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Abstract. We consider a configuration generated by a point on a sphere and a
rectangular hexahedron whose top face is inscribed to the equator of the sphere.
Our results could be regarded as the space version of a geometric problem in
the plane posed by Fermat in 1658 that was first proved by Euler almost one
century later in 1750. In fact, both the ratio of the semicircle’s diameter and
the rectangle’s height in Fermat’s theorem and of the sphere’s diameter and the
hexahedron’s height in our generalization of it is

√
2. We also give four additional

invariant and equivalent properties for this configuration. Moreover, when the

above ratio is

√
2

3
another sum of squares does not depend on the position of a

point on the sphere.
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Figure 1: The configuration of Fermat’s problem
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1. Space version of Fermat’s problem

In this paper we consider the space version of the following geometric problem in the plane
that was first formulated in a letter by Pierre de Fermat (see Fig. 1 and [8, pp. 402–408]).

Fermat’s Problem. Let P be a point on the (semi)circle that has the top side AB of the

rectangle ABB′A′ as a diameter. Let
|AB|
|AA′| =

√
2. Let the segments PA′ and PB′ intersect

the side AB in the points AP and BP . Then |ABP |2 + |BAP |2 = |AB|2.

The great Leonhard Euler in [7] has provided the first rather long proof, which is old
fashioned (for his time), and avoids the analytic geometry (which offers rather simple proofs as
we shall see later). Several more concise synthetic proofs are now known (see [11], [9, pp. 602,
603], [1, pp. 168, 169] and [10, pp. 181, 264]). A very nice description of Euler’s proof
is available on the Internet (see [12]). Some recent contributions to the Fermat geometric
problem are in [2], [3], [4], [5] and [6].

In the 3-dimensional Euclidean space, the (semi)circle is replaced by a sphere Σ, the
rectangle ABB′A′ by the rectangular hexahedron (or the rectangular box or the rectangular
parallelepiped) ABCDA′B′C ′D′ whose top and bottom faces T = ABCD and T ′ = A′B′C ′D′

as well as all four other faces ABB′A′, BCC ′B′, CDD′C ′ and DAA′D′ are rectangles with
T inscribed into the equator ε of Σ and the points AP and BP by four intersections AP ,
BP , CP , DP of the plane πT determined by T with the lines PA′, PB′, PC ′, PD′ for
any point P not on the plane πT ′ determined by T ′. Let r be the radius of Σ and let
e = |A′A| = |B′B| = |C ′C| = |D′D|. Here is a version of the Fermat geometric problem in
the 3-dimensional space (see Fig. 2).
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Figure 2: The space version of Fermat’s problem
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Theorem 1. For any P ∈ Σ \ (ε ∪ πT ′), the following statements are equivalent:

(a) The ratio
2 r

e
of the sphere’s diameter and the hexahedron’s height is

√
2.

(b) The sum σT = |ACP |2 + |BDP |2 + |CAP |2 + |DBP |2 has the value 8 r2.

Proof: We use analytic geometry, which offers a simple proof. Let the origin of the rect-
angular coordinate system be the center O of the sphere Σ so that the points A, B, C

and D have the coordinates (u, v, 0), (−u, v, 0), (−u,−v, 0) and (u,−v, 0), where u =
r a−

a+
,

v =
2 r a

a+
and a± = 1± a2 for some real number a. The equation of the sphere Σ is a standard

x2 + y2 + z2 = r2. Its equator ε is a circle in the (x, y)-plane with the center in the origin and
the radius r.

We assume that the coordinates of the points A′, B′, C ′ and D′ are (u, v,m), (−u, v,m),
(−u,−v,m) and (u,−v,m) for some real number m. An arbitrary point P on the sphere has

the coordinates

(

2 r s t−
s+ t+

,
4 r s t

s+ t+
,

r s−

s+

)

for some real numbers s and t. Recall that the point

(x, y, 0) in the plane πT lies on the line through the different points (b, c, d) and (e, f, g) with

g 6= d provided x =
b g − d e

g − d
and y =

c g − d f

g − d
. If we apply this to the pairs of points (A, P ),

(B,P ), (C, P ) and (D,P ), we easily find that the coordinates of the intersections AP , BP ,
CP and DP are
(

r U−

W
,
2 r V −

W
, 0

)

,

(

r U+

W
,
2 r V −

W
, 0

)

,

(

r U+

W
,
2 r V +

W
, 0

)

, and

(

r U−

W
,
2 r V +

W
, 0

)

,

respectively, where

U± = 2 a+ms t− ± a− r s− t+, V ± = 2 a+ms t± a r s− t+, and W = a+ t+(ms+ − r s−).

The above equivalence is the consequence of the identity σT − 8 r2 =
4 r2 s2

−

(

2 r2 −m2
)

W 2
.

Remark 1. Note that the quadrangle APBPCPDP is a rectangle.

Remark 2. The 2-dimensional formula |ABP |2 + |BAP |2 = |AB|2 is a degenerate consequence
of the above 3-dimensional formula

|ACP |2 + |BDP |2 + |CAP |2 + |DBP |2 = 8 r2

by letting the hexahedron degenerate to a vertical rectangle having its top side a diameter
of the (hemi)sphere, and taking the point P on the (semi)circle formed by intersecting the
(hemi)sphere with the plane of the rectangle.

2. Invariants of Fermat’s space configuration

Our first goal is to introduce several statements similar to (b) that could be added to Theo-
rem 1. In other words, we explore what other relationships in the above space configuration
remain invariant as the point P changes position on the sphere. Each of the conditions (c) – (f)
below is equivalent to the condition (a) above.

We begin with the vertices of the bottom rectangle T ′ replacing the vertices of the top
rectangle T .
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(c) The sum σT ′ = |A′CP |2 + |B′DP |2 + |C ′AP |2 + |D′BP |2 has the value 16 r2.

Proof of (c): Since 16 r2 − σT ′ =
4ms+

(

2 r2 −m2
)

(ms+ − 2 r s−)

W 2
, the conclusion holds for all

points P ∈ Σ with the third coordinate different from m and
m

2
.

Of course, Pythagoras’ theorem might be useful in computing the sum σT ′ . We have
A′C2

P
= A′A2 + AC2

P
, B′D2

P
= B′B2 +BD2

P
, C ′A2

P
= C ′C2 + CA2

P
, D′B2

P
= D′D2 +DB2

P
.

By summing up these four identities, we get σT ′ = 4 e2 + σT = 8 r2 + 8 r2 = 16 r2.
This method will also yield generalizations. Take points A∗, B∗, C∗, D∗, AP∗, BP∗, CP∗,

DP∗ such that AA∗ = λAA′, BB∗ = λBB′, CC∗ = λCC′, DD∗ = λDD′, ACP∗ = µACP ,
BDP∗ = µBDP , CAP∗ = µCAP , DBP∗ = µDBP . Then it follows easily that the sum
|A∗CP∗|2 +|B∗DP∗|2 + |C∗AP∗|2 + |D∗BP∗|2 has the value 8 r2 (λ2 + µ2). In this case too,
some points on the sphere must be excluded.

Let A∗

P
, B∗

P
, C∗

P
, D∗

P
be the midpoints of the segments AAP , BBP , CCP , DDP . Note

that A∗

P
B∗

P
C∗

P
D∗

P
is a rectangle. Let O, N and S be the center, the north pole and the south

pole of the sphere Σ. For Y = O,N , let σY ∗ = |Y A∗

P
|2 + |Y B∗

P
|2 + |Y C∗

P
|2 + |Y D∗

P
|2.

(d) The sums σN∗ and σO∗ have the values 6 r2 and 2 r2.

Proof of (d): The differences σN∗ − 6 r2 and σO∗ − 2 r2 are both equal to
r2 s2

−

(

2 r2 −m2
)

W 2
.

For different points X and Y in the space and a real number k 6= −1, let Z = X(k)Y
denote the point that divides the segment XY in the ratio k (i.e., XZ : ZY = k : 1). For
Y = O,N, S, let σY k denote the sums

|Y N(k)A∗

P
|2 + |Y N(k)B∗

P
|2 + |Y N(k)C∗

P
|2 + |Y N(k)D∗

P
|2.

(e) The sums σOk, σNk and σSk have the constant values
2(k2 + 2)r2

(k + 1)2
,

6 k2 r2

(k + 1)2
and

2(3 k2 + 8 k + 8) r2

(k + 1)2
.

Proof of (e): The differences σSk − 2(3 k2 + 8 k + 8) r2

(k + 1)2
, σOk − 2(k2 + 2)r2

(k + 1)2
and σNk − 6 k2 r2

(k + 1)2

are all equal to
k2 r2 s2

−

(

2 r2 −m2
)

(k + 1)2W 2
.

Let A′

P
, B′

P
, C ′

P
and D′

P
be the midpoints of A′AP , B

′BP , C
′CP and D′DP . Let σO′ be

the sum |OA′

P
|2 + |OB′

P
|2 + |OC ′

P
|2 + |OD′

P
|2.

(f) The sum σO′ has the constant value 4 r2.

Proof of (f): Since 4 r2 − σO′ =
ms+

(

2 r2 −m2
)

(ms+ − 2 r s−)

W 2
, the conclusion holds for all

points P ∈ Σ with the third coordinate different from m and
m

2
.

3. The ratio 2 r
e

equal
√
2
3

Let X denote the center of a square on either segments APCP or BPDP perpendicular to the

plane πT . Our last result shows that some other values for the ratio
2 r

e
besides the familiar√

2 can appear in the Fermat space configuration.
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Theorem 2. For any P ∈ Σ \ (ε ∪ πT ′), the following statements are equivalent:

(i) The ratio
2 r

e
of the sphere’s diameter and the hexahedron’s height is

√
2

3
.

(ii) The sum σX = |XA∗

P
|2 + |XB∗

P
|2 + |XC∗

P
|2 + |XD∗

P
|2 is equal to 2 r2.

Proof: Since the point X is

(

2mr s t−

t+ W
,

4mr s t

t+W
,

±2 r2 s−
W

)

, this follows from the identity

σX − 2 r2 =
r2 s2

−

(

18 r2 −m2
)

W 2
.
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of the 6th ed., Mame and De Gigord, Paris 1920).
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