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1. Introduction

The area surrounded by three mutually touching semicircles with collinear centers constructed
on the same side is called an arbelos. The radical axis of the two inner semicircles divides
the arbelos into two curvilinear triangles with congruent incircles, which are called the twin
circles of Archimedes. Circles congruent to the twin circles are called Archimedean circles of
the arbelos.

The arbelos is generalized in several ways, the generalized arbelos of intersecting type
[10], the generalized arbelos of non-intersecting type [9], and the skewed arbelos [6, 8, 12]. In
[7] both the generalized arbelos in [9] and [10] are unified as the collinear arbelos with an
additional generalized arbelos, and its Archimedean circles are defined.

In this paper we give several Archimedean circles of the collinear arbelos. For the skewed
arbelos, no definition of Archimedean circles has been given, though several twin circles
have been considered. In this paper we define Archimedean circles of the skewed arbelos by
generalizing the twin circles of Archimedes of the ordinary arbelos to the skewed arbelos.
Then we give several Archimedean circles of the skewed arbelos.

For points P and Q, (PQ) is the circle with diameter PQ and P (Q) is the circle with
center P passing through the point Q. For a circle δ, its center is denoted by Oδ.

2. The collinear arbelos

Let α = (AP ), β = (BQ) and γ = (AB) for points P and Q on the line AB. The configuration
consisting of the three circles α, β and γ is denoted by (α, β, γ). The point of intersection of
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the radical axis of α and β and the line AB is denoted by O. Let s = |AQ|/2, t = |BP |/2
and u = |AB|/2.

Unless otherwise stated, we use a rectangular coordinate system with origin O such that
the points A, B, P , Q have coordinates (a, 0), (b, 0), (p, 0), (q, 0), respectively with a−b = 2u.
The following relation holds [7]:

ta + sb = tq + sp = 0. (1)

For points V and W on the line AB, with respective x-coordinates v and w, we write V < W
and V ≤ W to denote v < w and v ≤ w, respectively. The perpendicular to AB passing
through the point W is denoted by PW . The following lemma is a slight generalization of the
results in [6] and [7]. The proof is similar and therefore omitted.

Lemma 1. The following circles have radius |AW ||BV |/(4u) for points V and W on the line
AB.
(i) The circles touching the circles γ internally, (AV ) externally and the line PW from the

side opposite to the point B in the case B < V < A and B ≤ W < A.

(ii) The circles touching γ externally, (AV ) internally and PW from the side opposite to the
point A in the case V < B ≤W < A.

(iii) The circles touching γ and (AV ) externally and PW in the case A < V and A < W .

(iv) The circles touching γ and (AV ) internally and PW in the case W ≤ B and A < V .
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Figure 1: Circles of radius |AW ||BV |/(4u)

The configuration (α, β, γ) is called a collinear arbelos if

(i) B < Q < P < A, or
(ii) B < P ≤ Q < A, or
(iii) P < B < A < Q.

In each of the cases the configuration is explicitly denoted by (BQPA), (BPQA) and (PBAQ),
respectively. If P = Q, then (BPQA) is called a tangent arbelos.
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For (BQPA) and (BPQA), let δα be the circle touching the circles γ internally, α ex-
ternally in the region y > 0 and the line PO from the side opposite to B. For (PBAQ), let
δα be the circle touching γ externally, α internally in the region y > 0 and PO from the side
opposite to A. The circle δβ is defined similarly (see Fig. 2). The next theorem can also be
found in [7].
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Figure 2: The circles δα and δβ

Theorem 1. For a collinear arbelos (α, β, γ), the circles δα and δβ are congruent with common
radius at/(2u) = st/(s+ t).

We call the circles δα and δβ the twin circles of Archimedes of the collinear arbelos, and
denote their common radius by rA. Also circles congruent to the twin circles are said to be
Archimedean circles of the collinear arbelos or Archimedean with respect to (α, β, γ).

Let us consider points P1, P2, . . . and Q1, Q2, . . . lying on the line AB such that

· · · < P2 < P1 < O < Q1 < Q2 < · · · .
Figure 3 shows a simple application of Theorem 1, where A = Q1, B = P1, P = P2, Q = Q2,
|P1P2| = |P2P3| = · · · = 2t and |Q1Q2| = |Q2Q3| = · · · = 2s. For i = 1, 2, . . . the line PO is
the radical axis of the circles (Qi+1Pi) and (QiPi+1) by (1). And the following circles have

O Q1 = AB = P1P = P2P3 Q2 = Q Q3

Figure 3: Arbeloi with congruent Archimedean circles
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radius rA, (i) the circle touching (Qi+1Pi+1) internally (Qi+1Pi) externally and PO from the
side opposite to B, (ii) the circle touching (Qi+1Pi) internally (QiPi) externally and PO from
the side opposite to B. By exchanging the roles of the points Pi and Qi, we get similar circles
of radius rA touching PO from the side opposite to A.

2.1. Several Archimedean circles of the collinear arbelos

For the collinear arbelos (α, β, γ), I is the point of intersection of the circle γ and the line PO

lying in the region y > 0, and Jα is the point of intersection of the circle α and the line AI.
The point Jβ is defined similarly. Let us assume (α, β, γ) is a tangent arbelos.

The circle with center O touching the tangents of the circle β from the point Oα is
Archimedean, which is denoted by W8 in [3] (see Fig. 4). The smallest circle passing through
the point Jα and touching PO is Archimedean, which is denoted by W9 in [3]. Also the
smallest circle passing through one of the points of intersection of the circles γ and A(O) and
touching PO is Archimedean, which is denoted by W13 in [3]. In this section, we generalize
those Archimedean circles to the collinear arbelos. The circle W8 is generalized as follows.

Theorem 2. For a collinear arbelos (α, β, γ), a circle δ with center O is Archimedean if and
only if the external center of similitude of the circles (BP ) and δ is the point O(AQ).

Proof: If δ is Archimedean, the external center of similitude of (BP ) and δ divides the
segment O(BP )O externally in the ratio t : rA. By (1), its coordinates are

(−rA(b+ p)/2

t− rA
, 0

)

=

(−s(−ta/s− tq/s)

2t
, 0

)

=

(

a + q

2
, 0

)

,

which are also the coordinates of the point O(AQ). Since the correspondence between the
radius of δ and the external center of similitude of (BP ) and δ is one-to-one, the converse
holds.

W9

W13

β Jα

PO

γ
I

O AB Oα

W8

A(O)

AVV ′ W

K

Cγ

C′

J ′

BH ′

J

H

Figure 4: The circles W8, W9 and W13 Figure 5: Generalizations of W9 and W13

Theorem 3. Let V , V ′ and W be points on the line AB such that V ′ < B < V < A and
B < W < A. We denote by K the point of intersection of the circle γ and the line PW lying
in the region y > 0. Let C (resp. C′) be the circle touching the circles γ internally (resp.
externally), (AV ) externally (resp. (AV ′) internally) and the line PW from the side opposite
to the point B (resp. A). And, let J (resp. J ′) denote the point of intersection of (AV ) (resp.
(AV ′)) and the line AK, and finally H (resp. H ′) the foot of the perpendicular to AB from
the point J (resp. J ′).
(i) The line PH (resp. PH′) touches C (resp. C′).
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(ii) The circle with center A belonging to the pencil of circles determined by the circle γ
and the line PH (resp. PH′) also belongs to the pencil of circles determined by the circle
(AV ) (resp. (AV ′)) and the line PW .

Proof: We use a rectangular coordinate system with origin W such that the points A, B
and V have coordinates (a, 0), (b, 0) and (v, 0), respectively, with a− b = 2u (see Fig. 5). By
the similarity |AH| = a(a − v)/(a− b). Hence the x-coordinate of the point H is a − a(a−
v)/(a− b) = a(v − b)/(a − b) = |AW ||BV |/(2u). This is equal to a diameter of the circle C
by (i) of Lemma 1, i.e., the line PH touches C. The rest part of (i) is proved similarly with
(ii) of Lemma 1.

The circle γ and the line PH have the equations

x2 − (a+ b)x+ y2 = −ab (2)

and
(a− b)x = a(v − b), (3)

respectively. Subtracting (3) from (2), we get

x2 − 2ax+ y2 = −av. (4)

This is an equation of the circle with center A belonging to the pencil of circles determined
by γ and PH . While the circle (AV ) and the line PW have the equations

x2 − (a + v)x+ y2 = −av (5)

and
(−a + v)x = 0, (6)

respectively. Adding (5) and (6), we also get (4). Therefore the same circle also belongs to
the pencil of circles determined by (AV ) and PW . The rest part of (ii) is proved similarly.

Let Lα be the perpendicular to the line AB from the point Jα. The circles W9 and W13

are generalized as follows.

Corollary 1. Let (α, β, γ) be a collinear arbelos.
(i) The line Lα touches the circle δα.

(ii) The circle with center A belonging to the pencil of circles determined by the circle γ
and the line Lα also belongs to the pencil of circles determined by the circle α and the
line PO.

Let E be the external common tangent of the circles α and β touching the two circles in the
region y > 0. It touches α and β at the points Jα and Jβ, respectively, if (α, β, γ) = (BQPA)
or (α, β, γ) = (BPQA) [5]. This also holds when (α, β, γ) = (PBAQ), for the circles α, β and
(PQ) form a collinear arbelos, whose Archimedean circles are congruent to those of (α, β, γ)
by Theorem 1.

2.2. Infinite Archimedean circles of the collinear arbelos

In [11] we have considered infinite Archimedean circles of the tangent arbelos (α, β, γ): If
a circle δ passes through the point O and does not touch the circle β internally, then δ is
Archimedean if and only if the external center of similitude of the circles δ and β lies on the
circle α. In this section we generalize those circles to the collinear arbelos (see Fig. 6).
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Theorem 4. For a collinear arbelos (α, β, γ) and a point S different from the point O, let
Sα be the external center of similitude of the circles (OS) and (BP ). In the case (α, β, γ)
being a tangent arbelos, (OS) does not touch the circle β internally. Then the circle (OS)

is Archimedean if and only if the point Sα lies on the circle (AQ) and the vectors
−→
OS and−−−−−→

O(AQ)Sα are parallel with the same direction.

Proof: If the circle (OS) is Archimedean, its center is expressed by (rA cos θ, rA sin θ) for a
real number θ, and the point Sα divides the segment O(BP )Oδ in the ratio t : rA externally.
Therefore its coordinates are

(−rA(b+ p)/2 + trA cos θ

t− rA
,
trA sin θ

t− rA

)

=

(

a+ q

2
+ s cos θ, s sin θ

)

by (1). This implies that Sα lies on the circle (AQ) and the vectors
−→
OS and

−−−−−→
O(AQ)Sα are

parallel with the same direction. Since the correspondence between S and Sα is one-to-one,
the converse holds.
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Figure 6: An Archimedean circle (OS)

For a tangent arbelos (α, β, γ), if a circle (OS) touches the circle β internally at the point
O, then the external center of similitude of (OS) and β is O, which lies on the circle α, and

the vectors
−→
OS and

−−→
OαO are parallel with the same direction. Therefore this case is excluded

in the theorem.

Theorem 5. For a collinear arbelos (α, β, γ) and a point S different from the point O, let Sα

and Sβ be points on the circles (AQ) and (BP ), respectively, such that the vectors
−−−−−→
O(AQ)Sα

and
−−−−−→
O(BP )Sβ are parallel to the vector

−→
OS with the same direction.

(i) The circle (OS) is Archimedean if and only if the point S divides the segment SαSβ in
the ratio s : t internally.

(ii) If S does not lie on the line AB, the circle (OS) is Archimedean if and only if the three
points Sα, Sβ and S are collinear.

Proof: The points Sα and Sβ have the coordinates ((a + q)/2 + s cos θ, s sin θ) and ((b +
p)/2 + t cos θ, t sin θ) for a real number θ, respectively. If the point S divides the segment
SαSβ internally in the ratio s : t, its coordinates are

(

t((a+ q)/2 + s cos θ) + s((b+ p)/2 + t cos θ)

s+ t
, 2rA sin θ

)

= (2rA cos θ, 2rA sin θ),
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since t(a+q)/2+s(b+p)/2 = 0 by (1). Therefore the circle (OS) is Archimedean. Conversely
if (OS) is Archimedean, let S ′ be the point dividing SαSβ in the ratio s : t internally. Then
S ′ = S as just proved. The part (ii) follows from (i).

2.3. Power’s Archimedean circles

Frank Power has found a new type of Archimedean circles [13]: For the tangent arbelos
(α, β, γ), if two congruent circles touch at one of the farthest points on the circle α from the
line AB and also touch the circle γ, they are Archimedean. In this section we generalize those
circles to the collinear arbelos.

If two congruent circles of radius r touching at a point D also touch a given circle C at
points different from D, we say that D generates circles of radius r with C. And the two
circles are said to be generated by D with C. If the generated circles are Archimedean, we call
them Power type Archimedean circles. In [1], [2], [4] and [13], only one case is considered, in
which the two congruent circles touch a given circle internally. But we do not exclude the
case in which the two circles touch a given circle externally.

Lemma 2. For a circle δ of radius r a point D generates circles of radius |r2 − |DOδ|2|/(2r)
with δ.

Proof: If x is the radius of the generated circles, then (r ± x)2 = |DOδ|2 + x2.

Lemma 3. For points V and W on the line AB, if the circle (AV ) and the line PW intersect,
the points of intersection generate circles of radius |AW ||BV |/(2u) with the circle γ.

Proof: Let K be one of the points of intersection, d = |KOγ|, w = |AW | and v = |BV |.
There are three cases to be considered,

(i) B < V < A,
(ii) V < B and
(iii) A < V (see Fig. 1).

In (iii) we get

d2 = |KW |2 + |WOγ|2 = |AW ||WV |+ |WOγ|2 = w(v − 2u− w) + (u+ w)2 = u2 + wv.

Similarly we get d2 = u2 ± wv in the other cases. Therefore by Lemma 2, the radius of the
generated circles is wv/(2u).

Each of the three cases in the proof corresponds to (i), (ii) and (iii) of Lemma 1, respec-
tively, in which the radius of the touching circles in Lemma 1 is half the size of the radius of
the generated circles in Lemma 3. Power’s result is generalized to the collinear arbelos by
this fact and Theorem 1 (see Fig. 7).

Corollary 2. The points of intersection of the circle α and the perpendicular bisector of the
segment AO generate Archimedean circles with the circle γ for a collinear arbelos (α, β, γ).

If (α, β, γ) is a tangent arbelos, the point O generates circles of radius 2rA with the circle γ
[12]. The fact is also generalized by Theorem 1 and Lemmas 1 and 3. If (α, β, γ) = (BPQA)
or (α, β, γ) = (PBAQ), the points of intersection of the circles α and β generate circles of

radius 2rA with each of the circles γ and (PQ).
If (α, β, γ) = (BPQA) or (α, β, γ) = (PBAQ), the circle (AO(BP )) and the line PO

intersect. If (α, β, γ) = (BQPA), let L1 and L2 be the limiting points of the pencil of circles
determined by the circles α and β such that L1 < L2. Since B < L1 < O < P < L2, we get



38 H. Okumura: Archimedean Circles of the Collinear Arbelos and the Skewed Arbelos

ABP QO
O(AO)O(BO)

α
β

γ

A
B QP

PO

OO(BP )

O(AQ)

γ

β
α

Figure 7: A generalization of Power’s circles Figure 8: A generalization of Bui’s circles

b+ p < 0, i.e., a(b+ p)/2 < 0. Therefore (AO(BP )) and PO also intersect in this case. Quang
Tuan Bui has found several Power type Archimedean circles for the tangent arbelos, one of
which is as follows: The points of intersection of the circle (AOβ) and the line PO generate
Archimedean circles with the circle γ for a tangent arbelos (α, β, γ) [2]. This can also be
generalized (see Fig. 8).

Corollary 3. The points of intersection of the circle (AO(BP )) and the line PO generate
Archimedean circles with each of the circles γ and (O(BP )O(AQ)) for a collinear arbelos (α, β, γ).

Proof: The points of intersection generate Archimedean circles with γ by Theorem 1 and
Lemma 3. If (α, β, γ) = (BQPA) or (α, β, γ) = (BPQA), the radius of the circles generated
by the points with (O(BP )O(AQ)) is

(a− (a + q)/2)(−(b+ p)/2)

(a+ q)/2− (b+ p)/2
=

s(a+ q)t/s

a + q + (a+ q)t/s
=

st

s+ t
.

by Lemma 3 and (1). The rest of the corollary is proved similarly.

Theorem 6. If a circle δ of radius r touches a circle C and has a point in common with the
circle (OCOδ), the point generates circles of radius r with C, one of which is δ itself.

Proof: Let T be the tangent point of the circles δ and C. The theorem holds if δ = (TOC).
Let us assume that the circles δ and (OCOδ) intersect and the line TOC intersects δ and
the common chord of δ and (OCOδ) at points S and H , respectively. Notice |HS||HT | =
|HOC||HOδ|. Let |HT | = x and let s be the radius of C. If δ touches C externally, (2r−x)x =
(s+ x)(r− x), which implies x = rs/(r+ s). Hence the points of intersection generate circles
of radius r with C by Lemma 3. Two of the four generated circles coincide with δ, since δ
has radius r and passes through the points of intersection of δ and (OCOδ). The rest of the
theorem is proved similarly.

Any Archimedean circle δ touching a circle C and intersecting the circle (OδOC) can be
regarded as a Power type Archimedean circle generated by the points of intersection of δ and
(OδOC) with C by the theorem. Also we can get two more Power type Archimedean circles
touching δ in this case.

2.4. Another Bui’s Archimedean circles

Quang Tuan Bui has also found that the points of intersection of the circles A(O) and B(I)
generate Archimedean circles with the circle γ for a tangent arbelos (α, β, γ) [1]. In this
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section we generalize this.

Theorem 7. Let V , W be points on the segment AB such that |VW | = 2r > 0 and let M
be the midpoint of the segment VW . Let the circle γ intersect the lines PV and PW in the
points J and K, respectively. Let C be the circle touching PV , PW and γ.
(i) The circles A(J), B(K) and the line PM belong to the same pencil of circles.

(ii) Let δ be a circle with center on the line AB and touching C. If the pencil is intersecting
and the points of intersection and C lie on the same side of γ, the points generate circles
of radius r with each of the circles γ and δ.

Proof: Let v and w be the x-coordinates of the points V and W , respectively (see Fig. 9).
Notice that

|AJ |2 = |V J |2 + |AV |2 = (a− v)(2u− (a− v)) + (a− v)2 = 2u(a− v).

Therefore the circle A(J) has the equation

(x− a)2 + y2 = 2u(a− v). (7)

Similarly the circle B(K) has the equation

(x− b)2 + y2 = 2u(w − b). (8)

Subtracting (7) from (8) with a− b = 2u, we get x = (v + w)/2. This proves part (i).
In order to prove (ii), let R be one of the points of intersection of A(J) and B(K), and

let S and T be the points on the line AB such that δ = (ST ) and T < S. There are four
cases to be considered:

(C1) the circle C touches the circles γ and δ internally,
(C2) C touches γ internally δ externally,
(C3) C touches γ externally δ internally,
(C4) C touches γ and δ externally.

Let us assume (C1). Then W < V , since R lies inside of γ. Therefore

v − w = 2r. (9)

Let s and t be the x-coordinates of S and T , respectively. By the Pythagorean theorem,

(

s− t

2
− v − w

2

)2

−
(

v + w

2
− s + t

2

)2

=

(

a− b

2
− v − w

2

)2

−
(

a+ b

2
− v + w

2

)2

.

Simplifying this, we get
aw + bv + st− ab = sw + tv. (10)

Let h be the distance between R and AB. From (7), h2 = (a− b)(a− v)− ((v + w)/2− a)2.
Therefore by (9) and (10),

|ROδ|2 −
(

s− t

2

)2

= h2 +

(

v + w

2
− s+ t

2

)2

−
(

s− t

2

)2

= aw + bv + st− ab− (s+ t)(v + w)

2
= sw + tv − (s+ t)(v + w)

2
= −(s− t)r.
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Hence R generates circles of radius r with δ by Lemma 2. Since γ satisfies the same condition
as C, R also generates circles of radius r with γ. The rest of the part (ii) is proved similarly.

The circle γ and the line Lα do not always intersect if (α, β, γ) = (PBAQ). If they
intersect, we denote one of the points of intersection by Lα. The perpendicular to the line
AB passing through the center of the circle δα is denoted by Kα. If Lα touches the circle γ
for (PBAQ), the circle B(Lα) degenerates to the point B. Therefore the circle B(Lα) and
the line Kα do not intersect in this case.

Corollary 4. Let the circle γ and the line Lα intersect for a collinear arbelos (α, β, γ).
(i) The circles A(Lα), B(I) and the line Kα belong to the same pencil of circles. If the

pencil is intersecting, the points of intersection generate Archimedean circles with each
of the circles γ and α.

(ii) The circles A(I), B(Lα) and the line Kα belong to the same pencil of circles. If the
pencil is intersecting, the points of intersection generate Archimedean circles with the
circle γ.

If (α, β, γ) is a tangent arbelos, A(O) = A(Lα) holds. Hence Theorem 7 and Corollary 4
are generalizations of Bui’s result.

2.5. The external common tangents of the circles α and β

Let us recall that E is the external common tangent of the circles α and β touching the two
circles in the region y > 0. For a tangent arbelos (α, β, γ), the maximal circle touching the
line E and the minor circular arc of the circle γ cut by E internally is Archimedean, which is
called Bankoff quadruplet circle and denoted by W4 in [3].

In this section we generalize this circle and give several new Power type Archimedean
circles related to E . Let E be the point of intersection of the lines E and OγI for the collinear
arbelos (α, β, γ). The tangent of the circle γ at the point I is denoted by I.
Lemma 4. The lines E and OγI are perpendicular.

Proof: Let Kα and Kβ be the points on the circles α and β, respectively, such that the

vectors
−−−→
OαKα,

−−−→
OβKβ and

−−→
OγI = (−(a + b)/2,

√
−ab) are parallel with the same direction.

γ

AB S MT

JK

VW

A(J)B(K)

Cδ

Figure 9: A generalization of Bui’s Archimedean circles
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We denote their coordinates by

(

1

2
(a + p) +

1

2
(a− p) cos θ,

1

2
(a− p) sin θ

)

and
(

1

2
(b+ q) +

1

2
(q − b) cos θ,

1

2
(q − b) sin θ

)

,

respectively, where cos θ = −(a + b)/(a − b) and sin θ = 2
√
−ab/(a − b). Since

−−−→
KαKβ =

1
2

(

b+ q − a− p+(q − b− a+ p) cos θ, (q − b− a+ p) sin θ
)

, the inner product of the vectors
−−−→
KαKβ and

−−→
OγI is

−
(

b+ q − a− p

2
− (q − b− a+ p)(a+ b)

2(a− b)

)

(a+ b)

2
+

(q − b− a+ p)2
√
−ab

2(a− b)

√
−ab =

ap− bq

2
,

which equals 0. Therefore the lines KαKβ and OγI are perpendicular. Hence the lines OαKα

and OβKβ are perpendicular to KαKβ. This implies that the lines KαKβ and E coincide.
Therefore the lines E and OγI are perpendicular.

Since the point Kα in the proof is the tangent point of the circle α and the line E , it
coincides with the point Jα defined in 2.1. Similarly the point Kβ coincides with the point
Jβ. By the proof, the respective coordinates of the points Jα and Jβ are

(

a(−b+ p)

a− b
,
(a− p)

√
−ab

a− b

)

and

(

b(−a + q)

b− a
,
(b− q)

√
−ab

b− a

)

.

Theorem 8. The line E has the equation

(a + b)x− 2
√
−aby − ab = ap. (11)

Proof: By Lemma 4, the line E has an equation (a + b)x − 2
√
−aby + d = 0 for some real

number d. But it passes through the point Jα. Therefore we get d = −a(b+ p).

The right side of (11) is the power of the point O with respect to the circle α, which also
equals the power of the point O with respect to the circle β. The remaining external common
tangent of the circles α and β has the equation (a+ b)x+ 2

√
−aby − ab = ap.

Theorem 9. Let (α, β, γ) be a collinear arbelos.
(i) The lines E and I are parallel, and the circle (EI) is Archimedean.

(ii) If IJ is a diameter of the circle γ, the points of intersection of the circle (EJ) and the
perpendicular bisector of IJ generate Archimedean circles with γ.

(iii) If (α, β, γ) = (BQPA) or (α, β, γ) = (BPQA) (resp. (α, β, γ) = (PBAQ)), the points
of intersection of the circle (OγI) (resp. (OγE)) and the line E (resp. I) generate
Archimedean circles with γ.

Proof: That the lines E and I are parallel follows from Lemma 4 (see Figs. 10 and 11). By
Theorem 1 and (11), the distance between the point I(0,

√
−ab) and the line E is

| − 2
√
−ab

√
−ab− a(b+ p)|

√

(a+ b)2 + (−2
√
−ab)2

=
a|b− p|
a− b

=
at

u
= 2rA.

This proves (i).
The part (ii) follows from Lemma 3. To prove (iii), let K be one of the points of

intersection of the circle (OγE) and the line I in the case (α, β, γ) = (PBAQ). Then
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Figure 11: (PBAQ)

|KOγ|2 − u2 = |IK|2 = 2urA by (i). Hence by Lemma 2, the point K generates circles
of radius rA with γ. The rest part of (iii) follows from Lemma 3.

The part (i) of Theorem 9 is a generalization of the circle W4 of the tangent arbelos. For
a tangent arbelos (α, β, γ), the circle touching the line E at the point E and the line parallel
to E passing through the point O is Archimedean, which is denoted by W5 in [3]. This circle
is also generalized to the collinear arbelos. Let (α, β, γ) be a collinear arbelos. Since the
points Jα and Jβ lie on the lines AI and BI, respectively, ∠JβIJα = π/2. If K is the point
of intersection of the lines PO and E , then K is the midpoint of the segment JαJβ . Hence the
point I lies on the circle (JαJβ) with center K. Let L be the point of intersection of the lines
JαP and JβQ. Then JαIJβL is a rectangle and L is the remaining point of intersection of the
circle (JαJβ) and the line PO. Therefore reflecting the Archimedean circle (EI) and the line
I in the line E , we get one more Archimedean circle touching E at the point E and the line
parallel to E passing through the point L. This is a generalization of the Archimedean circle
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W5 of the tangent arbelos.

3. The skewed arbelos

We now consider another kind of generalization of the arbelos. From now on α and β are the
circles (AO) and (BO), respectively for a point O on the segment AB. We also redefine a
and b as the radii of α and β, respectively. We now use a rectangular coordinate system with
origin O so that the points A and B have coordinates (2a, 0) and (−2b, 0), respectively. We
consider various circles touching the two circles at points different from O. Such a circle is
expressed by the equation

(

x− b− a

z2 − 1

)2

+

(

y − 2z
√
ab

z2 − 1

)2

=

(

a+ b

z2 − 1

)2

(12)

for a real number z 6= ±1 [12]. The circle is denoted by γz. It touches α and β internally
if |z| < 1 and externally if |z| > 1. The external common tangents of α and β have the
equations (a − b)x ∓ 2

√
aby + 2ab = 0, which are denoted by γ±1, where the double-signs

correspond. The configuration consisting of the three circles α, β and γz is also denoted by
(α, β, γz), and called a skewed arbelos. We redefine rA as the common radius of Archimedean
circles of the tangent arbelos (α, β, γ0), i.e., rA = ab/(a + b).

3.1. Basic properties of the skewed arbelos

We summarize several results in [8] with additional basic properties of the skewed arbelos.
Let Az be the tangent point of the circles α and γz. The point Bz is defined similarly (see
Figs. 12 and 13). Let c =

√

a/b, c′ =
√

b/a, ϕ = ϕ(a, b) = 2ab/(az2 + b), ψ = ψ(a, b) = czϕ,
ϕ′ = ϕ(b, a), and ψ′ = ψ(b, a). Then the coordinates of Az and Bz are (ϕ, ψ) and (−ϕ′, ψ′),
respectively.

Let δαz be the circle different from the circle β touching the circle α and the tangents of
β from the point Az. It touches α internally if |z| < 1, and externally if |z| > 1. The circle
δβz is defined similarly. They are congruent with common radius |1 − z2|rA and their centers
have the coordinates (rA(1 + z2), 2rAcz) and (−rA(1 + z2), 2rAc

′z), respectively.
Let Tβ be the tangent point of the circles β and δβz and let Tα be their common tangent

at Tβ . The point Tα and the line Tβ are defined similarly. The points Tα and Tβ have the
coordinates (z2ϕ′, c2ψ′) and (−z2ϕ, c′2ψ), respectively. The two points lie on the line AzBz.
The tangents Tα and Tβ have the equations

(−az2 + b)x+ 2z
√
aby − 2abz2 = 0 and (−a+ bz2)x+ 2z

√
aby − 2abz2 = 0, (13)

respectively. They are perpendicular to the lines AzOγz and BzOγz , respectively. The distance
between the center of the circle δαz and the line Tα is |1− z2|rA. Therefore Tα also touches δαz .
Similarly Tβ touches δβz .

Let Wα be the tangent point of Tα and δαz . The point Wβ is defined similarly. Their
coordinates are (z2ϕ, z2ψ) and (−z2ϕ′, z2ψ′), respectively. Hence they lie on the lines AzO
and BzO, respectively. The lines Tα and Tβ intersect at the point (0, z

√
ab), which is denoted

by Oz. Since it is the midpoint of the segment Oδαz
O

δ
β
z
, the lines Tα and Tβ are the internal

common tangents of the circles δαz and δβz . The points Tα, Tβ, Wα, Wβ and O lie on the circle
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Figure 12: A skewed arbelos (α, β, γz) for |z| < 1
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Figure 13: A skewed arbelos (α, β, γz) for |z| > 1

with center Oz and radius |z|
√
ab, which is denoted by ζz. It is orthogonal to the circles α,

β, δαz and δβz .

Let Uα be the reflected image of the point Wα in the center of the circle δαz . The point
Uβ is defined similarly. If φ = φ(a, b) = 2rA(1 + z2) − z2ϕ, ρ = ρ(a, b) = 4rAcz − z2ψ,
the coordinates of Uα and Uβ are (φ, ρ) and (−φ′, ρ′), respectively, where φ′ = φ(b, a) and
ρ′ = ρ(b, a). The point Uα also lies on the line AzBz because

Uα =
2ab+ b2 + (a− b)az2 + abz4

(a + b)2
Az +

a2 − (a− b)az2 − abz4

(a + b)2
Bz.

Similarly the point Uβ lies on the same line. Let Fα be the foot of perpendicular to the line
Tα from the point Az. The distance between Az and Tα is

|AzFα| = ϕ|1− z2|. (14)
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3.2. A generalization of the twin circles of Archimedes

In this section we generalize the twin circles of Archimedes of the tangent arbelos to the
skewed arbelos. If |z| < 1, the tangent Tα of the circle β intersects the circle γz at two points,
since β is contained in γz. Hence there are two circles touching γz internally, α externally and
Tα from the side opposite to the point B (see Fig. 14). If z > 1, the line Tα and the circle α
have no points in common. For if z = 1, Tα is the external common tangent of the circles α
and β touching in the region y > 0, and the coordinates of the point Tβ shows that it moves
on β counter clockwise when the value of z increases. The fact is also true if z < −1, for
reflecting the skewed arbelos (α, β, γz) in the line AB, we get (α, β, γ−z). The line Tα touches
γz from the side opposite to the point Az if and only if |AzFα| = 2(a + b)/(z2 − 1) by (12).
Solving the equation for z with (14), we get z = ±zα, where

zα =

√

1 +
a +

√

a(a + 4b)

2rA
.

Similarly zβ is defined. Since the radius of γz is a monotone decreasing function of z2 when
z2 > 1, while Tβ moves on β counter clockwise when the value of z increases, Tα and γz have
no points in common, if |z| > zα. Therefore there are two circles touching γz, α internally
and Tα, if |z| > zα (see Figs. 15 and 16). While Tα coincides with γz and touches α and β
when |z| = 1. Therefore it intersects γz at two points if 1 < |z| < zα. Hence there is no circles
touching γz, α internally and Tα in this case (see Fig. 13).

Az

Bz

Tβ

Tα

δαz
δβz

γz

β
α

αβ

γz δαz

δβz

TαTβ

Figure 14: |z| < 1 Figure 15: |z| > max(zα, zβ)

β

δαz

δβz

γz

Tβ Tα

α

Figure 16: min(zα, zβ) < z < max(zα, zβ)
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Theorem 10. Let (α, β, γz) be a skewed arbelos.
(i) If |z| < 1, the two circles touching the circles γz internally, α externally and the line Tα

from the side opposite to the point B and the two circles touching the circles γz inter-
nally, β externally and the line Tβ from the side opposite to the point A are congruent
with common radius (1− z2)rA.

(ii) If |z| ≥ zα, the radius of the two circles touching γz and α internally and Tα is (z2−1)rA.
Also if |z| ≥ zβ, the radius of the two circles touching γz and β internally and Tβ is
(z2 − 1)rA.

Proof: Let G and H be the remaining points of intersection of the circles α and γz with the
line AzFα, respectively. If |z| < 1, then |GH| = 2(a+ b)/(1− z2)− 2a = 2(az2 + b)/(1 − z2)
by (12). Therefore by (i) of Lemma 1 with (14), the radius of the circles touching α is

|GH| · |AzFα|
2|AzH| =

2(az2 + b)

1− z2
· 2ab(1 − z2)

az2 + b

/

4(a+ b)

(1− z2)
= (1− z2)rA.

Similarly the circles touching β have radius (1 − z2)rA. The part (ii) is proved similarly by
(iv) of Lemma 1.

Theorem 10 is a generalization of the twin circles of Archimedes of the tangent arbelos.
Hence it may be appropriate to call circles of radius |1 − z2|rA Archimedean circles of the
skewed arbelos (α, β, γz). If |z| < 1 or |z| > max(zα, zβ), the four Archimedean circles in
Theorem 10 exist (see Figs. 14 and 15). If min(zα, zβ) < |z| < max(zα, zβ), there are only
two Archimedean circles among the four (see Fig. 16). If 1 < |z| < min(zα, zβ), no such circle
exists (see Fig. 13). But Archimedean circles are still defined as circles of radius (z2 − 1)rA
in the last case. If z = zα, the two Archimedean circles touching α, γz and Tα coincide. If
|z| = 1, the four Archimedean circles degenerate to the points Az and Bz.

3.3. Perpendicular case

We consider the case in which the lines Tα and Tβ are perpendicular for the skewed arbelos
(α, β, γz). By (13), the two lines are perpendicular if and only if z = ±z1 or z = ±z2,
where z1 = (a + b+

√
a2 + 6ab+ b2)/(2

√
ab) and z2 = 1/z1. Since z1 > max(zα, zβ), the four

Archimedean circles in Theorem 10 exist in this case (see Figs. 17 and 18).

Theorem 11. For a skewed arbelos (α, β, γz), the following four statements are equivalent.
(i) The lines Tα and Tβ are perpendicular.

(ii) One of the Archimedean circles touching the circles γz, α and Tα coincides with one of
the Archimedean circles touching the circles γz, β and Tβ.

(iii) One of the Archimedean circles touching γz, α and Tα touches α and δαz at the point Tα.

(iv) The circle ζz is Archimedean.

Let Aα
1 and Aα

2 (resp. Aβ
1 and Aβ

2) be the Archimedean circles touching γz, α and Tα (resp.
β and Tβ) such that Aα

1 = Aβ
1 when (ii) holds. In this case the following statements are true.

(v) Each of the distances of the line AB from the points OAα
1
, OAα

2
, O

A
β
2

and Oγz is 2rA.

(vi) The points Oγz , OAα
2
and O

A
β
2

lie on a line parallel to AB.

(vii) There is an Archimedean circle touching the external common tangents of Aα
2 and Aβ

2

and the circles α and β.
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Figure 17: z = z1 Figure 18: z = z2

(viii) Let C be the circle obtained by reflecting Aα
1 in the point Oz. If |z| < 1, then C is the

incircle of the triangle made by Tα, Tβ and the common external tangent of Aα
2 and Aβ

2

nearer to the point O. If |z| > 1, then C is one of the excircles of the triangle made by
Tα, Tβ and the external common tangent of Aα

2 and Aβ
2 farther from O.

Proof: Let us assume (i). The reflected image of the circle δαz in Tβ also touches Tα and
the circle α. Therefore it coincides with one of the Archimedean circles touching α. Also the
reflected image of the circle δβz in Tα coincides with one of the Archimedean circles touching
the circle β. Since the two images of the reflections coincide, (ii) holds. Let us assume (ii).
If |z| < 1, the circle Aα

1 touches Tβ from the side opposite to α. Since it also touches α,
the tangent point coincides with the point Tα. If |z| > 1, then Aα

1 touches α internally and
touches Tβ . Therefore it also touches Tβ at Tα. While δαz touches α at this point in both the
cases. Therefore Aα

1 touches δαz at Tα. This implies (iii). The part (iii) implies (i) obviously.
The equivalence of the parts (i) and (iv) is also obvious.

Let us assume (ii), and let z = z1. Since Tα is the midpoint of the segment OAα
1
Oδαz

, the
y-coordinate of the point OAα

1
is 2c2ψ′ − 2rAcz, which equals −2rA. Since the points OAα

1
and

OAα
2
are symmetric in the point Oα, the y-coordinate of OAα

2
is 2rA, which also equals the

y-coordinate of O
A

β
2

. While 2z
√
ab/(z2 − 1) = 2rA holds by (iv). This proves (v) and (vi) by

(12). The Archimedean circle in (vii) is obtained by reflecting Aα
1 in the line AB. By the

proof of (v), the y-coordinate of the point OC is 2z
√
ab − (−2rA) = 2z

√
ab + 2rA. Therefore

the distance between OC and the line OAα
2
O

A
β
2

is 2z
√
ab. This proves (viii), since z

√
ab is the

radius of the Archimedean circles by (iv). The case z = z2 is proved similarly. The rest of
the case is proved by reflecting the two cases in the line AB.

The part (v) of Theorem 11 shows that the smallest circles passing through each of the
four points and touching AB are Archimedean circles of the tangent arbelos (α, β, γ0). Let
z and w be real numbers different from ±1. The product of the radius of the circle γz and
the common radius of the Archimedean circles of the skewed arbelos (α, β, γz) equals ab by
(12). Therefore the circle γz has radius a if and only if the Archimedean circles of (α, β, γz)
have radius b. Also γz has radius a + b (resp. rA) if and only if the Archimedean circles of
(α, β, γz) have radius rA (resp. a+ b). The circle γz is congruent to the Archimedean circles of
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the skewed arbelos (α, β, γw) if and only if the Archimedean circles of (α, β, γz) are congruent
to the circle γw. In this case (α, β, γz) and (α, β, γw) are said to be complement to each other.
It is equivalent to

|1− z2||1− w2| = (a + b)/rA. (15)

In the rest of this section the two lines Tα and Tβ of the skewed arbelos (α, β, γz) are

explicitly denoted by T α
z and T β

z , respectively. Since z1z2 = 1 and |1 − z2i |rA = |zi|
√
ab

(i = 1, 2) by (iv) of Theorem 11, (15) holds if z = z1 and w = z2. Hence the skewed arbeloi
(α, β, γz1) and (α, β, γz2) are complement to each other. Indeed the Archimedean circle Aα

1

of (α, β, γz1) (resp. (α, β, γz2)) coincides with the circle γz2 (resp. γz1) (see Fig. 19). The lines
T α
z1

and T α
z2

are perpendicular. The circle ζz2 (resp. ζz1) is orthogonal to the circle γz1 (resp.
γz2). Similar properties also hold for the skewed arbeloi (α, β, γ−z1) and (α, β, γ−z2).

γz1

γz2

α

β
T β
z2

T α
z2

T α
z1

T β
z1

δαz2
δβz2

δαz1

δβz1

ζz1

Figure 19: (α, β, γz1) and (α, β, γz2)

3.4. Several Archimedean circles and Power type Archimedean circles

In this section we generalize the Archimedean circles of the tangent arbelos in 2.1, 2.3 and
2.4 to the skewed arbelos (α, β, γz). For a circle δ, the center of similitude of the circles α and
δ is defined as the external (resp. internal) center of similitude of the two circles if |z| < 1
(resp. |z| > 1). The same notion of center of similitude applies to the circles β and δ. The
circle W8 in 2.1 is generalized as follows.

Theorem 12. For the skewed arbelos (α, β, γz) (z 6= ±1), let δ be a circle with center Oz. The
circle δ is Archimedean if and only if the center of similitude of the circles β and δ is the
center of the circle (AzTβ).

Proof: We assume |z| < 1. If δ is Archimedean, the external center of similitude of β and δ
divides the segment OβOz externally in the ratio b : (1− z2)rA. Therefore its coordinates are

(

−(1− z2)rA(−b)
b− (1− z2)rA

,
bz
√
ab

b− (1− z2)rA

)

=

(

ab(1 − z2)

az2 + b
,
(a+ b)z

√
ab

az2 + b

)

.
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Figure 20: Generalizations of the circles W9 and W13 for |z| < 1
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Figure 21: Power’s Archimedean circles for |z| < 1

These are also the coordinates of the center of the circle (AzTβ). Since the correspondence
between δ and the external center of similitude of β and δ is one-to-one, the converse holds.
The other case is proved similarly.

The circle (AzTβ) passes through the point O and has the radius
√

ab (a+ bz2) /(az2 + b).
In the limiting cases z → ±1, the Archimedean circles obtained by Theorem 12 can be
regarded as the points (0,±

√
ab).

Let us assume |z| < 1 (see Fig. 20). If β ′ is the remaining circle touching the circle γz and
passing through the points of intersection of the circle α and the line Tα, then (α, β ′, γz) can be
regarded as a collinear arbelos (BPQA) with some notational changes, and the Archimedean
circles of (α, β, γz) and (α, β ′, γz) are congruent. Hence some results of the collinear arbelos
can be applied to (α, β, γz).

Since the circle δαz touches Tα at the point Wα, the point Uα is also the tangent point
of δαz and the remaining external common tangent of the two Archimedean circles touching
α. Let Lα be this tangent and let Iα be one of the points of intersection of γz and Tα. By
(i) of Corollary 1, the lines Lα, AzIα and the circle α intersect at a point. Let ηαz be the
circle with center Az and passing through the points of intersection of α and Tα. By (ii) of
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Corollary 1, the circle ηαz passes through the points of intersection of γz and Lα. The two
facts are generalizations of the circles W9 and W13 in 2.1 to the skewed arbelos.

Power’s Archimedean circles in 2.3 are generalized to a skewed arbelos by Corollary 2: If
|z| < 1, the points of intersection of the circle α and the perpendicular bisector of the segment

AzFα generate Archimedean circles with the circle γz (see Fig. 21). Let G and H be as in the
proof of Theorem 10. Bui’s Archimedean circles in 2.3 are generalized by Corollary 3: The

points of intersection of the circle (AzO(GH)) and the line Tα generate Archimedean circles

with γz if |z| < 1. Also Bui’s Archimedean circles in 2.4 are generalized by (i) of Corollary 4
(see Fig. 20): If |z| < 1, the circles ηα, H(Iα) and the line parallel to Tα passing through

the center of the circle δαz belong to the same intersecting pencil of circles, and the points of

intersection generate Archimedean circles with each of γz and α.

3.5. Infinite Archimedean circles of the skewed arbelos

In this section we generalize the infinite Archimedean circles of the tangent arbelos in 2.2 to
the skewed arbelos (α, β, γz). Let ǫαz be the circle of radius az2 with center (az2, 0). Also ǫβz
is the circle of radius bz2 with center (−bz2, 0). For different points S and T , the circle (TS)
is said to touch ǫαz appropriately at T , if (TS) touches ǫαz externally (resp. internally) at T
when 0 < |z| < 1 (resp. |z| > 1) and T = O when z = 0 (see Figs. 22 and 23). For a point

Sα on α, the vector
−−−→
OαSα is said to be parallel to

−→
TS appropriately, if the two vectors are

parallel with the same (resp. opposite) direction if |z| < 1 (resp. |z| > 1). The same notions
of appropriate tangency and appropriately parallel vector apply to the circles (TS) and ǫβz
and the vector

−−−→
OβSβ for a point Sβ on β, respectively.

Theorem 13. For a skewed arbelos (α, β, γz) (z 6= ±1), let (TS) be a circle touching the circle
ǫαz appropriately at the point T , where it does not touch β internally. Let Sα be the center of
similitude of the circles β and (TS). Then the circle (TS) is Archimedean if and only if the

point Sα lies on the circle α and the vector
−−−→
OαSα is parallel to

−→
TS appropriately.

Proof: We assume |z| < 1. If the circle (TS) is Archimedean, its center is expressed by
(az2 + l cos θ, l sin θ) for a real number θ, where l = az2 + (1 − z2)rA. Since the point Sα

divides the segment OβOδ in the ratio b : (1− z2)rA externally, it has the coordinates
(−(1− z2)rA(−b) + b(az2 + l cos θ)

b− (1− z2)rA
,

bl sin θ

b− (1− z2)rA

)

= (a(1 + cos θ), a sin θ) .

Hence Sα lies on the circle α and the vector
−−−→
OαSα is parallel to

−→
TS with the same direction.

The converse holds, since the correspondence between (TS) and Sα is one-to-one. The other
case is proved similarly.

By the theorem, we get infinite Archimedean circles touching the circle ǫαz . Exchanging
the roles of the circles α and β, we get one more infinite set of Archimedean circles. In
the limiting cases z → ±1, the infinite Archimedean circles obtained by Theorem 13 can be
regarded as the points on α except the point O.

Theorem 14. For a skewed arbelos (α, β, γz) (z 6= ±1), let (TS) be a circle touching the
circle ǫαz appropriately at the point T . Let Sα and Sβ be the points on the circles α and β,

respectively, such that the vectors
−−−→
OαSα and

−−−→
OβSβ are parallel to the vector

−→
TS appropriately.

(i) The circle (TS) is Archimedean if and only if the point S divides the segment SαSβ in
the ratio a|1 − z2| : (az2 + b) internally in the case |z| < 1 and externally in the case
|z| > 1.
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Figure 22: An Archimedean circle (TS) for |z| < 1
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Figure 23: An Archimedean circle (TS) for |z| > 1

(ii) If S does not lie on the line AB, then (TS) is Archimedean if and only if the three
points Sα, Sβ and S are collinear.

Proof: We assume |z| < 1. Let (a(1 + cos θ), a sin θ) and (b(−1 + cos θ), b sin θ) be the
coordinates of the points Sα and Sβ for a real number θ, respectively. If the point S divides
the segment SαSβ internally in the ratio a(1− z2) : (az2 + b), its coordinates are

(

(az2 + b)a(1 + cos θ) + a(1− z2)b(−1 + cos θ)

a(1− z2) + az2 + b
,
(az2 + b)a sin θ + a(1− z2)b sin θ

a(1− z2) + az2 + b

)

= (az2 + (az2 + 2(1− z2)rA) cos θ, (az
2 + 2(1− z2)rA) sin θ).

Hence |TS| = 2(1 − z2)rA, i.e., the circle (TS) is Archimedean. Conversely, if (TS) is
Archimedean, let S ′ be the point dividing SαSβ internally in the same ratio. Then S ′ = S as
just proved. The case |z| > 1 is proved similarly. The part (ii) follows from (i).

The line Tα touches the circle ǫαz at the point Wα, which is the tangent point of Tα and
the circle δαz . Therefore ǫ

α
z , δ

α
z and Tα touch at this point. The circle ζz is also orthogonal to

the circles ǫαz and ǫβz .
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4. Conclusion

We have obtained several kinds of Archimedean circles of the collinear arbelos and the skewed
arbelos by generalizing Archimedean circles of the ordinary arbelos. For the collinear arbelos
(α, β, γ), the circles (AQ) and (BP ) act like the circles α and β of the tangent arbelos,
respectively. For the skewed arbelos (α, β, γz), the internal common tangents of the circles δαz
and δβz correspond to the radical axis of the circles α and β of the tangent arbelos and play
important roles. It seems that the Archimedean circles of those generalized arbeloi could be
main topics on the generalized arbeloi as in the case of the tangent arbelos.
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