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Abstract. This paper is an introduction in a scientific and tutorial project that
was created by the authors in order to change the existing paradigm of teaching
Descriptive Geometry. The purpose of this project was to develop the theoreti-
cal principles of Descriptive Geometry. This improvement consists in the usage
and integration of three mathematical components: the multidimensional geome-
try, the enumerative geometry and constructive methods. Due to this innovative
paradigm it is possible to analyse the given data of a problem, to calculate the
number of solutions end even to create a new research problem.
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1. Introduction

There are many geometric results based on the well known Grassmann formula

Dm
n = (n−m) · (m+ 1), (1)

giving the dimension of the m-dimensional subspaces (m-planes) in a n-dimensional space,
m < n. Another well known formula

r = m+ q − n (2)
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gives the dimension r or the intersection between a m-plane and a q-plane within the n-space
in the generic case.

However, classical Descriptive Geometry deals with the three-dimensional space, and here
these formulas are simply unnecessary. This kind of limitation is unfounded. That is why
we consider the classical Descriptive Geometry as a special case of a general course called
‘Descriptive Geometry in Higher Dimensions’.

In order to determine the basic elements of ‘Descriptive Geometry in Higher Dimensions’
and to avoid the numerous details connected with properties of lines, planes, 3-planes and so
on, we consider the geometric conditions as a basis of our course. Any m-plane is in some
relation with other subspaces. A relation of two subspaces is called the geometric condition
if it reduces Grassmann’s dimensions of both subspaces.

2. Geometric conditions

There are three kinds of geometric conditions,

1. the conditions of parallelism or partial parallelism,

2. the conditions of orthogonality or partial orthogonality, and

3. the general condition of intersection or partial intersection.

All these conditions may take analytic, constructive, descriptive and enumerative forms. The
main task of our course is to show the constructive, descriptive and enumerative forms of
conditions and their applications. Each condition has a dimension as its main numerical
characteristic.

Taking into account the degree of parallelism between a m-plane and a q-plane according
to

p‖ =
r + 1

m
, (3)

where r is the dimension of common subspace and m ≤ q, we can calculate the dimension of
the condition of parallelism by the formula

Q‖ = p‖ ·m · (n−m− q + p‖ ·m), (4)

where p‖ is the degree of parallelism between the m-plane and the q-plane under m ≤ q, and
n is the dimension of the space, where the condition of parallelism is regarded.

If a m-plane is orthogonal or partial orthogonal to a q-plane then the degree of orthogo-
nality is defined by

p⊥ =
r + 1

m
, (5)

where m is not larger than q. So we can calculate the dimension of the condition of orthogo-
nality by

Q⊥ = p⊥ ·m · (q −m+ p⊥ ·m). (6)

Since we want to consider the general condition of intersection or partial intersection, it is
reasonable to discuss some elements of Hermann Schubert’s calculus (see, e.g., [1]). Any of
Schubert’s varieties can be described by the symbol

em,
am,

m−1,
am−1,

...,

...,
1,
a1

0
a0
, (7)
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where the upper indices m,m − 1, . . . , 1, 0 mean the complete m-flag and the lower indices
mean the incomplete am-flag. Every four indices for which

(m− i) + ai 6= am−i + j (8)

mean the condition of intersection. All such kinds of fours show us the general condition of
intersection or partial intersection. The dimension of the condition may be calculated by the
formula

Qob =
(2 · n−m)(m+ 1)

2
−

m∑
i=0

ai , (9)

where n is the dimension of the space in which the incidence is considered, m is the dimension
of the plane (element) satisfying the generalized condition of incidence, and the ai’s are the
subscripts in the symbolic interpretation of the condition [3].

3. First principles of the course

We now want to discuss the following problem: Let a m-plane or a set of m-planes or a
m-surface or a set of m-surfaces and so on be given in the n-space. These entities will be
called originals. We want to find their correct images in a 2-plane or in subspaces of various
dimensions under a given projection. The image is a set of points, lines, planes, curves,
surfaces, and so on.

Now we formulate three basic statements.

Statement 1. The image of a given original is correct if and only if the set of images and
the set of originals are of equal dimension.

Statement 2. The image of given original is correct if and only if the set of images and the
set of originals are of equal structural characteristics.

Statement 1 is obvious. Let us consider Statement 2: The structure of the n-dimensional
space is a set of subspaces together with a set of binary relations, for example, incidence
relations. This structure is linear if the intersection of two subspaces is a subspace of the
same set. For example, the structure of line spaces is nonlinear. They have a quadratic
structure or a structure of higher degree.

The structure of the 2-dimensional image is a set of plane figures together with a set of
binary relations. The structure of images is linear if the relations are expressed by linear
functions.

If we are fully confident that Statements 1 and 2 are true we may formulate Statement 3.

Statement 3. We have the possibility to solve in the image space all problems which are
formulated in the original space.

4. Examples

Taking a point as the primary object of the three-dimensional space, we can see that the
dimension of the image set has to be three. The image set is a pencil of lines with two points
on each line.

The pencil of lines is represented by the condition e1,02,0 , and the condition e11 means that
a point is on a line.
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Figure 1: The intersection of the line DE with the plane ABC

Taking into account that dim e1,02,0 = dim e01 = 1, we calculate the summary dimension

dim e1,02,0 + dim e01 + dim e01 = 3.

Since the space is linear the image set has to be linear, too. We can prove it by means of the
multiplication of conditions:

e1,02,0 · e
1,0
2,0 = e1,01,0; e

0
1 · e01 = e00, e1,02,0 · e01 = e1,01,0 + e00 (10)

where all factors are equal to one.
A basic problem in the three-dimensional space is to find a point M which lies in a given

plane ABC and on a given line DE (see Fig. 1).

The next term of the proposed course is the algorithmization of the objects’ construction.
For example, a general algorithm for the construction of surfaces can be proposed as follows
[5]:

1. We calculate the dimension of the general set of m-planes in the n-dimensional space;

2. We choose some of the geometric conditions:

(a) conditions of incidence;

(b) conditions of partial parallelity;

(c) conditions of partial orthogonality.

3. We choose those conditions which can determine the constructed surfaces.
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4. We calculate the structural characteristics of the constructed surfaces.

5. We consider all constructive methods of bulding the surfaces.

Let us illustrate the proposed algorithm by an example of constructing the hypersurface of
lines in the four-dimensional space.

1. The dimension of the set of lines in a 4-plane is D1
4 = (4− 1) · (1 + 1) = 6.

2. All conditions of incidence and their dimensions are

e1,04,2 − 1; e1,04,1 − 2; e1,04,0 − 3;

e1,03,2 − 2; e1,03,1 − 3; e1,03,0 − 4;

e1,02,1 − 4; e1,02,0 − 5; e1,01,0 − 6.

All conditions of partial parallelity are:

• a 1-plane is parallel to a hyperplane,

• a 1-plane is parallel to a 2-plane,

• a 1-plane is parallel to 1-plane.

3. Since the hypersurface has a two-dimensional set of 1-planes, the total dimension of the
conditions must be 4 .

4. We write some of the constructed hypersurfaces as products:

1.
(
e1,04,2

)4
; 2.

(
e1,04,2,

)2 · e1,04,1 ; 3.
(
e1,04,2

)2
e1,03,2 ; 4.

(
e1,04,2

)2
e1,04,1 .

5. We define the structural characteristics of the hypersurface which are represented by(
e1,04,2

)2 · e1,04,1 .

Theorem 1. The order of the hypersurface
(
e1,04,2

)2 · (e1,04,1

)
is two and the class of it is one.

em Proof: We have (
e1,04,2

)2 · e1,04,1 =
(
e1,04,1 + e1,03,2

)
· e1,04,1 = 2e1,03,0 + e1,02,1 .

The order is calculated by (
2e1,03,0 + e1,02,1

)
· e1,04,1 = 2e1,01,0 + 0 = 2e1,01,0 .

The class follows from (
2e1,03,0 + e1,02,1

)
· e1,03,2 = 0 + e1,01,0 = e1,01,0 .

5. Analysis of conditions

Let’s consider the following problem: Find a plane which is

1. passing through a given point A;

2. orthogonal to a given plane (a
⋂
b);

3. at a given distance R to a given point B.

The graphical form of these conditions is shown in Fig. 2. Find a plane which passes through
the given point A and which is orthogonal to the given plane.
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Figure 2: A graphical part of the condition of the problem

Analyzing the conditions of the problem

1. Calculation of the dimension of the required objects:
The object of the problem is the plane. The general set of planes is three-dimensional.
So, in order to get a solution it is necessary to impose conditions, where the total
dimension is three.

2. Calculation of dimensions of the given geometric conditions:
There are three conditions given:

Condition U1 is the condition of incidence of planes and a given point: e2,1,03,2,0 is the set

of planes passing through a point. Its dimension is Qob

(
e2,1,03,2,0

)
= 1.

Condition U2 is the orthogonality of one given plane and the set. The dimension of this
condition is 1 . This condition can again be written as the condition of the set of planes
passing through a given point: ē2,1,03,2,0 .

Condition U3 is condition of given distance between the plane and a given point: 2 ·e2,1,03,2,0

is the set of planes contacting the sphere with radius equal to the given distance. The
dimension of this condition is Qob

(
e2,1,03,2,0

)
= 1.

3. Testing the adequacy of the initial data or the accuracy of the specified conditions:
On this stage it is necessary to compare the dimension of the requested element, and
in our problem it is three (see item 1). On the other hand, the sum of dimensions of
the specified conditions is again 1 + 1 + 1 = 3. Hence, these dimensions are equal, and
therefore all given conditions are sufficient for determining the required set.

4. Testing the conditions with the criterion of computability:
If we consider the product of the given conditions and carry out their reduction, we’ll
get

e2,1,03,2,0 · ē
2,1,0
3,2,0 · 2 · e

2,1,0
3,2,0 = 2 ·

(
e2,1,03,2,0

)3
= 2 · e2,1,02,1,0 .

It means that the conditions are compatible.

5. Calculation of the number of solutions or the dimension and algebraic properties of the
required object:
As a result, the process of reduction is 2 · e2,1,02,1,0 . The factor 2 before the symbolic
designation means that the problem has two solutions, namely, two planes.

6. Implementation of the construction graph and mathematical algorithms for solving the
problem, based on the analysis of the given conditions:
This step allows us to find the optimal algorithm for solving the problem [4].
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6. Algorithms for solving the problem

The first algorithm is (U1 ∩ U2) ∩ U3

The composition of the conditions e2,1,03,2,0 · ē
2,1,0
3,2,0 = ē2,1,03,1,0 means the set of planes passing through

a given point A and being orthogonal to the given plane a
⋂
b. This set is the pencil of planes

passing through a perpendicular to a given plane, and the perpendicular passes through the
given point A.

Figure 3: The solution of the problem according to the first algorithm

In the complex drawing displayed in Fig. 3 this stage is realized by building the perpen-
dicular to the plane a

⋂
b passing through the point A. The constructed straight line — a

perpendicular — will be one of the lines that defines the required set. So it will be a common
line of the two planes — the line of their intersection.

The second action ē2,1,03,2,0 · 2·
2,1,0
3,2,0 = 2 · e2,1,02,1,0 means the selection of two planes which are

tangent to the sphere centered at point B, and the radius of the sphere equals the given
distance R.

In order to fulfill the second action it is necessary to perform a replacement of the projec-
tion planes for the conversion of the previously constructed perpendicular into a projecting
line. Two planes q and p which are tangent to the sphere (center B and radius R) are the
requested ones.
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The second algorithm (U1 ∩ U3) ∩ U2

The first step is the simultaneous fulfillment of the conditions U1 and U3: e
2,1,0
3,2,0 ·e

2,1,0
3,2,0 = 2·e2,1,03,1,0 .

The result of this action is the pencil of planes of second order with its own center, passing
through the lines which are tangent to the sphere. It is sufficient to construct a complex of
lines forming a conical surface. Moreover, each of these lines passes through point A and is
tangent to the sphere (Fig. 4).

The second action assumes the composition of the conditions: 2 · e2,1,03,1,0 · ē
2,1,0
3,2,0 = 2 · e2,1,02,1,0 .

There are two planes of the beam passing through a perpendicular to the given plane a
⋂
b.

In other words, it is necessary to draw the perpendicular to the plane a
⋂
b through point

A. Then we draw the auxiliary plane through the perpendicular which contacts the conical
surface. The perpendicular itself and the lines of tangency on the auxiliary conical surface —
two generators — will span the required two-planes.

Figure 4: The solution of the problem according to the second algorithm
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The third algorithm (U2 ∩ U3) ∩ U1

The first step of the algorithm is ē2,1,03,2,0 · 2 · e
2,1,0
3,2,0 = 2 · e2,1,03,1,0 . This means a pencil of planes

of second order with infinite center, passing through tangent lines of a sphere, thus forming
a cylindrical surface. At this stage the construction (Fig. 5) of the beam is difficult. So it is
enough to construct a cylindrical surface which is tangent to the sphere (center B and radius
R) and in orthogonal position to the plane a

⋂
b.

The second step is 2 · e2,1,03,1,0 · e
2,1,0
3,2,0 = 2 · e2,1,02,1,0 . It means the existence of two planes, selected

from the constructed set by the condition of passing through the given point A. There are
two planes passing through point A and being tangent to the cylindrical surface.

The analysis of the graphical solutions of the problem shows that the first algorithm
(U1 ∩ U2) ∩ U3 is optimal with respect to the simplicity of implementation in the graphic
construction.

Figure 5: The solution of the problem according to the third algorithm

7. Conclusions

In this paper we presented some general aspects of how to solve geometric problems. We
showed the determination of the problem’s correctness and the test of conditions’ compati-
bility.

Besides, each condition allows us to provide a subset of the set of required objects. Con-
sidering the intersection of these subsets, we can not only choose the optimal algorithm of
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solution, but we can also foster the students’ competence in developing new properly formu-
lated problems with necessary and sufficient conditions.
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