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Abstract. A bicentric polygon is one which is simultaneously cyclic: all vertices
lie on a circle, and tangential : all sides are simultaneously tangential to another
circle. All triangles and regular polygons are trivially bicentric. In the late 18-th
century, Leonhard Euler developed a formula which linked the radii R and r
of the circumcircles and incircles of a triangle, and the distance d between their
centres: R2−d2 = 2Rr. Shortly after, Euler’s secretary, Nicolaus Fuss, managed
to develop similar formulas for bicentric polygons of orders 4 to 9; these formulas
have been given in many different forms subsequently. The purpose of this paper
is to demonstrate how such relations can be generated by using polynomial ideals
and Gröbner bases, in a manner which can be easily implemented on any modern
computer algebra system.

Key Words: bicentric polygon, Gröbner bases of polynomial ideals.

MSC 2010: 51N20, 51N35, 13P10, 68W30

1. Introduction

Euler’s formula R2 − d2 = 2Rr relating the radii R and r of the circumcircle and incircle
of a triangle, and the distance d between them, is well known. Quadrilaterals present some
difficulty: some are cyclic (squares, rectangles); some aren’t; some are tangential; others aren’t
(non-square rectangles). For a bicentric quadrilateral, Fuss showed that

1

(R + d)2
+

1

(R− d)2
=

1

r2
.

A neat proof is given by Dörrie [4].
Bicentric polygons are of interest partly because of the remarkable result known as Pon-

celet’s Porism. (For the purpose of this article, “porism” may be considered a fancy word
for “Theorem”; and this result is also called Poncelet’s closure theorem.) Suppose we have
two circles C and D, with D lying entirely within C. Pick any point a0 on the outer circle
C. Let a1 be the point at which the tangent to D from a0 intersects C. From a1 we can
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Figure 1: Tangential chords

similarly construct a2 and so on as shown in Fig. 1. This sequence of points and lines is called
a Poncelet traverse.

Poncelet’s result says that if for a given point a0 there is a value an = a0 ; that is, if
the lines “close up” to form a polygon, then a polygon will be formed for any starting value
of a0. Poncelet actually stated the result for general conic sections; not just for circles, and
without the requirement that one lies within the other.

So for example if D and C are the incircle and circumcircle respectively of a triangle,
then a triangle will be formed by following the above construction starting at any point on
C. Proofs of this result can be found using elliptic functions in Dragović et al. [5]; some
very elegant and accessible proofs are given by Ueno et al. [19].

Finding relations between R, r and d has generated much interest; original papers by
Fuss, Steiner and Richelot (see references to Weisstein [22]); in the first half of the
20th century first Chaundy [2, 3], and later Gulasekharam [7] and Kerawala [8]; more
recently Radić et al. [13, 14, 15, 16, 17]. The purpose of this article is to show how with a
modern computer algebra system, relations similar to those of Euler and Fuss providing
the requirements between R, r and d for a bicentric polygon to exist, can be automatically
generated. Although a similar sounding paper has been published [11], the approach given
here is both more generic, more strongly connected to modern ring theory, and more easily
transferable to any other computer algebra system.

2. Algebraic background

The geometry

We start by investigating the requirements for a chord of one circle to be tangent to another.
For this article, we suppose that the outer circle (for which the polygon is cyclic) is given by
x2+y2 = R2, and the inner circle (to which the polygon is tangential) is given by (x−d)2+y2 =
r2, with R > r + d. Following Kerawala [8] we consider a chord between two points as
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shown in Fig. 2.

A = (R cos θ, R sin θ)

B = (R cosφ,R sinφ)

O P

Figure 2: A chord tangential to an inner circle

Consider the perpendicular bisector of the chord AB, as shown in Fig. 3. Since the chord

subtends the angle φ− θ, the length OM will be R cos
φ− θ

2
.

O P

M

N

T

Figure 3: Determining a relation between angles on a tangential chord

Since OP has length d, and the angle ∠NOP is
θ + φ

2
, we have ON = d cos

θ + φ

2
. Since

NM = r :

R cos

(

φ

2
−

θ

2

)

− d cos

(

θ

2
+

φ

2

)

= r. (1)

Following Kerawala, we expand the above using standard trigonometric addition and sub-
traction formulas, and introduce the tangent half-angle substitutions

s = tan
θ

4
, t = tan

φ

4

(note that from equation 1 we are taking half angles of
θ

2
and

φ

2
for which of course

cos
θ

2
=

1− s2

1 + s2
, sin

θ

2
=

2s

1 + s2

and similarly for t, φ. Substituting into the expansion of equation (1) produces

R
(

(1− t2)(1− s2) + 4st
)

− d
(

(1− s2)(1− t2)− 4st
)

= r(1 + s2)(1 + t2). (2)
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This last equation can be written equivalently as

R
(

(1− st)2 − (s− t)2
)

− d
(

(1− st)2 − (s+ t)2) = r
(

(1 + st)2 + (s+ t)2
)

(3)

or as
4(R + d)st+ (R− d)(1− s2)(1− t2) = r(1 + s2)(1 + t2). (4)

This relation between the five variables is called by Kerawala the “quadratic involution”
which connects the points A and B, although given by him in a form equivalent to

2R(1 + st)2 − (R + d+ r)(1− st)2 − (R − d+ r)(s+ t)2. (5)

Algebra

Much of our work will be in eliminating variables from a system of equations. As we will
show below, the equations connecting the values of R, r and d for a triangle can be written
as

(R− d)(1− t2) = r(1 + t2),

R(1− 6t2 + t4) = (d− r)(1 + t2)2.

The problem is to eliminate t from these equations, producing a result in R, r and d only.
Suppose K is a field, and R = K[x1, x2, . . . , xn] is the ring consisting of all polynomials

in the variables x1, x2, . . . , xn with coefficients in K. Let pi(x1, x2, . . . , xn) for i = 1, 2, . . .m
be elements of K[x]. The the ideal generated by pi is the set I of all linear combinations of
the pi:

I = {α1p1 + α2p2 + · · ·+ αmpm, αi ∈ R}.

One problem in ring theory is the ideal membership problem: given q ∈ R, can we determine
if q ∈ I?

A Gröbner basis is an alternative generating set for I which satisfies some very useful
properties. To define a Gröbner basis, we first need a polynomial ordering. One such is
lexicographic ordering. Suppose we order the variables

x1 < x2 < · · · < xn

Then monomials can be ordered:

xa1

1 xa2

2 · · ·xan
n

< xb1

1 x
b2

2 · · ·xbn
n

if the first variable (from the left) with different exponents has ak < bk. This is equivalent
to “dictionary order” of words. Using this order, any polynomial can be written with terms
in a prescribed order. Given an ordering, any polynomial in R can be expressed as terms in
increasing order:

p = c1m1 + c2m2 + · · ·+ cnmn

where the mi are ordered monomials: m1 < m2 < · · · < mn. We define LM(p) = m1 to be
the leading monomial, and for an ideal I we define LM(I) to be the ideal generated by the
leading monomials of all elements of I. Note that if I is generated by p1, p2, . . . , pk, it is not
generally true that LM(I) is generated by LM(pi).

If I ⊆ R is an ideal, then a generating set G = {g1, g2, . . . , gk} for I is a Gröbner basis if
the monomials LM(gi) generate LM(I).
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Alternatively, G is a Gröbner basis for I if for every p ∈ I, LM(p) is a multiple of LM(gi)
for some gi ∈ G.

For the purposes of this article, a most important property of a Gröbner basis is the
elimination property. Suppose we have an ordering x1 < x2 < · · · < xn, and a Gröbner basis
G for an ideal I. Then the intersection of G with K[x1, x2, . . . , xk] is a Gröbner basis for the
intersection of I with K[x1, x2, . . . , xk]. Using the notation G(I) for the Gröbner basis, we
can write

G(I ∩K[x1, x2, . . . , xk]) = G(I) ∩K[x1, x2, . . . , xk].

What this means is that if we have a set of polynomial equations pi = 0, we can consider the
ideal I generated by the pi. By choosing an appropriate ordering of the variables, and then
by finding a Gröbner basis G, we can find equivalent generators for I which eliminate some
variables.

The use of Gröbner bases for geometry is well established, and it fact goes back to Buch-

berger [1] who presented the first modern algorithm for computing Gröbner bases; more
modern examples can be found in Pech [12]. There are also older uses of elimination theory
in general for investigating problems in geometry, for example van der Waerden [20] and
his more recent discussion [21].

Note that much of our computations could be achieved by other means; for example
polynomial resultants. However, we will in general be eliminating multiple variables from
multiple polynomials, which would require the generalized Dixon resultant as revised by
Kapur et al. [9] or possibly Kronecker resolvents [6]. These are not implemented in many
computer algebra systems, whereas Gröbner bases are readily available.

3. Euler’s and Fuss’s formulas

In this section we shall show how the machinery described in the previous section can be used
to determine Euler’s formula for a triangle, and Fuss’s formula for a bicentric quadrilateral.
By Poncelet’s porism, we may assume that the first point A is at (R, 0) so that θ = s = 0.

If our polygon is to be a triangle, then by symmetry the side opposite A must be vertical,
as shown in Fig. 4.

A

B = (R cosφ,R sinφ)

O PD

Figure 4: A vertical tangent

From the diagram, if ∠BOA = φ then ∠DBO = φ− π

2
, and so

R sin
(

φ−
π

2

)

= r − d
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or

cosφ =
d− r

R
.

Since tan
φ

4
= t we can write this equation as

1− 6t2 + t4

(1 + t2)2
=

d− r

R
. (6)

This equation was given in the previous section. From Fig. 4 there are two equations; the
other being the chordal-tangent equation (4), with s = 0 :

(1 + t2)(R− d)(1− t2) = r(1 + t2). (7)

To eliminate t from equations (6) and (7) we need to set up a polynomial ring with an ideal
generated by these equations, and use a Gröbner basis to eliminate t. This can be done
very easily with the open source computer algebra system Sage [18]. The commands are self
explanatory:

sage: PR.<R,r,d,t> = PolynomialRing(QQ)

sage: I = PR.ideal([(R-d)*(1-t^2)-r*(1+t^2),\

....: R*(1-6*t^2+t^4)-(d-r)*(1+t^2)^2])

sage: ie = I.elimination_ideal([t])

sage: ie.gens()

[R^2 - 2*R*r - d^2]

The result can be interpreted as
R2 − 2Rr − d2 = 0

which is Euler’s relation.

For a quadrilateral, there will be three points to consider: A at (R, 0), B on the circle,
and C also on the x-axis. Since the angle at C is π, we will use u = tan

π

4
= 1. In order to

ease the input, we start with a function which describes the chordal-tangent relation:

sage: t1(s,t) = 4*(R+d)*s*t+(R-d)*(1-s^2)*(1-t^2)-\

....: r*(1+s^2)*(1+t^2)

Then the Sage commands are similar to above:

sage: PR.<R,r,d,t> = PolynomialRing(QQ)

sage: I = PR.ideal([t1(0,t),t1(t,1)])

sage: ie = I.elimination_ideal([t])

sage: ie.gens()

[R^4 - 2*R^2*r^2 - 2*R^2*d^2 - 2*r^2*d^2 + d^4]

This last means that
R4 − 2R2r2 − 2R2d2 − 2r2d2 + d4 = 0

or that
(R2 − d2)2 = 2r2(R2 + d2)

which is one of the forms of Fuss’s relation.
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4. Substitutions

Many substitutions are provided by Kerawala [8], which allow for the complex expressions
for higher n to be written more simply. We shall consider only two:

a =
1

R+ d
, b =

1

R− d
, c =

1

r

and

p =
R+ d

r
, q =

R− d

r
.

Using these substitutions, equation (4) can be written as

4bcst+ ac(1− s2)(1− t2) = ab(1 + s2)(1 + t2) (8)

and as
4pst+ q(1− s2)(1− t2) = (1 + s2)(1 + t2). (9)

These can also be written in “Kerawala’s form”, as given in equation (5):

(p+ q)(st+ 1)2 − (p+ 1)(st− 1)2 − (q + 1)(s+ t)2 = 0

(b+ c)(st+ 1)2 − (a+ c)(st− 1)2 − (b+ c)(s+ t)2 = 0.

To use these equations we can write them as functions, as well as the vertical tangent function:

sage: t1abc(s,t) = 4*b*c*s*t+a*c*(1-s^2)*(1-t^2)-a*b*(1+s^2)*(1+t^2)

sage: t1pq(s,t) = 4*p*s*t+q*(1-s^2)*(1-t^2)-(1+s^2)*(1+t^2)

Similarly, equation (6) can be written as

1− 6t2 + t4

(1 + t2)2
=

bc− ac− 2ab

(a+ b)c
(10)

and also as
1− 6t2 + t4

(1 + t2)2
=

p− q − 2

p+ q
, (11)

and the generators of the ideals can be entered as

sage: vabc(t) = (a+b)*c*(1-6*t^2+t^4)-(b*c-a*c-2*a*b)*(1+t^2)^2

sage: vpq(t) = (p+q)*(1-6*t^2+t^4)-(p-q-2)*(1+t^2)^2

Then Euler’s formula can be produced, first with a, b and c :

PP.<t,a,b,c> = PolynomialRing(QQ)

I = PP.ideal([t1abc(0,t),vabc(t)])

ie = I.elimination_ideal([t,R,r,d])

factor(ie.gen(0))

c * b * a * (a + b - c)

This means that abc(a + b− c) = 0, and since we assume each of a, b, c is non-zero, we have
a+ b = c or that

1

R + d
+

1

R− d
=

1

r

which is a more symmetric version that the originally cited form. Using p and q is similar:
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PP.<t,p,q> = PolynomialRing(QQ)

I = PP.ideal([t1pq(0,t),vpq(t)])

ie = I.elimination_ideal([t])

ie.gen(0)

p*q - p - q

This can be read as
pq = p+ q

or alternatively,
1

p
+

1

q
= 1.

Applying the same substitutions to Fuss’s quadrilateral relation leads to

a2 + b2 = c2

and
p2q2 = p2 + q2

or alternatively,
1

p2
+

1

q2
= 1 .

Note that if a relation is found for p and q, the relation for a, b and c can be obtained with
p = c/a, q = c/b; these being immediate consequences of their definitions.

5. Pentagon and hexagon

The relations now can be obtained automatically using the methods of the previous section:
first enter the chord-tangent relations, and then produce the elimination ideal. For a pentagon,
starting at (R, 0) with s = 0, there will be two points on the upper semicircle, with tangent
values t and u, say. The point corresponding to u will be on a vertical tangent from the inner
circle, so that using the p, q substitution the ideal can be created with

sage: I = PP.ideal([t1pq(0,t),t1pq(t,u),vpq(u)])

Eliminating the variables t and u produces a single expression which can be factored as

(pq − p− q)(p3q3 + p3q2 + p2q3 − p3q − 2p2q2 − pq3 − p3 + p2q + pq2 − q3).

Only the second term is of interest: the first is just Euler’s formula, which we would expect
if t = u. Calling the second term g we notice that

g − (pq − p− q)3 = 4pq(p− 1)(q − 1)(p+ q).

Alternatively

g − (p3q3 − p3 − q3) = −q(p− 1)(q − 1)(p+ q).

Comparing these last two equations we can write

(pq − p− q)3 = 4
(

p3q3 − p3 − q3
)

. (12)
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Using the a, b, c substitution produces

(a+ b− c)3 = 4(a3 + b3 − c3). (13)

Without any substitution:

(R2 − d2 − 2Rr)3 = 4((R2 − d2)3 − 2Rr3(R2 + 3d2). (14)

For a hexagon, and using the p, q substitution:

sage: I = PP.ideal([t1pq(0,t),t1pq(t,u),t1pq(u,1)])

Elimination of t and u produces:

3p4q4 − 2p4q2 − 2p2q4 − p4 + 2p2q2 − q4

as the generator of the elimination ideal; this may be written as

4p2q2(p2 − 1)(q2 − 1)− (p2 + q2 − p2q2)2

and so the relation is

(p2 + q2 − p2q2)2 = 4p2q2(p2 − 1)(q2 − 1). (15)

Alternatively, the generator may be written as

(p2q2 − p2 − q2)2 + 2(p4q4 − p4 − q4)

resulting in the relation

(p2q2 − p2 − q2)2 = 2(p4 + q4 − p4q4).

Using a, b and c the relation is

(a2c2 + a2b2 − b2c2)2 = 4a2b2c2(c2 − a2)(b2 − a2) (16)

or

(a2c2 + a2b2 − b2c2)2 = 2(a4c4 + a4b4 − b4c4).

6. Higher order polygons

It is clear now how expressions for higher orders can be easily created. Suppose we wish to
determine the relations for a 2n-sided polygon. By symmetry, we will have points A1 at (R, 0)
and again An+1 on the x-axis. There will be 2(n− 1) points on the circle C above the x-axis,
and similarly below. If the points Ak is at angle θk to the positive x-axis, with sk = tan(θk/4),
then the ideal is generated by

t1(0, s2), t1(s2, s3), . . . , t1(sn−1, sn), t1(sn, 1).

We can use Gröbner bases to eliminate s2, s3, . . . , sn and so obtain the relation we require.
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For a polygon with 2n + 1 sides, we will have a vertical side (as with the triangle and
pentagon), so generate an ideal with

t1(0, s2), t1(s2, s3), . . . , t1(sn−1, sn), v(sn)

and then eliminate the si values as above.
An immediate problem is the computational difficulty of computing a Gröbner base for

an ideal with a large generating set. For this reason we establish relations between points on
the outer circle C which are not consecutive. We start by considering the relation between

Ak and Ak+2. Suppose that we have s = tan
θk

4
, t = tan

θk+1

4
and u = tan

θk+2

4
. To establish

a relation between s and u we can set up an ideal with

sage: I = PP.ideal([t1pq(s,t),t1pq(t,u)])

and eliminate t. The final relation can be written as

p2q2(su+ 1)2 − p2(su− 1)2 − q2(s+ u)2 = 0 (17)

or alternatively as

(p2q2 − p2)(s2u2 + 1) + 2(p2q2 + p2 − q2)su− q2(s2 + u2) = 0 (18)

and we can include this in future computations with

sage: t2pq = p^2*q^2*(s*u+1)^2-p^2*(s*u-1)^2-q^2*(s+u)^2

Note that if (s, u) = (0, 1) then equation (17) produces Fuss’s relation for the quadrilateral,
as we would expect.

Note that if we substitute c/a and c/b for p and q respectively in equation (17), and
multiply out by a2b2/c2, we obtain

c2(su+ 1)2 − b2(su− 1)2 − a2(s + u)2 = 0

which is equivalent to an expression given by Kerawala [8].
Similarly we can create a function t4pq which gives the relation between Ak and Ak+4;

assuming that the quarter tangent values are s and u, we establish the ideal generated by
t2pq(s, t) and t2pq(t, u) and eliminate t. Considering equations (5) and (18), we might expect
that the result can be written in the form

X(su+ 1)2 + Y (su− 1)2 + Z(s+ u)2 = 0. (19)

And in fact when the coefficients of equation (19) are compared with the result of the elimi-
nation, we find that the expression is

A2B2(su+ 1)2 − B2C2(su− 1)2 − A2C2(s+ u)2 = 0 (20)

where

A = p2q2 − p2 + q2,

B = p2q2 + p2 − q2,

C = p2q2 − p2 − q2.
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Equation (20) is a neater formulation than Kerawala’s equation 1.8, obtained by him “after
wading through a mass of algebra”.

The version for a, b and c differs only in the equations for A, B and C:

A = c2 − b2 + a2, B = c2 + b2 − a2, C = c2 − a2 − b2.

Comparing equations (5), (17) and (20) we see that if

tn(s, t) = x(st + 1)2 − y(st− 1)2 − z(s+ t)2

then
t2n(s, t) = X2Y 2(st+ 1)2 −X2Z2(st− 1)2 − Y 2Z2(s+ t)2

where

X = x− y + z

Y = x+ y − z

Z = x− y − z.

In particular this allows us to create relations whose order is a power of 2 by a simple recursive
algorithm: compute the expression for tk(s, t), with k = 2n, and put (s, t) = (0, 1).

Similarly, we can develop an expression for t3(s, v), when we eliminate the variables t
and u from the ideal generated by t1(s, t), t1(t, u), t1(u, v). The result has the same form as
previously:

t3(s, v) = X(sv + 1)2 − Y (sv − 1)2 − Z(s+ v)2 (21)

where

X = (p+ q)(pq − p+ q)2(pq + p− q)2,

Y = (p+ 1)(pq − p− q)2(pq + p− q)2,

Z = (q + 1)(pq − p− q)2(pq − p+ q)2.

Since the X , Y and Z are functions of p and q only, this can be extended recursively to any
power of 3. Note, as above, that if (s, v) = (0, 1), then equation (21) reduces to X−Y −Z = 0,
and after making the substitutions with p and q becomes the equations for the bicentric
hexagon shown at the end of Section 5.

Clearly this approach can be used to develop relations for polygons of any order, but as
the number of sides n gets larger, the relations get more unwieldy, and especially so for when
n is prime.

7. Other computer algebra systems

Previous computations have been done with Sage, which is convenient, powerful, and free.
We show briefly here how similar computations can be done with another system, in this case
Maxima [10], which has the advantage over Sage in running natively on multiple systems. We
shall just show how Fuss’s quadrilateral relation may be obtained. In Maxima only three
steps are required: load the grobner package, define the polynomial, perform an elimination:

(%i1) load(grobner);
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(%i2) tpq(s,t) := (p+q)*(s*t+1)^2-(p+1)*(s*t-1)^2-(q+1)*(s+t)^2;

(%i3) poly_elimination_ideal([tpq(0,s),tpq(s,1)],1,[s,p,q]);

(%o3) [p2q2 − p2 − q2]

Clearly similar computations can be performed in any system which supports Gröbner basis
computations.

8. Conclusion

We have seen that the use of Gröbner bases within a modern computer algebra system allows
for the easy creation of relations between the radii R and r of two circles, and the distance
d between them, so that bicentric polygons of n sides exist. The CAS not only can pro-
duce a relation by elimination of variables in an ideal of a polynomial ring, but allows for
experimentation with the resulting relation. The algebra involved has been noted by previous
authors to be difficult (“heartbreaking” [3]); our approach completely removes the need for
exhaustive pencil and paper computations, and brings this problem into the realm of modern
experimental mathematics and algebra.
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[13] M. Radić: Some relations concerning triangles and bicentric quadrilaterals in connec-
tion with Poncelet’s closure theorem. Math. Maced 1, 35–58 (2003).

[14] M. Radić: Some relations concerning triangles and bicentric quadrilaterals in connec-
tion with Poncelet’s closure theorem when conics are circles not one inside of the other.
Elemente der Mathematik 59(3), 96–116 (2004).
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