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Abstract. This paper is a contribution to the concept of Kiepert conics in reg-
ular CK -geometries. In such geometries a triangle ABC determines a quadruple
of first Kiepert conics and, consequently, a quadruple of second Kiepert conics.
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1. Introduction

Hyperbolic geometry obeys the axioms of Euclid except for the Euclidean parallel postulate
which is replaced by the hyperbolic parallel postulate: Any line g and any point P not on g
determine at least two distinct lines through P which do not intersect g. Axiomatic hyperbolic
geometry H can be visualized by the disk model. It is defined by an absolute conic m (regular
curve of 2nd order) with real points in the real projective plane. The points of the model are
the inner points of m, the lines are the open chords of m (see [1, 2, 4]). In a real projective
plane the conic m also defines the hyperbolic Cayley-Klein geometry CKH ([6, 9]). All points
of the plane not on m — not only the inner points of m — are points of CKH. All lines
of the real projective plane are lines of CKH. The second type of regular CK -geometry is
the elliptic Cayley-Klein geometry CKE which is determined by a real conic m without real
points. In CK -geometries the measurement of distances and angles is based on cross-ratios
of points and lines. The group of congruence transformations is the automorphism group of
m.

In Section 2 we recall a few results on Kiepert conics in hyperbolic geometry H (see [8]).
Section 3 is dedicated to the construction of Kiepert triangles in the hyperbolic CK -geometry
CKH which in turn is the blueprint for Section 4: the Construction of Kiepert triangles in
regular CK -geometries. In Section 5 we construct a quadruple of first Kiepert conics to the
given triangle. In Section 6 we determine the corresponding quadruple of second Kiepert
conics. Finally, in Section 7, we add a short outline.
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2. Kiepert conics in hyperbolic geometry

In this preparatory section we recall the situation in H (see [8]).

2.1. Kiepert triangles in the hyperbolic geometry H

Let ∆ABC be an arbitrary hyperbolic triangle. If ∆A1BC, ∆AB1C, and ∆ABC1 are h-
isosceles triangles with a common base angle ρ attached to the edges AB, BC, CA, respec-
tively, the new triangle ∆A1B1C1 is called a hyperbolic Kiepert triangle to ∆ABC. Varying
ρ from −π/2 to π/2 we get the set S1 of Kiepert triangles to ∆ABC (see [8]).

2.2. Kiepert conics in the hyperbolic geometry H

The triangle ∆ABC and ∆A1B1C1 are perspective from some centre K. All such centres
K lie on a conic k called the first Kiepert conic (see [8]). The conic k is circumscribed to
∆ABC and contains the hyperbolic centroid G and the hyperbolic orthocentre H. Due to
Desargues’ Theorem a pair of triangles perspective from a point is also perspective from a
line: the Desargues axis. In [8] we proved that the set of all Desargues axes to the triangle
∆ABC and triangles ∆A1B1C1 from S1 is tangent to a conic l inscribed to ∆ABC. This
conic l is called the second Kiepert conic.

2.3. Another construction of Kiepert triangles in H

In 2.1 we placed hyperbolic isosceles triangles on the edges of ∆ABC to obtain the Kiepert
triangle. Here we suggest another construction of the Kiepert triangle ∆A1B1C1 using a chain
of h-reflections. This can be done because h-reflections do not change the angle between
lines. Each line l in the plane is the axis of an h-reflection σl which is a homology in the
automorphism group of m. The absolute pole of l is the centre of σl. We use the h-reflections
determined by the h-perpendicular bisectors d+ of BC, e+ of CA, f+ of AB and the hyperbolic
angle bisectors wA, wB, and wC . We apply the following chain of h-reflections to AB1 ∈ A(x)
to generate the edge B1C of ∆ AB1C, the edges CA1, A1B of ∆CA1B, and the edges BC1,
C1A of ∆BC1A:

B1C = σse+ (AB1),

CA1 = σwC
◦ σse+ (AB1),

A1B = σsd+ ◦ σwC
◦ σse+ (AB1),

BC1 = σwB
◦ σsd+ ◦ σwC

◦ σse+ (AB1),

C1A = σsf+ ◦ σwB
◦ σsd+ ◦ σwC

◦ σse+ (AB1).

(1)

Obviously, the reflection σwA
applied to C1A delivers AB1. For the overall composition we

thus have σwA
◦σsf+ ◦σwB

◦σsd+ ◦σwC
◦σse+ |A(x) ≡ id|A(x). Varying the line AB1 in the pencil

A(x) we get the one-parametric set S1 of Kiepert triangles ∆A1B1C1. Let C(x) denote the
pencil of lines x centred at C and (wC , wC) the hyperbolic angle bisectors. Both reflections
in wC and wC operate identically on the elements of C(x): wC |C(x) ≡ wC |C(x). Therefore the
choice of σwC

instead of σwC
would not change the result of (1). The respective statement

holds for B(x), (wB, wB). So we can conveniently confine ourselves to the reflections in
wA, wB, wC . The six lines used to define the chain of reflections (1) are the triple of h-angle
bisectors wA, wB, wC intersecting at the incentre I of ∆ABC and the triple of h-perpendicular
bisectors d+, e+, f+ intersecting at the circumcentre O1 of the triangle ∆ABC.
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Figure 1: A triangle ∆ABC in the hyperbolic plane H, with h-angle bisectors wA, wB, wC

and h-perpendicular bisectors d+, e+, f+ together with one of its Kiepert triangles ∆A′B′C ′

3. Construction of Kiepert triangles in the CK -geometry CKH

The CK -geometry CKH is closely related to the hyperbolic geometry H. In order to clearly
see the essential differences we start with the midpoint configuration of a triangle ∆ABC.

3.1. The configuration of midpoints of a triangle in the CK -geometry CKH

Let ∆ABC be a triangle in CKH such that all points A,B,C are either inner points of m or
outer points of m and no edge of ∆ABC is tangent to m. We further demand that either
all three edges of the triangle intersect the conic m in three pairs of real points or that all
three edges intersect in pairs of conjugate complex points. If these conditions are fulfilled the
triangle will be referred to as admissible.

In the following considerations we use that an admissible triangle ∆ABC determines a
complete midpoint-configuration: Each side of ∆ABC has two midpoints. We label them
D+, D− on BC, E+, E− on CA, and F+, F− on AB. These points are the six corners of a
quadrilateral. Each side of the quadrilateral carries a triple of collinear points: (D+, E+, F−),
(D−, E+, F+, ), (D+, E−, F+), (D−, E−, F−). Applying the absolute polarity we obtain a new
configuration. The six h-midpoints are mapped onto the six h-perpendicular bisectors d−,
d+, e−, e+, f− and f+. The four sides of the quadrilateral are mapped onto the four h-
circumcentres O1, O2, O3, O4 of ∆ABC. Therefore each h-circumcentre Oi coincides with
three h-perpendicular bisectors

O1 = d+ ∩ e+ ∩ f+,
O2 = d− ∩ e+ ∩ f−,
O3 = d+ ∩ e− ∩ f−,
O4 = d− ∩ e− ∩ f+.

(2)

Each triple of collinear midpoints determines three remaining midpoints that form a triangle.
We get the triangles ∆1D+, E+, F+, ∆2D−, E+, F−, ∆3D+, E−, F−, ∆4D−, E−, F+ and the
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Figure 2: A triangle ∆ABC in the hyperbolic plane H, its h-midpoints of edges
and h-circumcentres and h-centroids

four h-centroids G1, G2, G3, G4 of ∆ABC:

G1 = AD+ ∩BE+ ∩ CF+,
G2 = AD− ∩BE+ ∩ CF−,
G3 = AD+ ∩BE− ∩ CF−,
G4 = AD− ∩BE− ∩ CF+.

(3)

We visualize the configuration in Fig. 2 where A,B and C are inner points of m. Then three
midpoints are inner points, denoted by D+, E+, F+, the h-circumcentres O2, O3, O4 are outer
points of m. In Fig. 2 O1 is an inner point, but O1 could either be an inner or an outer point
of m, or possibly even a point on m. Mind that there can also be admissible triangles where
all six midpoints are outer points and four h-circumcentres are inner points of m.

3.2. Construction of Kiepert triangles in CK -geometry CKH

Changing from the hyperbolic geometry H to the Cayley-Klein geometry CKH we construct
Kiepert triangles. Due to Subsection 3.1 we can generate a set of Kiepert triangles as in
Subsection 2.3 with four different sets of reflection axes. In order to select one set of reflection
axes we just have to pick out one h-circumcentre Oi. We call the set of Kiepert triangles Si
associated with the h-circumcentre Oi, i ∈ {1, . . . , 4}.

In Fig. 3 we selected the circumcenter O2, i.e. the triple of h-perpendicular bisectors
d−, e+, f− to construct a Kiepert triangle ∆A′B′C ′ of the set S2. The triangle ∆2D−E+F−
determines the centroid G2.
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4. Construction of Kiepert triangles in regular CK -geometries

The considerations in CKH enable us to also complete the elliptic case CKE and to record the
overall result for regular CK -geometries.

4.1. Construction of Kiepert triangles in the elliptic CK -geometry CKE

In CKE each line intersects m in a pair of conjugate complex points and each segment has two
real midpoints in CKE (e-midpoints). This is why every triangle ∆ABC in CKE is admissible.
The construction of Kiepert triangles in CKE is the same as in CKH.

4.2. Kiepert triangles in regular CK -geometries

Summing up the results we can maintain for both geometries:

Theorem 1. In regular CK -geometries CKH and CKE each triangle ∆ABC determines four
different one-parametric sets Si of Kiepert triangles ∆A′iB

′
iC
′
i, i = 1, 2, 3, 4.

The concept of Kiepert conics in hyperbolic geometry H and Theorem 1 enable us to
formulate the general results on Kiepert conics for regular CK -geometries.
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Figure 3: A triangle ∆ABC in the CK -geometry CKH, h-perpendicular bisectors through
the h-circumcentre O2, the Kiepert triangle ∆A′B′C ′ and the Kiepert conic k2
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5. First Kiepert conics in regular CK -geometries

Let ∆ABC be an admissible triangle in CKH. We select one of the one-parameter sets
Si, i ∈ {1, 2, 3, 4} of Kiepert triangles as explained in Subsection 3.2. According to Subsec-
tion 2.2 each triangle in Si is perspective to ∆ABC. From Subsection 2.2 and [8] we get
that the centres Ki lie on the first Kiepert conic ki associated with the circumcentre Oi. We
additionally have that ki is the conic through the points A,B,C, the h-orthocentre H and
the respective h-centroid Gi.

If we replace the absolute conic m governing CKH by a conic m without real points we
arrive at CKE . In that case the set of outer points of m is empty. The projective construction
of Si and the construction of the first Kiepert conic ki remains the same. So we can describe
the whole process in a uniform way for these CK -geometries:

Theorem 2. Let ∆ABC be an admissible triangle in a regular CK -geometry. ∆ABC and
each Kiepert triangle ∆A′iB

′
iC
′
i ∈ Si are perspective and the centre Ki is the intersection point

of AA′i, BB
′
i and CC ′i. The locus of all such points Ki is a conic ki. The triangle ∆ABC

defines a quadruple of first Kiepert conics ki, i ∈ {1, 2, 3, 4} (Fig. 4).

Theorem 3. Let ∆ABC be an admissible triangle in a regular CK -geometry. A first Kiepert
conic ki is determined by the points A,B,C, the orthocentre H and a centroid Gi, i ∈
{1, 2, 3, 4}.

G1G1G1G1G1G1G1G1G1G1G1G1G1G1G1G1G1G1G1G1G1G1G1G1G1G1G1G1G1G1G1

G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2G2

G3G3G3G3G3G3G3G3G3G3G3G3G3G3G3G3G3G3G3G3G3G3G3G3G3G3G3G3G3G3G3

G4G4G4G4G4G4G4G4G4G4G4G4G4G4G4G4G4G4G4G4G4G4G4G4G4G4G4G4G4G4G4

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

D+D+D+D+D+D+D+D+D+D+D+D+D+D+D+D+D+D+D+D+D+D+D+D+D+D+D+D+D+D+D+

E−E−E−E−E−E−E−E−E−E−E−E−E−E−E−E−E−E−E−E−E−E−E−E−E−E−E−E−E−E−E−

F−F−F−F−F−F−F−F−F−F−F−F−F−F−F−F−F−F−F−F−F−F−F−F−F−F−F−F−F−F−F−

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

k1

k2

k3

k4

m

Figure 4: CK-geometry CKH : A triangle ∆ABC and its quadruple of first Kiepert conics

6. Second Kiepert conics in regular CK -geometries

Let ∆ABC be an admissible triangle and Si be one of the sets of Kiepert triangles determined
by ∆ABC. According to Theorem 2 the triangle ∆ABC and any of the Kiepert triangles
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∆A′iB
′
iC
′
i ∈ Si are perspective from a centre Ki on the first Kiepert conic ki , i ∈ {1, 2, 3, 4}. In

order to describe the set of Desargues axes we use the arguments from [8] which are genuinely
projective; thus, the result can be transferred to CKH and CKE . This way we arrive at a
general description of the second Kiepert conics in CK -geometries:

Theorem 4. Let ∆ABC be an admissible triangle in a regular CK -geometry. Let Si, i ∈
{1, 2, 3, 4} be a one-parametric subset of Kiepert triangles. Each triangle ∆A′iB

′
iC
′
i ∈ Si is

perspective to ∆ABC and the set of Desargues axes envelops a conic li inscribed to ∆ABC.
We overall get four conics l1, l2, l3, l4, the quadruple of second Kiepert conics.

7. Conclusions

In this article we have been developing results on Kiepert triangles and Kiepert conics for
both types of regular CK -geometries. In [8] we had been dealing with Kiepert triangles
and Kiepert conics in the hyperbolic plane H. The considerations and computations in that
former paper enabled us to prove results on Kiepert triangles and Kiepert conics in regular
CK -geometries. In doing so we extensively used projective geometry.

In the isotropic plane — a singular CK -geometry — the geometry of triangles has been
addressed in [10]. Some further contributions to projective triangle geometry can be found
in [11]. Recently [7] presented new results on Feuerbach hyperbolae in the affine plane which
can directly be transferred to elliptic CK -geometry.
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