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Abstract. A Stewart Gough (SG) manipulator, where the platform is simi-
lar to the base, is called equiform SG manipulator. It is well known that these
SG manipulators with planar platform and planar base only have self-motions,
if they are architecturally singular; i.e., the anchor points are located on a conic
section. Therefore this study focuses on the non-planar case. We prove that an
equiform SG manipulator has translational self-motions, if and only if it is a so-
called reflection-congruent one. Moreover we give a necessary geometric property
of non-planar equiform SG platforms for possessing non-translational self-motions
by means of bond theory. We close the paper by discussing some non-planar
equiform SG platforms with non-translational self-motions, where also a set of
new examples is presented.
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1. Introduction

The geometry of a Stewart Gough (SG) platform is given by the six base anchor points M;
with coordinates M; := (4;, B;, C;)T with respect to the fixed system and by the six platform
anchor points m; with coordinates m; := (a;, b;, ¢;)7 with respect to the moving system (for
i = 1,...,6). Each pair (M;,m;) of corresponding anchor points is connected by a SPS-
leg, where only the prismatic joint (P) is active and the spherical joints (S) are passive (cf.
Fig. 1a).

If the geometry of the manipulator is given as well as the leg lengths, the SG platform
is generically rigid. But, under particular conditions, the manipulator can perform a n-
dimensional motion (n > 0) which is called self-motion.

Note that self-motions are also solutions to the still unsolved problem posed by the French
Academy of Science for the “Prixz Vaillant” of the year 1904, which is also known as Borel
Bricard problem (cf. [1, 2, 7]) and reads as follows:
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Figure 1: (a) SG manipulator with planar platform and planar base (= planar SG
manipulator). (b) Notation used for the computation of cylinders of revolution.

”Determine and study all displacements of a rigid body in which distinct points of the
body move on spherical paths.”

In this article we study so-called equiform! SG manipulators, which can be defined as follows:

Definition 1. A SG manipulator is called equiform, if an equiform motion?
pe omg = pu(m) =M, for i=1,...,6 (1)

exists, which does not belong to the subset SE(3) of orientation preserving congruence trans-
formations. If Eq. (1) holds for p € SE(3), then the SG manipulator is called congruent.

Moreover, if Eq. (1) holds for an orientation reversing congruence transformation p, then the
non-planar equiform SG platform is called reflection-congruent.?

Without loss of generality (w.l.o.g.) we can choose Cartesian coordinate systems in the
platform and base of an equiform SG platform in a way that

A; = pa;, B;=pb;, C;=pc, (2)

holds for i = 1,...6, where p € R\ {0, 1} denotes the similarity factor (cf. Footnote 2). Note
that for p = 1 we get a congruent SG manipulator and that p = 0 has to be excluded, as
otherwise the base collapses into a single point. In this context it should also be mentioned
that p equals —1 for reflection-congruent SG manipulators.

Moreover we can assume for the remainder of this article that all platform anchor points
are distinct, as otherwise two legs coincide due to the similarity of the platform and the base.

1.1. Cylinders of revolution

In this section we review some results on cylinders of revolution, as they play a central role
in the study of non-planar congruent/equiform SG manipulators with non-translational self-
motions (cf. Theorems 1 and 3).

!This notation was introduced by KARGER in [8].

2An equiform motion is a composition of an Euclidean motion and a similarity transformation.

3Note that the notation “reflection-congruent” only makes sense for non-planar equiform SG platforms, as
in the planar case the composition of p with the reflection on the carrier plane of the anchor points yields an
element of SE(3).
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A cylinder of revolution ® equals the set of all points, which have equal distance to its
rotation axis s (finite line). Under the assumption that ® has at least one real point, we can
distinguish the following four cases:

1. sis real and ® is not reducible: ® is a cylinder of revolution over R.

2. s is real and ® is reducible: ® equals a pair of isotropic planes* v, and 7, which are
conjugate complex. Trivially s carries the only real points of ®.

3. s is imaginary and @ is not reducible: @ is a cylinder of revolution over C. The real
points of & are located on the 4th order intersection curve of ® and its conjugate .

4. sis imaginary and ® is reducible: In this case ® equals a pair of isotropic planes v; and
2, which are not conjugate complex. Moreover ® contains two real lines g; (i = 1,2),
which are the intersections of ~; and its isotropic conjugate ;.

Note that due to our restriction not all cylinders of revolution appear as solution, e.g.
imaginary cylinders (real axis and imaginary radius).

Remark 1. Tt is a well known fact from projective geometry that the axis s is the line, where
the tangent planes v; and 7, through s onto ® are isotropic. o

Now we focus on the determination of all cylinders of revolution through a given set
of real points Xi,...,X,. There exist many papers on this well studied problem (see e.g.
[3, 13, 14] and the references therein). In the following we want to use the computational
approach of SCHAAL [13], which was furthered by ZSOMBOR-MURRAY and EL FASHNY in
[14]. They pointed out that this problem is equivalent with the solution of the following
system of equations, if X; equals the origin U of the reference frame:

s? = 1, (3)

T: s-t=0, (4)

QZ’Z (Xz X S)2 — 2S2(Xi . t) = 0, (5)

fori = 2,...,n, where x; is the coordinate vector of the point X;, s := (sy, s9, 53)7 the direction

vector of the rotation axis s, and t := (t1,t5,t3)7 is coordinate vector of the footpoint T on s
with respect to U = X; (cf. Fig. 1b).

The rough procedure for solving this system of equations is as follows: In the first step,
one solves the equations T, €y, ..., €2,, which already gives the solutions up to a common
factor; i.e., we get sy : s9 @ 83 : 11 @ty : t3. In the second step, we normalize these 6-tuples with
respect to the normalizing condition given in Eq. (3). This normalization is always possible

as the axis cannot be isotropic®, because it is the intersection of two isotropic planes (cf.
Remark 1).

Remark 2. For n = 5 there exist in general six cylinders of revolution over C (e.g. [14]). There
even exist examples, where all six cylinders are real (e.g. [3]). For n > 5 no solution exists, if
Xy, ..., X, are in general configuration. o

4A plane is called isotropic, if its ideal line is tangent to the absolute conic.
5A line is called isotropic, if its ideal point is located on the absolute quadric.
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1.2. Bond theory

In this section we give a short introduction into the theory of bonds for SG manipulators
presented in [11], which was motivated by the bond theory of overconstrained closed linkages
with revolute joints given by HEGEDUS, SCHICHO and SCHROCKER in [4] (see also [5]). We
start with the direct kinematic problem of parallel manipulators of SG type and further with
the definition of bonds.

Due to the result of HusTy [6], it is advantageous to work with Study parameters (e :
er ey ez fo: fi: fo: fs) for solving the forward kinematics. Note that the first four
homogeneous coordinates (eg : €1 : ey : e3) are the so-called Fuler parameters. Now all real
points of the 7-dimensional Study parameter space P7, which are located on the so-called
Study quadric U : Z?:o e; fi = 0, correspond to an Euclidean displacement, with exception of
the 3-dimensional subspace E of ¥ given by ey = e; = e5 = ez = 0, as its points cannot fulfill
the condition N # 0 with N = e? + €7 + €3 + 3. The translation vector v := 2(vy, v2, v3)"
and the rotation matrix R := (r;;) of the corresponding Euclidean displacement Rx + v are
given by:

v = eofi —eifo+eafs —esfo,
(2 eofo — eafo +esfi —eifs,
vy = eofs —esfo+efo—eafi,

and
e +e?—ex—el  2(eren — eges) 2(ere3 + eges)
R = 2(6162 + 6063) 63 — 6% + 6% - 6121, 2(6263 - 6061> ) (6)
2(e1e3 — epez) 2(ezes +eger)  ef—ef —e3+ €3

if the normalizing condition N = 1 is fulfilled. All points of the complex extension of P7,
which cannot fulfill this normalizing condition, are located on the so-called exceptional cone
N = 0 with vertex F.

By using the Study parametrization of Euclidean displacements the condition that the
point m; is located on a sphere centered in M; with radius R;, is a quadratic homogeneous
equation according to HusTy [6]. This so-called sphere condition A; has the following form:

Ai: (a2 + 024+ + A2+ B2+ C? — RN — 2(a; A; + b;B; + ¢;C;)ed — 2(a; Ay — biB; — ¢;C;)e?
+ 2(aiA,- —b;B; + ¢;Ci)ed 4 2(a; A; + b;B; — ¢;Ci)e3 + 4(c; B; — b;C;)eger — 4(c; A — a;C;)egen
+4(b;A B;)egez — 4(bjA; + a;Bi)eres + 4(a; — Aj)(eof1 — e1fo) + 4(a; + Aj)(esfa — eaf3)
—4(¢ A +a;Ci)erez — 4(¢; Bi + b;Ci)ezes + 4(b; — B;)(eo fa — eafo) +4(bi + B;)(e1f3 — e3f1)
+ 4(

i — Ci)(eofs — ezfo) +4(ci + Ci)(eafr — erfo) +4(fE+ fE + f3+ f3) = 0.
(7)

Now the solution of the direct kinematics over C can be written as the algebraic variety V of
the ideal Z spanned by W, A;,...,Ag, and N = 1. In general V consists of a discrete set of
points with a maximum of 40 elements.

We consider the algebraic motion of the mechanism, which are the points on the Study
quadric that the constraints define; i.e., the common points of the seven quadrics W, Ay, ..., Ag.
If the manipulator has a n-dimensional self-motion then the algebraic motion also has to be
of this dimension. Now the points of the algebraic motion with N # 0 equal the kinematic
image of V. But we can also consider the points of the algebraic motion, which belong to the
exceptional cone N = 0. An exact mathematical definition of these so-called bonds can be
given as follows (cf. Remark 5 of [11]):
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Figure 2: (a) lustration of the condition given in Eq. (8) with m; = M. (b) The tetrahedra
O, and Oy are symmetric with respect to the plane ¢, which is projecting in this sketch.

Definition 2. For a SG manipulator the set B of bonds is defined as:
B:= ZarClo(V*) N {(eg:...: f3) € PT | ¥, Ay,...,As, N =0},

where V* denotes the variety V after the removal of all components, which correspond to
pure translational motions. Moreover ZarClo(V*) is the Zariski closure of V*, i.e., the zero
locus of all algebraic equations that also vanish on V™.

We have to restrict to non-translational motions for the following reason: A component
of V', which corresponds to a pure translational motion, is projected to a single point O (with
N # 0) of the Euler parameter space P? by the elimination of f,..., fs. Therefore the
intersection of O and N = 0 equals @. Clearly, the kernel of this projection equals the group
of translational motions. Moreover it is important to note that the set of bonds only depends
on the geometry of the manipulator and not on the leg lengths (cf. Theorem 1 of [11]). For
more details please see [11].

Due to Theorem 2 of [11] a SG platform possesses a pure translational self-motion, if and
only if the platform can be rotated about the center m; = M; into a pose, where the vectors

M;m; for ¢ = 2, ..., 6 fulfill the condition

— N E—
T]f(Mgmg,...,M6m6) < 1. (8)

Moreover all 1-dimensional self-motions are circular translations, which can easily be seen by
considering a normal projection of the SG manipulator in direction of the parallel vectors
M;m; for i = 2,...,6. If all these five vectors are zero-vectors, the platform and the base
are congruent and therefore we get a congruent SG manipulator (cf. [12]), which has a well
known 2-dimensional translational self-motion 7T, if all legs have equal (non-zero) length.

2. Review and preliminary results

As congruent SG platforms can be seen as a special case of equiform manipulators, we start
this section with a detailed review of their known self-motional behavior.
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2.1. Congruent SG manipulators

In the case of planar platform and planar base there only exist translational self-motions, if
the anchor points are not located on a conic section (cf. [9] and [10]). If the anchor points
are located on a conic section, the manipulator is a so-called architecturally singular® one.
Moreover, it is well known that architecturally singular manipulators possess self-motions in
each pose over C.

In the non-planar case the manipulator can only have non-translational self-motions beside
the above-mentioned 2-dimensional translational self-motion 7. The geometric characteriza-
tion for these non-planar congruent SG manipulators with non-translational self-motions is
given in the following theorem, which will be proven by the author at the 16th International
Conference on Geometry and Graphics [12] by means of bond theory:

Theorem 1. A non-planar congruent SG manipulator can have a real non-translational self-
motion only if the siz base (resp. platform) anchor points have equal distance to a finite line
s, i.e., they are located on a cylinder of revolution of type 1, 3 or 4 listed in Section 1.1.
Moreover this condition is also sufficient for the existence of self-motions over C.

Remark 3. Note that the cylinders of revolution of type 2 are missing in Theorem 1, as they
violate the non-planarity condition. Although this result is known, a complete list of all
possible non-translational self-motions of congruent SG platforms is still missing. Moreover
a restriction of the sufficiency condition with respect to R also remains open. o

In this paper we are interested in an extension of Theorem 1 to equiform SG manipulators,
for which the following is known until now:

2.2. Equiform SG manipulators

Equiform SG manipulators with planar platform and planar base are special cases of so-called
planar affine SG manipulators, which were already discussed in detail by the author in [10].
Due to Remark 2 of [10] and the work [8] of KARGER, it is well known that planar equiform
SG manipulators only have self-motions, if the anchor points are located on a conic section;
i.e., in the case of architecturally singularity. Therefore we can focus on the non-planar case,
for which the following lemma gives information about the architecture singularity:

Lemma 1. A non-planar equiform SG platform is architecturally singular, if and only if four
anchor points are collinear. These manipulators possess self-motions in each pose over C.

As this lemma has exactly the same proof as Lemma 2 of [12], we can proceed with the
following theorem on equiform SG manipulators with pure translational self-motions:

Theorem 2. A non-planar equiform SG platform has translational self-motions, if and only
if it is reflection-congruent. Moreover all these translational self-motions are 1-parametric
circular translations.

Proof: ~ As the manipulator is non-planar, there exist four corresponding pairs of anchor
points, which span a tetrahedron ©, and Oy in the platform and the base, respectively.
After a perhaps necessary reindexing we can assume w.l.o.g. that these anchor points are
mi,...,my and My, ... My, respectively (cf. Fig. 2b).

6A SG platform is called architecturally singular, if it is singular in every possible configuration.
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If an equiform SG manipulator has a translational self-motion there has to exist an orienta-

tion of the platform with 7k (l\/lgm;, ey M6m6> = 1 and m; = My, as congruent SG platforms

are excluded (cf. last two paragraphs of Section 1.2). We assume that the manipulator is in
such a pose.

Due to our assumptions m; # M; has to hold for at least one i € {2,3,4}, as otherwise
O©m = O holds, which implies a congruent SG manipulator (a contradiction). W.l.o.g. we can
assume that ¢ = 2 holds. As a consequence we can denote the ideal point of the line [mg, My]
by P. There exist at least one face e, (resp. em) of O, (resp. ©Op) through m; = My, which
does not contain P (cf. Fig. 2b). Therefore the linear mapping x, which maps the points x of
€m to points X of ey by :

ki x = Xi=evN[x,Pl,

is well-defined. As 7k <M2m2, ey M6m6> = 1 has to hold, x has to map the triangular face
of ©,, located in £, to the corresponding triangular face of Oy located in y. By these three
corresponding point pairs the affinity  is uniquely determined.

As m; = M; holds, the two planes ¢, and gy either intersect each other along a line g
through m; = M; or are identical. In the first case all points of g are fixed under x and in
the second case all points of the plane are fixed under x. Therefore p can only equal —1 in
both cases, as 1 is excluded due to Def. 1.

For p = —1 the reflection on the plane ¢ (cf. Fig. 2b) orthogonal to the line [mQM

through m; = M; maps the platform to the base in a way that each of the vectors M;m;

for 1 = 3,...,6 either point in the direction of P or equals the zero-vector. This proves the
first sentence of the theorem. The second one follows immediately from the last paragraph of
Section 1.2. O

3. Non-translational self-motions

In the following we show that the necessary condition of non-planar equiform SG platforms
for possessing non-translational self-motions is the same one as for the congruent case (cf.
Theorem 1).

Theorem 3. A non-planar equiform SG manipulator can have a real non-translational self-
motion only if the siz base (resp. platform) anchor points have equal distance to a finite line
s, i.e., they are located on a cylinder of revolution of type 1, 3 or 4 listed in Section 1.1.

Proof: This theorem can be proven similarly (but not analogously) as Theorem 1 by using
the following fact: If a non-translational self-motion exists, the bond-set has to be non-empty.
Therefore we have to determine the conditions for which the set of bonds consists of at least
one element. The computation of these conditions is outlined next.

W.l.o.g. we can specify the coordinate systems of Eq. (2) by setting a1 = by = by = ¢; =
co = c3 = 0. Moreover we choose the scale in a way that the distance from m; to my equals
the unit length; i.e., a; = 1. Finally we can assume (after a possible necessary reindexing of
anchor points) that the first four points are not coplanar; i.e., bzcy # 0.

According to [11] the set of bonds can be computed as follows: We calculate A;; := A;—A;,
which is only linear in the Study parameters fy, ..., f3. Under the assumption that the motion
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is real and that the following two conditions are not fulfilled simultaneously”
=0, p=-1, (9)

we can solve the linear system of equations W, Ay 1, Ag1, Ayq for fo, f1, fo, f3 w.lo.g.. We plug
the obtained expressions for fy, f1, f2, fs into Ay, As1,A¢1 and consider their numerators,
which are homogeneous polynomials P, Ps and Py, respectively. P; is of degree six in the
Euler parameters in contrast to P5 and FPs which determine quadrics in the Euler parameters
space.

We eliminate eq from P; and N = 0 by computing the resultant (); of these two expressions
for i = 1,5,6. Now (); can only vanish without contradiction, if the following factor F;
vanishes:

F :Z gimelesel for g k,1€{0,1,2,3}
j+k+1=3

with

g210 = —b3ca, gi11 = —2bsbs(az — as), goos = b3ba(bs — ba) + bsaz(az — 1) — bzas(ag — 1),
g120 = bzca(2a3 — 1), gao1 = ba(bsby — b — 1),  goz1 = baaz(az — 1) — bzas(ag — 1) — bsci,

9300 =0, gio2 = bzca(2as — 1), g1z = —ca(ai — az + b3 — 2b3by), gozo = —azca(az — 1),

and
F, =Y gieiesel for jk1€{0,1,2}, te {56}

jk+1=2
with

gooz = atbgeq(ay — 1) — th4(a§ + b% — bsby — ag) + bsci(ag — ai — bi) —byci(as — ag — b%),
go20 = atbgc4(at — 1) — agc4bt(a3 — 1) + a3b4ct(a3 — 1) — a4bgct(a4 — 1) — bgC4Ct(C4 — Ct),
9200 = bacy(cacy — ¢ — b3 + b3by) — babica(bs — by),  go11 = 2bgcace(by — by),

g110 = 2bsbica(as — a) — 2bsbaci(as — as),  gro1 = 2bscaci(as — ay).

Remark 4. One has to check as well whether (); can always be computed by means of resultant.
This is the case, if the coefficient K; of the highest exponent of eqg in P; does not vanish. As
the bonds do not depend on the leg lengths, K; has to vanish independently from Ry, ..., Rs.
It can easily be seen that this cannot be the case without contradicting our assumptions. <

Now the necessary condition for the existence of a bond is that the cubic F; and the
two conics Fy and Fy in the projective plane spanned by ej, ey, e3 have a point in common.
Due to the number of variables and the degree of the involved equations, the corresponding
algebraic conditions for the existence of a common point cannot be computed explicitly (e.g.
by applying a resultant based elimination method), and therefore it seems that we cannot
prove the theorem.

But due to Theorem 1, we conjecture that bonds can only exist, if the six anchor points
are located on a cylinder of revolution. Therefore we consider the system of equations
T,Q,...,96 given in Egs. (4) and (5) with respect to the six anchor points. We distin-
guish three cases:

"The exceptional case given in Eq. (9) is discussed separately in Section 3.4.
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3.1. General case: sse3 # 0

W.l.o.g. we can solve T, €, 3, which are linear in t,t,,t3 for these unknowns. We plug
the obtained expressions into {4, (25,2 and consider their numerators, which are homoge-
neous polynomials Gy, G5, Gg. After the substitution s; by e; for ¢ = 1,2, 3 the polynomials
G4, G5, Gg are denoted by Hy, Hs, Hg. These three polynomials are related with F}, F5, Fg as
follows:

Fl = H4, F5 = (C5H4 — C4H5)/63, Fﬁ = (CGH4 — C4H6)/63.

Therefore the existence of a cylinder of revolution with s3 # 0 through the six anchor points
implies the existence of a bond with e # 0 and vice versa.

3.2. Special case: s3 =e3 =0 and ssep # 0

W .l.o.g. we can solve T, €y, €y for tq, s, t3. We plug the obtained expressions into 23, {25, (g
and consider their numerators, which are homogeneous polynomials Gs, G5, Gg. After the
substitution s; by e; for i = 1,2 the polynomials G3, G5, G¢ are denoted by Hs, Hs, Hg. These
three polynomials are related with F}, F5, Fy as follows:

F1 = €QC4H3, F5 = (b4C5 — b5C4)H3 -+ b3H5, F6 = (b4C6 — b6C4)H3 —+ b3H6.

Therefore the existence of a cylinder of revolution with s3 = 0, so # 0 through the six anchor
points implies the existence of a bond with e3 = 0, e5 # 0 and vice versa.

3.3. Very special case: s, =53 =¢3 =e3 =0

If e; = 0 holds, the platform has the same orientation during the whole self-motion. As a
consequence we can only end up with a translational self-motion; a contradiction. Therefore
we can assume e; # 0.

Moreover we can also assume s; # 0, because otherwise the direction vector of the cylinder
axis s equals the zero-vector (a contradiction). W.l.o.g. we can solve T, g3, €y for ty, o, t3.
If we plug the obtained expression into €2y, we see that it is fulfilled identically. Therefore
we consider the numerators of 5, 3¢, which are homogeneous polynomials G5, Gg. After the
substitution s; by e; the polynomials G5, Gg are denoted by Hs, Hg. As for e; = e3 = 0 the
polynomial F} is already fulfilled identically, we get the following relation between Hsy, Hg and
F5, FGZ

F5 = b3H5, F6 = b3H6.

Therefore the existence of a cylinder of revolution with sy = s3 = 0, s; # 0 through the six
anchor points implies the existence of a bond with e; = e3 =0, e; # 0 and vice versa.

3.4. Exceptional case

Due to the above given study, we are left with the exceptional case of Eq. (9). We distinguish
the following two cases:

e ¢; # 0: Under this assumption we can solve the linear system of equations W, A,; for
fo, f1 w.lLo.g.. We plug the obtained expressions for fy, f1 into Az 1, Ay and consider their
numerators, which are homogeneous polynomials P3 and Py, respectively.

We eliminate ez from P; and N = 0 by computing the resultant (); of these two expressions
for i = 3,4. Now Q3 can only vanish without contradiction for:

(agel + b362)(a361 — €1 + b362) = 0.
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In both cases we can solve the linear equation for e; w.l.o.g.. If we plug the obtained
expression into Q4 we see that €% factors out and that the remaining expression, which only
depends on the design parameters, decomposes in two quadratic factors with respect to ay.
The computation of a, from each of these factors can be done w.l.o.g. and shows that none
of the obtained solutions for a4 can be real. Therefore no bond exists; thus there cannot
be a non-translational self-motion in this case.

e ¢; = (0: If e = 0 holds, the platform has the same orientation during the whole self-motion.
As a consequence we can only end up with a translational self-motion, which has to be a
1-dimensional circular translation due to Theorem 2. Therefore we can assume ey # 0.
Under this assumption we can solve the linear system of equations ¥, Ag; for fo, fo w.l.o.g..
We plug the obtained expressions for fy, fo into Ay; and consider its numerator, which is
a homogeneous polynomial P,. Now we eliminate e by computing the resultant )4 of Py
and N, which equals

16b2e5 (b3 4 2)[(bs — by)? + 3.

This resulting expression cannot vanish without contradiction over R, thus also this case
cannot yield a non-translational self-motion.

One also has to check in this exceptional case that (); can always be computed by means
of resultant. It can easily be verified that Remark 4 (with respect to e instead of eg) also
holds for the exceptional case, which closes the proof of Theorem 3. O

Finally it should be noted that in contrast to non-planar congruent SG platforms (cf.
Theorem 1) nothing is known about the sufficiency of this common necessary condition (cf.
Theorem 3) for the equiform case.

4. Examples

As translational self-motions of reflection-congruent SG manipulators are trivial (circular
translations), we focus on equiform SG manipulators with non-translational self-motions.
Until now only the following examples are known to the author, which are the equiform
analogues (and therefore generalizations) of the examples given in Section 5 of [12]:

e Four anchor points are located on a line (architecture singular case). In this case the self-
motions are the motions of the 5-legged manipulator, which results from the removal of one
of the four legs, whose anchor points are collinear (cf. Lemma 1). For the corresponding
cylinders of revolution please see Section 4.3 of [12].

e The anchor points split up into two triples of collinear points. In this case the self-motions
are butterfly motions. For the corresponding cylinders of revolution please see Sections 4.2
and 5.1 of [12].

e The manipulator is plane-symmetric; i.e., the fourth, fifth and sixth anchor point are ob-
tained by reflecting the first, second and third one on a plane €. Therefore there always
exists a cylinder of revolution ® of type 1 with generators orthogonal to e.

W.lo.g. we can assume that ¢ is the xy-plane and that the rotation axis of ® is the z-axis.
Moreover we can choose the scale in a way that the radius of ® equals 1. Finally we can
rotate the coordinate system about the z-axis that the first and second anchor point have
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the same y-coordinate, which results in the following coordinatization:

a; = aq = sin (u), as = as = sin (—p), az = ag = sin (),
by = by = cos (u), by = bs = cos (u), by = bg = cos (A),

1 =—c; #0,co=—c5 #0, c3 = —cg # 0 and the angles p € (0,7)and A\ € [0,27). The
coordinates of the corresponding base anchor points are determined by Eq. (2). For the
corresponding cylinders of revolution beside ® please see Section 5.2 of [12].

These plane-symmetric equiform SG manipulators have the following non-translational self-
motions characterized by ez = 0, which are new to the best knowledge of the author:

We compute the unknowns fy, f1, fa, f3 from ¥, Ay, Az, Ay, If we plug the obtained
expressions into Aj 1, it can easily be seen that it vanishes for

c
R = C—j(RZ — R?) + R
Moreover, if additionally
C3
R = (8 - R + B

holds, Ag is fulfilled identically. Therefore only the condition A; = 0 remains, which is a
homogeneous equation of degree 6 in the Euler parameters e, €1, e5. Hence for given five
design parameters ¢y, co, c3, it, A, this sextic implies a 4-parametric set of self-motions, as it
depends on the four leg lengths Ry, Ry, R3, Ry.

We close the paper by giving the following concrete example.

Example 1. The geometry of the plane-symmetric equiform SG manipulator is determined by
p=m/4, N=-=3r/4, ¢ =cy=c3=—L.
For the following choice of leg lengths®

R} =6, Ry=4, Ri=6, Ri=9, Ri=T R;=9,

the sextic is displayed for p = —1 and p = 2 in Fig. 3. Animations of the correspond-
ing self-motions can be downloaded as supplementary data from the author’s homepage (cf.
Footnote 8). o

5. Conclusions and outlook

In this paper we showed that the necessary condition of non-planar congruent SG manipu-
lators for possessing non-translational self-motions (cf. Theorem 1) also holds for non-planar
equiform SG manipulators (cf. Theorem 3). In contrast to non-planar congruent SG plat-
forms nothing is known about the sufficiency of this common geometric characterization for
the equiform case. This problem remains open and is dedicated to future research.

All known examples of equiform SG manipulators with non-translational self-motions are
given in Section 4, where also a set of new self-motions is presented. Moreover we proved in

8Note that the input data (u, A, c1,c2,c3, R1,..., Rg) is identical with the example given in the supple-
mentary data (including animations) of the publication [12], which can be downloaded from the author’s
homepage http://www.geometrie.tuwien.ac.at/nawratil.
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Figure 3: We identify ey = 0 with the line at infinity and illustrate the affine part

of the sextic; i.e., we set ey = 1 and plot e; horizontally and e, vertically for
(a) p=—1 and (b) p =2, respectively.

Theorem 2 that an equiform SG manipulator has translational self-motions, if and only if it
is a so-called reflection-congruent one.

Finally it should be noted that we are interested in the generalization of this study with
respect to the linear coupling of the non-planar platform and base. This problem is still open
for the case where this mapping is an affinity or even a projectivity.
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