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Abstract. We consider a skew ruled surface Φ in the Euclidean space E3 and
relative normalizations of it, so that the relative normals at each point lie in the
corresponding asymptotic plane of Φ. We call such relative normalizations and
the resulting relative images of Φ asymptotic. We determine all ruled surfaces and
the asymptotic normalizations of them, for which Φ is a relative sphere (proper or
inproper) or the asymptotic image degenerates into a curve. Moreover we study
the sequence of the ruled surfaces {Ψi}i∈N, where Ψ1 is an asymptotic image of Φ
and Ψi, for i ≥ 2, is an asymptotic image of Ψi−1. We conclude the paper by the
study of various properties concerning some vector fields, which are related with
Φ.
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1. Preliminaries

Here we sum up briefly some elementary facts concerning the relative Differential Geometry
of surfaces and the Differential Geometry of ruled surfaces in the Euclidean space E3; for
notations and definitions the reader is referred to [6] and [8].

In the Euclidean space E3 let Φ : x = x(u, v) be an injective Cr-immersion defined on
a region U of R2, with non-vanishing Gaussian curvature. A Cs-mapping y : U → E3,
r > s ≥ 1, is called a Cs-relative normalization of Φ if

rank
(
{x/1, x/2, y}

)
= 3, rank

(
{x/1, x/2, y/i}

)
= 2, i = 1, 2, ∀ (u, v) ∈ U, (1)

where

f/i :=
∂f

∂ui
, f/ij :=

∂2f

∂ui∂uj
etc.

denote partial derivatives of a function (or a vector-valued function) f in the coordinates
u1 := u, u2 := v. The covector X of the tangent plane is defined by

〈X, x/i〉 = 0 (i = 1, 2) and 〈X, y〉 = 1, (2)
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where 〈 , 〉 denotes the standard scalar product in E3. The relative metric G is introduced by

Gij = 〈X, x/ij〉. (3)

The support function of the relative normalization y is defined by q := 〈ξ, y〉 (see [5, p. 196]),
where ξ is the Euclidean normalization of Φ. By virtue of (1) q never vanishes on U and,
because of (2), X = q−1ξ. Then by (3), we also obtain

Gij = q−1 hij, (4)

where hij are the coefficients of the second fundamental form of Φ. Conversely, when a support
function q is given, then the relative normalization y is uniquely determined by (see [5])

y = −h(ij) q/i x/j + q ξ, (5)

where h(ij) are the coefficients of the inverse tensor of hij . For a function (or a vector-
valued function) f we denote by ∇G f the first Beltrami differential operator and by ∇G

i f the
covariant derivative, both with respect to the relative metric. We consider the coefficients

Aijk :=
〈
X, ∇G

k ∇G
j x/i

〉

of the Darboux tensor. Then, by using the relative metric tensor Gij for “raising and lowering
the indices”, the Tchebychev vector T of the relative normalization y is defined by

T := Tm x/m where Tm :=
1

2
Aim

i (6)

and the Pick invariant by

J :=
1

2
AijkA

ijk. (7)

The relative shape operator has the coefficients Bj
i defined by

y/i =: −B
j
i x/j . (8)

Then, the relative curvature and the relative mean curvature are defined by

K := det
(
B

j
i

)
, H :=

B1
1 +B2

2

2
. (9)

When we attach the vectors y of the relative normalization to the origin, the endpoints of
them describe the relative image of Φ.

Let now Φ be a skew (non-developable) ruled C2-surface, which is defined by its striction
curve Γ : s = s(u), u ∈ I (I ⊂ R open interval) and the unit vector e pointing along the
generators. We choose the parameter u to be the arc length along the spherical curve e = e(u)
and we denote the differentiation with respect to u by a prime. Then a parametrization of
the ruled surface Φ over the region U := I × R is

x(u, v) = s(u) + v e(u), (10)

with
|e| = |e′| = 1, 〈s′(u), e′(u)〉 = 0 ∀ u ∈ I. (11)
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The distribution parameter δ(u) := (s′, e, e′), the conical curvature κ(u) := (e, e′, e′′) and the
function λ := cot σ, where σ := ∢(e, s′) is the striction of Φ (−π

2
< σ ≤ π

2
, signσ = signδ),

are the fundamental invariants of Φ and determine uniquely, up to Euclidean rigid motions,
the ruled surface Φ. The moving frame of Φ is the orthonormal frame which is attached to the
striction point s(u), and consists of the vector e(u), the central normal vector n(u) := e′(u)
and the central tangent vector z(u) := e(u)× n(u). It fulfils the equations [6, p. 280]

e′ = n, n′ = −e + κ z, z′ = −κn. (12)

Then, we have
s′ = δλe+ δz. (13)

By (10) and (13) we also obtain

x/1 = δλe+ vn+ δz, x/2 = e, (14)

and thus

ξ =
δn− vz

w
, where w :=

√
v2 + δ2. (15)

The coefficients gij and hij of the first and the second fundamental form of Φ take the form

g11 = w2 + δ2λ2, g12 = δλ, g22 = 1, (16)

h11 = −κw2 + δ′v − δ2λ

w
, h12 =

δ

w
, h22 = 0. (17)

The Gaussian curvature K̃ of Φ is given by (E. Larmarle’s formula [6])

K̃ = − δ2

w4
. (18)

In this paper only skew ruled surfaces of the space E3 are considered with parametrization
like in (10) and (11).

2. Ruled surfaces relatively normalized

Let y be a relative normalization of a given ruled C2-surface Φ (δ 6= 0) and let q be the
corresponding support function. Then, on account of (4) and (17) the coefficients of the
inverse relative metric tensor are computed by

G(11) = 0, G(12) =
wq

δ
, G(22) =

wq (κw2 + δ′v − δ2λ)

δ2
. (19)

The relative normalization y of Φ can be expressed with respect to the moving frame
{e, n, z}, by using (5), (14), (15) and (17), as follows:

y = −w
δq/1 + q/2(κw

2 + δ′v)

δ2
e+

δ2q − w2vq/2

δw
n− vq + w2q/2

w
z. (20)

It is well known [5, p. 199], that the components of the Tchebychev vector T of y are
given by

T i =

[
ln

( |q|
qAFF

)]

/j

G(ij), (21)
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where, by virtue of (18),

qAFF = |K̃|1/4 = |δ|1/2
w

(22)

denotes the support function of the equiaffine normalization yAFF . From the relations (18)
and (19) we have

T 1 =
w2q/2 + vq

δw
, T 2 =

2δw2q/1 + δ′q (δ2 − v2)

2δ2w
+

T 1 (κw2 + δ′v − δ2λ)

δ
. (23)

Thus, by using (6) and (14), we obtain

T = w
q (2κv + δ′) + 2δq/1 + 2q/2(κw

2 + δ′v)

2δ2
e+

vq + w2q/2

δw
(vn+ δz) . (24)

Especially, the Tchebychev vector TEUK of the Euclidean normalization (q = 1) reads

TEUK = w
2κv + δ′

2δ2
e +

v

δw
(vn + δz) . (25)

We introduce now the tangential vector

Q :=
1

4
∇G

(
1

q
, x

)
(26)

of Φ. On account of (5) and (19) we have

y − q ξ = 4 q Q.

Thus, by (26), the vector Q is in the direction of the tangential component of y.

Definition 1. We call Q the support vector of y.

Its components with respect to the local basis {x/1, x/2}, because of (19) and (26), are

Q1 =
−w q/2

4δq
, Q2 = −w

(κw2 + δ′v − δ2λ) q/2 + δq/1

4δ2q
. (27)

By using (14) we find

Q = −w
δ q/1 + q/2(κw

2 + δ′v)

4δ2q
e− wq/2

4δq
(vn+ δz) . (28)

Denoting by QAFF the support vector of the equiaffine normalization yAFF and using (22),
(24), (25) and (28), we get the relations

TEUK = 4QAFF , T = q TEUK − 4q Q.
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3. Asymptotic normalizations of ruled surfaces

First in this section we find all relative normalizations y, so that the relative normals at each
point P of Φ lie in the corresponding asymptotic plane, i.e., in the plane {P ; e, n}. On account
of (20), this is valid iff vq + w2q/2 = 0, or, equivalently, iff the support function q of y is of
the form q = f w−1, where f = f(u) is an arbitrary non-vanishing C1-function. By virtue of
(24) we have

Proposition 2. The following statements are equivalent:

(a) The relative normals at each point P of Φ lie on the corresponding asymptotic plane.

(b) The Tchebychev vector T of y at each point P of Φ is parallel to the corresponding
generator.

(c) The support function is of the form

q =
f(u)

w
, f(u) ∈ C1(I), f(u) 6= 0. (29)

Definition 3. We call a support function of the form (29), as well as the corresponding
relative normalization

y =

[
−
(
f

δ

)
′

+
κf

δ2
v

]
e+

f

δ
n, (30)

and the resulting relative image of Φ asymptotic.

It is apparent from (22) and (29), that the equiaffine normalization yAFF is contained
in the set of the asymptotic ones. Support functions of ruled surfaces of the form (29) were
introduced by the first author in [9].

We consider an asymptotically normalized by (30) ruled surface Φ. The Pick invariant of
Φ is computed from (7), by using the well known equation [5, p. 196]

Aijk =
1

q
〈ξ, x/ijk〉 −

1

2

(
Gij/k +Gjk/i +Gki/j

)
(31)

and the relations (4), (14), (15) and (17). We easily find A222 = 0. Then, since the Darboux
tensor is fully symmetric, we have

J =
3

2

(
A112A

112 + A122A
122

)
. (32)

On account of (31), by straightforward calculations, we get

A112 =
2δf ′ − δ′f

2f 2
, A112 = A122 = 0, A122 = f

2δf ′ − δ′f

2δ3
.

Substitution in (32) gives J = 0. This generalizes a result on equiaffinelly normalized ruled
surfaces (see [1, p. 217]).

The relative curvature and the relative mean curvature of Φ are computed on account of
(9). By using (8), (14) and (30), we find the coefficients of the relative shape operator

B1
1 =

−κf

δ2
, B1

2 = 0, B2
2 =

−κf

δ2
, (33)
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B2
1 =

2δ′f (κv + δ′)− δ [κf ′v + 2δ′f ′ + f (κ′v + δ′′)] + δ2 [f (1 + κλ) + f ′′]

δ3
, (34)

so that

K =
κ2f 2

δ4
, H =

−κf

δ2
. (35)

It is obvious that

• The relative curvature and the relative mean curvature are constant along each generator
of Φ. Moreover they are both constant iff the function f is of the form f= c δ2 κ−1, c ∈ R

∗.

• The only asymptotically normalized ruled surfaces, which are relative minimal surfaces
(or of vanishing relative curvature) are the conoidal ones.

The scalar curvature S of the relative metric G, which is defined formally and is the
curvature of the pseudo-Riemannian manifold (Φ, G), is obtained by direct computation to
be S = H . Substituting J,H and S in the Theorema Egregium of the relative Differential
Geometry (see [5, p. 197]), which states that

H − S + J = 2 Ti T
i,

it turns out that the norm ‖T‖G with respect to the relative metric of the Tchebychev vector
T of any asymptotic normalization y of Φ vanishes identically.

Let the ruled surface Φ be non-conoidal. We consider the covariant coefficients Bij=Bk
i Gkj

of the relative shape operator and we denote by B̃ the scalar curvature of the metric Bij du
i duj,

which is defined formally just as the curvature S. Then, on account of (4), (17), (29), (33)

and (34), it turns out that B̃ equals 1.

From (30) it is obvious, that the asymptotic image of Φ degenerates into a point or into
a curve iff Φ is conoidal. In this case we have

y = −
(
f

δ

)
′

e+
f

δ
n.

Furthermore, computing the derivative of y and using (12), it follows immediately that the
asymptotic image of Φ degenerates

a) into a curve Γ1, iff f 6= δ(c1 cosu+ c2 sin u), c1, c2 ∈ R, c21 + c22 6= 0, or

b) into a point, iff f = δ(c1 cosu+ c2 sin u), c1, c2 ∈ R, c21 + c22 6= 0.
In case (a) one readily verifies, that Γ1 is a planar curve, whose radius of curvature equals
r = |(f

δ
)′′ + f

δ
|. In case (b) the asymptotic normalization of Φ is constant. Consequently the

ruled surface Φ is an improper relative sphere [3]. Hence we have

Proposition 4. Let Φ be an asymptotically normalized ruled surface. The asymptotic image
of Φ degenerates
(a) into a curve, which is planar, iff Φ is conoidal and f 6= δ(c1 cosu+ c2 sin u), c1, c2 ∈ R,

c21 + c22 6= 0,

(b) into a point, whereupon Φ is an improper relative sphere, iff Φ is conoidal and f =
δ(c1 cosu+ c2 sin u), c1, c2 ∈ R, c21 + c22 6= 0.

Let now Φ be a proper relative sphere, i.e., its relative normals pass through a fixed point
[4]. It is well known, that this is valid iff there exists a constant c ∈ R

∗ and a constant vector
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a, such that x = c y + a. Taking partial derivatives of this last equation on account of (10),
(12), (13), (30) and (35), we obtain

f =
δ2

cκ
, (κ 6= 0), (36)

(
δ

κ

)
′′

+
δ

κ
(1 + κλ) = 0 (37)

and

cy =

[
−
(
δ

κ

)
′

+ v

]
e +

δ

κ
n. (38)

We notice, that the relative curvature and the relative mean curvature of a proper relative
sphere are constant.
Conversely, let us suppose, that the equations (36) and (37) are valid, where c ∈ R

∗. Then,
because of (30), the equation (38) is valid as well. Moreover, from (13) and (37) we obtain

[
−
(
δ

κ

)
′

e +
δ

κ
n

]′
= s′.

Therefore the striction curve Γ of Φ is parametrized by

s = −
(
δ

κ

)
′

e+
δ

κ
n+ a, a = const. (39)

By combining this last relation with (10) and (38) we get x = c y+ a, which means that Φ is
a proper relative sphere. Thus, we arrive at

Proposition 5. An asymptotically normalized ruled surface Φ is a proper relative sphere iff
the function f is given by (36) and its fundamental invariants are related as in the equation
(37).

We now assume, that the relative normals of Φ are parallel to a fixed plane E. Let c be
a constant normal unit vector on E. Then 〈y, c〉 = 0, whence, on account of (30), we find

κf

δ2
〈e, c〉v +

[
−
(
f

δ

)
′

〈e, c〉+ f

δ
〈n, c〉

]
= 0. (40)

Differentiation of (40) relative to v yields κ〈e, c〉 = 0. Then, again from (40), we derive the
system

κ〈e, c〉 = 0,

(
f

δ

)
′

〈e, c〉 − f

δ
〈n, c〉 = 0.

In case of 〈e, c〉 6= 0, we obtain

κ = 0,

(
f

δ

)
′′

+
f

δ
= 0.

In this case y is constant, i.e., Φ is an improper relative sphere. In case of 〈e, c〉 = 0, we have
κ = 0 and (40) is identically fulfilled. So we have proved
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Proposition 6. If the relative normals of an asymptotically normalized ruled surface Φ are
parallel to a fixed plane E, then Φ is conoidal. Furthermore Φ is either an improper relative
sphere or its generators are parallel to E.

We consider now a non-conoidal ruled surface which is asymptotically normalized by (30).
In view of (35) we observe that all points of Φ are relative umbilics (H2 −K = 0), a result
which generalizes a result on equiaffinelly normalized ruled surfaces (see [1, p. 218]) Thus, the
relative principal curvatures k1 and k2 equal H . The parametrization of the unique relative
focal surface of Φ, which initially reads

x∗ = s+ ve+
1

H
y,

becomes

x∗ = s− δ

κ
n+

δf ′ − δ′f

κf
e,

i.e., the focal surface degenerates into a curve Γ∗ and all relative normals along each generator
form a pencil of straight lines. This generalizes a result on equiaffinelly normalized ruled
surfaces (see [8, p. 204]).
Let P (u0) be a point of the striction curve Γ of Φ and R(u0) the corresponding point on the
focal curve Γ∗. If we consider all asymptotic normalizations of Φ, then the locus of the points
R(u0) is a straight line parallel to the vector e (u0). In this way we obtain a ruled surface Φ∗,
whose generators are parallel to the vectors e(u), a parametrization of which reads

Φ∗ : x∗ = s− δ

κ
n+ v∗ e,

which is the asymptotic developable of Φ (see [2, p. 51]). One easily verifies, that

s∗ = s− δ

κ
n+

(
δ

κ

)
′

e

is a parametrization of the striction curve of Φ∗.

4. The relative image of an asymptotically normalized ruled surface

In this paragraph we consider a non-conoidal ruled surface Φ, which is asymptotically nor-
malized by y via the support function q = fw−1. The parametrization (30) of y shows, that
the asymptotic image Ψ1 of Φ is also a ruled surface, whose generators are parallel to those
of Φ. Then, by a straightforward computation we can find the following parametrization of
its striction curve

Γ1 : s1 = −
(
f

δ

)
′

e+
f

δ
n. (41)

Thus, if we put for convenience y = y1, we can rewrite the parametrization (30) as

Ψ1 : y1 = s1 + v1 e, v1 := −H v,

where H denotes the relative mean curvature of Φ (see (35)). Obviously Ψ1 is parametrized
like in (10) and (11). We use {e, n, z} as moving frame of Ψ1. The fundamental invariants of
Ψ1 are given by

δ1 = −δH, κ1 = κ, λ1 = −
(
f
δ

)′′
+ f

δ

κf
δ

. (42)
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From the above the following results, which can be checked fairly easily are listed:

• If Φ and its asymptotic image Ψ1 are congruent (δ = δ1, κ = κ1, λ = λ1), then

f =
δ2

κ
and

(
δ

κ

)
′′

+
δ

κ
(1 + κλ) = 0,

and thus Φ is a proper relative sphere (see Proposition (5)).

• Ψ1 is orthoid (λ1 = 0) iff f = δ (c1 cosu+ c2 sin u) , c1, c2 ∈ R, c21 + c22 6= 0.

• The striction curve of Ψ1 is an asymptotic line of it (κ1 = λ1) iff

(
f

δ

)
′′

+
f

δ

(
1 + κ2

)
= 0,

and it is an Euclidean line of curvature of it (1 + κ1λ1 = 0 ) iff f = δ (c1u+ c2),
c1, c2 ∈ R, c21 + c22 6= 0.

• Ψ1 is an Edlinger surface1 (δ′1 = 1 + κ1λ1 = 0 [2, p. 36]) iff

f =
cδ

κ
and κ =

1

c1u+ c2
, c, c1, c2 ∈ R, c 6= 0, c21 + c22 6= 0.

For f = |δ|1/2, i.e., for the equiaffine normalization, some of the above results were
obtained in [10, § 4].

We now assume that Φ has a “precedent” ruled surface, i.e., that there exists another
skew ruled surface, say Ψ∗, with parallel generators, an asymptotic image of which is Φ.
We consider a parametrization of Ψ∗ like in (10)–(11) and let δ∗, κ∗, λ∗ be its fundamental
invariants. We denote likewise all magnitudes of Ψ∗ by the usual symbols supplied with a
star (∗). We normalize Ψ∗ asymptotically via the support function q∗ = f ∗w∗

−1

, and suppose
that the resulting normalization of it, say Ψ∗∗, is the given ruled surface Φ. Then, on account
of (42), clearly κ∗ = κ and

δ = −δ∗H∗, λ = −
(
f∗

δ∗

)′′
+ f∗

δ∗

κf∗

δ∗

, (43)

where, in view of (35), H∗ = −δ∗
−2

κ f ∗ is the relative mean curvature of Φ∗. Thus the system
(43) becomes

f ∗

δ∗
=

δ

κ
,

(
δ

κ

)
′′

+
δ

κ
(1 + κλ) = 0. (44)

Let, conversely, the relations (44) be valid. We consider an arbitrary skew ruled surface Ψ∗,
whose generators are parallel to those of Φ, and let δ∗ be its distribution parameter. The
conical curvature of Ψ∗ equals κ. We normalize asymptotically Ψ∗ via the support function
q∗ = f ∗w∗

−1

, where f ∗ = δ δ∗ κ−1. We can easily verify, by using (42) and (44), that the
fundamental invariants of the asymptotic image Ψ∗∗ of Ψ∗ coincide with the corresponding
fundamental invariants of Φ. Hence Ψ∗∗ and Φ are congruent. So we arrive at

Proposition 7. The ruled surface Φ is the asymptotic image of a ruled surface Ψ∗ iff the
second of the conditions (44) is valid.

1i.e., its osculating quadrics are rotational hyperboloids [2]
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We suppose now that Φ is not a proper relative sphere (Φ 6= Ψ1) and we normalize
asymptotically its asymptotic image Ψ1. Let q1 = f1w

−1
1 be the support function of y1.

Analogously to the computations above we get the following parametrization of the asymptotic
image Ψ2 of Ψ1 :

Ψ2 : y2 = s2 + v2 e, v2 := −H1 v1, H1 =
f1

fH
,

where

Γ2 : s2 = −
(
f1

δ1

)
′

e+
f1

δ1
n

is its striction curve and H1 is the relative mean curvature of Ψ1. Thus Ψ2 is parametrized like
in (10) and (11). Obviously, the Tchebychev vector T 1 of y1 is parallel to e. The fundamental
invariants of Ψ2 are computed by (see (42))

δ2 = −δ1H1, κ2 = κ, λ2 = −

(
f1
δ1

)
′′

+ f1
δ1

κf1
δ1

.

According to Proposition (5) we have: The asymptotic image Ψ1 of Φ is a proper relative
sphere iff there exists a constant c 6= 0, such that cf1 = fH (the condition (37) is identically
fulfilled). Thus, we obtain the following results:

• Φ and Ψ2 are congruent iff

f1 = f and

(
δ

κ

)
′′

+
δ

κ
(1 + κλ) = 0.

• Ψ1 and Ψ2 are congruent iff δ2f1 = κf 2.

• Ψ2 is orthoid iff f1 =
κf

δ
(c1 cosu+ c2 sin u), c1, c2 ∈ R, c21 + c22 6= 0.

• The striction curve of Ψ2 is an asymptotic line of it iff
(
δf1

κf

)
′′

+
δf1

κf

(
κ2 + 1

)
= 0,

and it is an Euclidean line of curvature of it iff

f1 =
κf

δ
(c1u+ c2) , c1, c2 ∈ R, c21 + c22 6= 0.

• Ψ2 is an Edlinger surface iff

f1 =
cf

δ
and κ =

1

c1u+ c2
, c, c1, c2 ∈ R, c 6= 0, c21 + c22 6= 0.

Continuing in the same way we obtain a sequence {Ψi}i∈N of ruled surfaces, such that
Ψi is the asymptotic image of Ψi−1. Moreover, if qi−1 = fi−1w

−1
i−1 is the asymptotic support

function of Ψi−1, we can easily check that the parametrization of Ψi reads

Ψi : yi = si + vi e, vi := −Hi−1 vi−1,

where

Γi : si = −
(
fi−1

δi−1

)
′

e+
fi−1

δi−1

n
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is its striction curve and Hi−1 is the relative mean curvature of Ψi−1. Ψi is parametrized like
in (10) and (11) and its fundamental invariants are computed by

δi = −δi−1Hi−1, κi = κ, λi = −

(
fi−1

δi−1

)
′′

+ fi−1

δi−1

κ
fi−1

δi−1

.

The relative magnitudes of Ψi−1 are recursively computed by

Ji−1 = 0, Hi−1 = Si−1 =
fi−1

fi−2Hi−2
, Ki−1 = H2

i−1.

Finally, we notice that the Tchebychev vectors of all asymptotic normalizations of the sequence
{Ψi}i∈N are parallel to e and that their asymptotic developables coincide with the director
cone of Φ [6, p. 263].

5. Some results on the Tchebychev and the support vector fields

We consider a ruled surface Φ, which is asymptotically normalized by y via the support
function q = fw−1. The Tchebychev vector of y can be computed by using (24) and (29).
We find

T =
2δf ′ − δ′f

2δ2
e.

The divergence divI T and the rotation curlI T of T with respect to the first fundamental
form I of Φ, which initially read [10, p. 304, 305]

divI T =
(wT i)/i

w
, curlI T =

(g12T
1 + g22T

2)/1 − (g11T
1 + g12T

2)/2
w

,

become (see (16) and (23))

divI T =
v (2δf ′ − δ′f)

2δ2w2
, curlI T =

δ (2δf ′′ − 3δ′f ′) + f (2δ′ 2 − δδ′′)

2δ3w
,

from which we obtain:
• It is divI T ≡ 0 iff f = c|δ|1/2, c ∈ R

∗, or equivalently iff T = 0.

• It is curlI T ≡ 0 iff δ (2δf ′′ − 3δ′f ′) + f (2δ′ 2 − δδ′′) = 0, or, after standard calculation,
iff f = |δ|1/2

(
c1
∫
|δ|1/2du+ c2

)
, c1, c2 ∈ R, c21 + c22 6= 0.

Let divGT and curlGT be the divergence and the rotation of T with respect to the relative
metric. In analogy to the computation above we get

divGT ≡ 0, curlGT ≡ 0.

The relation curlGT ≡ 0 agrees with T = ∇G
(
f |δ|−1/2, x

)
(see (21)).

The support vector Q of an asymptotic normalization becomes (see (28))

Q = w
κfv + δ′f − δf ′

4δ2f
e +

v

4δw
(vn+ δz) . (45)
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We observe, that 〈e, Q〉 = 0 iff
κfv + δ′f − δf ′ = 0.

On differentiating twice relative to v we obtain the system

κf = δ′f − δf ′ = 0,

which implies κ = 0 and f = c|δ|, c ∈ R
∗. The inverse also holds. So we have: The support

vectors Q are orthogonal to the generators iff Φ is conoidal and f = c |δ|, c ∈ R
∗. On account

of (27) a direct computation yields

divI Q =
3κfv2 + (δ′f − 2δf ′) v + δ2f (κ− λ)

4δ2fw
, (46)

curlI Q =
A3v

3 + A2v
2 + A1v + A0

4δ3f 2w2
, (47)

where

A3 = f 2 (δκ′ − 2δ′κ) , (48a)

A2 = −2δ′2f 2 + δf (δ′f ′ + δ′′f) + δ2
[
f ′2 − 2f 2 (1 + κλ)− ff ′′

]
, (48b)

A1 = δ2f
[
δλf ′ + f [δκ′ − δ′ (κ+ λ)]

]
, (48c)

A0 = −δ2
[
f 2(δ′2 − δδ′′) + δ2[ff ′′ + f 2 (1 + κλ)− f ′2]

]
. (48d)

Also we have

divGQ =
2κfv4 + (δ′f − 2δf ′) v3 + 3δ2κfv2 − 2δ3f ′v + δ4f (κ− λ)

4δ2fw3
, (49)

and
curlGQ ≡ 0. (50)

Let divI Q = 0. Then by (46) we have

3κfv2 + (δ′f − 2δf ′) v + δ2f (κ− λ) = 0,

from which, by successive differentiations relative to v, we infer the system

κf = δ′f − 2δf ′ = δ2f (κ− λ) = 0,

i.e., κ = λ = 0 and f = c |δ|1/2, c ∈ R
∗. The inverse also holds. So we have: It is divIQ ≡ 0

iff Φ is a right conoid and f = c |δ|1/2, c ∈ R
∗. Treating the relations (47)–(50) similarly we

obtain the following results:

• It is curlI Q ≡ 0 iff

– Φ is an Edlinger surface with constant invariants and f = c ∈ R
∗, or

– Φ is a right conoid, δ =
c1

u+ c2
and f =

c1c3

(u+ c2)
√
eu(u+2c2)

, c1, c3 ∈ R
∗, c2 ∈ R, or

– the fundamental invariants of Φ fulfil the relations

c21δ
6 − 5c3 [δ (u+ c1) + c3] = 0, κ = c1δ

2, λ =
−c1δ

4

c23 + c21δ
6
, c1, c2, c3 ∈ R

∗,

and f = c2 |δ| ec3
∫

du

δ .
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• It is divGQ ≡ 0 iff Φ is a right helicoid and f = c ∈ R
∗.

We consider now the following families of curves on Φ:

a) the curved asymptotic lines,

b) the curves of constant striction distance (u-curves) and

c) the K̃-curves, i.e., the curves along which the Gaussian curvature is constant [7].

The corresponding differential equations of these families of curves are

κv2 + δ′v + δ2 (κ− λ)− 2δv′ = 0, (51)

v′ = 0, (52)

2δvv′ + δ′
(
δ2 − v2

)
= 0. (53)

It will be our task to investigate necessary and sufficient conditions for the support vector field
Q to be tangential or orthogonal to one of these families of curves. To this end we consider
a directrix Λ: v = v(u) of Φ. Then we have

x′ = (δλ+ v′) e+ vn+ δz. (54)

From (45) and (54) it follows: x′ and Q are parallel or orthogonal iff

κfv3 + (δ′f − δf ′) v2 + δf [δ (κ− λ)− v′] v + δ2 (δ′f − δf ′) = 0 (55)

or

(κfv + δ′f − δf ′) (δλ+ v′) + δfv = 0, (56)

respectively. Then, from (51) and (55) (resp. (56)), we infer, that Q is tangential or orthogonal
to the curved asymptotic lines iff

κfv3 + (δ′f − 2δf ′) v2 + δ2f (κ− λ) v + 2δ2 (δ′f − δf ′) = 0 (57)

or

κ2fv3+κ (2δ′f−δf ′) v2+[δ2κf (κ+λ)+δ′ (δ′f−δf ′) +2δ2f ]v+δ2 (δ′f−δf ′) (κ+λ) = 0, (58)

respectively. From (57) and (58), after successive differentiations relative to v, we obtain

κf = δ′f − 2δf ′ = δ2f (κ− λ) = 2δ2 (δ′f − δf ′) = 0

and

κ2f = κ (2δ′f − δf ′) = δ2κf (κ+ λ) + δ′ (δ′f − δf ′) + 2δ2f = δ2 (δ′f − δf ′) (κ+ λ) = 0,

respectively. Standard treatment of these systems leads to the following results:

• Q is tangential to the curved asymptotic lines of Φ iff Φ is a right helicoid and f=c ∈ R
∗.

• Q is orthogonal to the curved asymptotic lines of Φ iff Φ is a right conoid and the

function f is given by f = c |δ| e2
∫

δ

δ′
du, c ∈ R

∗.
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From (52) and (55), resp. (56), we obtain: Q is tangential or orthogonal to the u-curves iff

κfv3 + (δ′f − δf ′) v2 + δ2f (κ− λ) v + δ2 (δ′f − δf ′) = 0

or
f (1 + κλ) v + λ (δ′f − δf ′) = 0,

respectively. Treating these polynomials in the same way we result:

• Q is tangential to the u-curves of Φ iff Φ is a right conoid and f = c |δ|, c ∈ R
∗.

• Q is orthogonal to the u-curves of Φ iff the striction curve of Φ is an Euclidean line of
curvature and f = c |δ|, c ∈ R

∗.

From (53) and (55), resp. (56), we obtain: Q is tangential or orthogonal to the K̃-curves iff

2κfv3 + (δ′f − 2δf ′) v2 + 2δ2f (κ− λ) v + δ2 (3δ′f − 2δf ′) = 0

or

δ′κfv3+
[
2δ2f (1+κλ) +δ′ (δ′f−δf ′)

]
v2+δ2 [δ′f (2λ−κ)−2δλf ′] v−δ2δ′ (δ′f−δf ′) = 0,

respectively. Treating analogously these polynomials we easily obtain:

• Q is tangential to the K̃-curves of Φ iff Φ is a right helicoid and f = c ∈ R
∗.

• Q is orthogonal to the K̃-curves of Φ iff Φ is an Edlinger surface and f = c ∈ R
∗.

To complete this work we consider the Euclidean lines of curvature of Φ. Their differential
equation, initially being

g12h11 − g11h12 + (g22h11 − g11h22) v
′ + (g22h12 − g12h22) v

′2 = 0,

becomes, on account of (16) and (17),

δ
[
w2 (1 + κλ) + δ′λv

]
+
[
κw2 + δ′v − δ2λ

]
v′ − δv′2 = 0,

from which, by virtue of (55), we infer, that Q is tangent to the one family of the lines of
curvature of Φ iff

−κff ′v3 +
[
δf ′2 − δf 2 (1 + κλ)− δ′ff ′

]
v2 + δf (κ− λ) (δ′f − δf ′) v + δ (δf ′ − δ′f)

2
= 0.

It results the system

κff ′ =
[
δf ′ 2 − δf 2 (1 + κλ)− δ′ff ′

]
= δf (κ− λ) (δ′f − δf ′) = δ (δf ′ − δ′f)

2
= 0,

from which we get
δ′ = 1 + κλ = f ′ = 0.

Hence Φ is an Edlinger surface and the function f is constant. Moreover, we can easily
confirm, that the Euclidean principal directions at a point P of an Edlinger surface read

v′ = 0 and v′ =
δ2 + κ2w2

δκ
.

Since the second of these relations verifies (55), we have: When Φ is an Edlinger surface and
the function f is constant, then the support vector field Q is tangent to those Euclidean lines
of curvature of Φ, which are orthogonal to the striction curve of Φ.
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[3] F. Manhart: Uneigentliche Relativsphären, die Regelflächen oder Rückungsflächen
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