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Abstract. In this paper we use the definition of the energy of a curve on
a surface (from [4] or [7]) and show that in a Liouville net over C the energy
integrals along the two diagonals of any curvilinear quadrangle of net curves are
equal. In particular cases also the lengths of the two diagonals are equal. For
Liouville nets in C we prove a theorem about the energy of certain approximating
polygons for the diagonals, in which the well-known planar version of Ivory’s
Theorem is included as a special case. This new theorem can therefore be seen as
a generalization of Ivory’s Theorem in the plane. In addition, we prove that this
theorem is valid on the holomorphic Liouville curves constructed in [1].
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1. Introduction

The Theorem of Ivory in the Euclidean plane is about a general quadrangle formed by confocal
quadrics. It states that the two straight line diagonals in each such quadrangle have equal
lengths. In Figure 1 (kindly provided by H. Stachel) you can see a net of confocal ellipses
and hyperbolas with common foci F1 and F2 and a quadrangle ABCD, where the diagonals
AC and BD have the same length.

James Ivory proved his theorem in 1809 for the three-dimensional Euclidean case by
straightforward calculation. It is now known (see [6]) that this theorem is valid in the n-
dimensional Euclidean space, in a Minkowski (pseudo-Euclidean) plane and in n-dimensional
hyperbolic spaces.

In this article we first introduce the notion of length and energy for a curve and a polygon.
After that, we repeat the construction of a holomorphic conformal map ϕ from C to C from
article [1], that generates all plane Liouville nets up to translations. Then we formulate and
prove a theorem concerning the lengths and energies of the diagonals and their polygonal
subdivisions in a plane Liouville net rectangle which contains Ivory’s Theorem as a special
case.1 Then this theorem is extended to the holomorphic Liouville curves of article [1].

1Already W. Blaschke presented in his book [3] confocal conics as images of a rectangular grid under
particular conformal mappings.
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Figure 1: Ivory’s Theorem in the Euclidean plane

My statements in the Theorems 5.1 and 6.2 dealing with polygons could be called ’discrete
versions’ of the energy-statements — in the sense of ‘Discrete Differential Geometry’. Some
particular comments, e.g., in the Theorems 6.1, 4.2, 4.4, and in Remarks 6.1, are not essential
for the presented generalizations of Ivory’s Theorem but only related to statements of [1].

2. Length and energy of a curve in a manifold

The length L(p) and the energy E(p) of a curve p : [0, 1] → M in a Riemannian manifold
M are given by the following expressions (see [4, Chapter 9, p. 194]) and they are related by
the Schwarz inequality (with equality iff ‖ṗ‖ is constant, which means that the parameter t
is proportional to arc length):

L(p) =

∫ 1

0

‖ṗ‖dt =
∫ 1

0

√

〈ṗ, ṗ〉 dt ,

E(p) =

∫ 1

0

‖ṗ‖2dt =
∫ 1

0

〈ṗ, ṗ〉 dt ,

L(p)2 ≤ E(p),

where ṗ is the tangent vector of the curve and 〈 , 〉 is the scalar product in the tangent
space TM . For polygons approximating the curve p after a subdivision
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of the interval of definition, the length L(p,m) and the energy E(p,m) are defined as follows:

L(p,m) =
m
∑

k=1

√

〈

p
(

k

m

)

− p
(

k − 1

m

)

, p
(

k

m

)

− p
(

k − 1

m

)〉

,

E(p,m) =

m
∑

k=1

〈

p
(

k

m

)

− p
(

k − 1

m

)

, p
(

k

m

)

− p
(

k − 1

m

)〉

.

3. The Wirtinger derivatives

Consider a map ϕ : R2 → C with ϕ(x, y) = u(x, y) + iv(x, y), where x, y, u, v ∈ R and the
partial derivatives ux, uy, vx, vy exist. Now we extend the domain of definition of ϕ from
R

2 to C
2 and make a transformation, passing from (x, y) to (z, z), where z = x + iy and

z = x − iy. We denote this function still with ϕ : C2 → C and ϕ(z, z) = u(x, y) + iv(x, y),

where x = re z =
z + z

2
and y = im z =

z − z

2i
. For the partial derivatives we have:

∂

∂x
=
∂z

∂x

∂

∂z
+
∂z

∂x

∂

∂z
=

∂

∂z
+

∂

∂z
,

∂

∂y
=
∂z

∂y

∂

∂z
+
∂z

∂y

∂

∂z
= i

(

∂

∂z
− ∂

∂z

)

.

From here we get the usual expressions for the Wirtinger derivatives:

∂

∂z
=

1

2

(

∂

∂x
− i

∂

∂y

)

,
∂

∂z
=

1

2

(

∂

∂x
+ i

∂

∂y

)

.

The map ϕ : C2 → C with ϕ(z, z) = ϕ(x + iy, x − iy) = u(x, y) + iv(x, y) is conformal if
and only if it is holomorphic. If the map ϕ is holomorphic, then u and v have first partial
derivatives with respect to x and y and satisfy the Cauchy-Riemann equations:

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x

or, equivalently, the Wirtinger derivative of ϕ with respect to the complex conjugate of z is
zero:

ϕz =
∂ϕ

∂z
=

1

2

(

∂ϕ

∂x
+ i

∂ϕ

∂y

)

=
1

2

(

∂u

∂x
+ i

∂v

∂x
+ i

∂u

∂y
− ∂v

∂y

)

= 0

which means that ϕ is functionally independent from the complex conjugate of z.

4. Construction of a plane Liouville map

We repeat here the construction of a holomorphic Liouville map ϕ : C → C from article [1],
which is the one-dimensional case in article [1].

We start with the Liouville line element of ϕ, with ψ := ϕz :

ds2 = (f(x) + g(y)) (dx2 + dy2) = ψ(z)ψ(z) dz dz (4.1)

where ψ(z) = ψ(x + iy) is a holomorphic function of the complex variable z = x + iy with
complex conjugate z = x− iy, real part x and imaginary part y.



10 C.-Ş. Bǎrbat: A Generalization of Ivory’s Theorem

The differential is dz = dx+ i dy. Then we have dz dz = dx2 + dy2 and we set

ψ(z)ψ(z) := f(x) + g(y). (4.2)

This is equivalent to

∂

∂y

∂

∂x

(

ψ(z)ψ(z)
)

=
∂

∂x

∂

∂y

(

ψ(z)ψ(z)
)

= 0 . (4.3)

From the theory of complex differentiation (see Wirtinger derivatives) we get

∂

∂x

∂

∂y
= i

(

∂2

∂z2
− ∂2

∂z2

)

. (4.4)

Using this formula we can rewrite (4.3) as
(

ψ(z)ψ(z)
)

zz
=

(

ψ(z)ψ(z)
)

z z
. (4.5)

Now, by differentiating twice with respect to z and z we obtain

(ψ(z)ψ(z))zz = 2ψzψz + ψ ψzz + ψzzψ = ψzzψ,

(ψ(z)ψ(z))z z = 2ψz ψz + ψ ψz z + ψzz ψ = ψ ψzz = ψ ψzz.

Here we used the identity ψz = ψz and the fact that a holomorphic function ψ satisfies the

Cauchy-Riemann equations, which can be written as ψz = ψz = ψz = 0. Therefore formula
(4.5) is equivalent to

ψzzψ = ψ ψzz

ψ−1 ψzz = (ψzz)(ψ
−1
)

ψ−1 ψzz = ψ−1 ψzz =: a . (4.6)

Since the left hand side of (4.6) is holomorphic and the right hand side is anti-holomorphic,
the function ψ−1 ψzz must be a real constant a ∈ R. With the notation a = −k2 we get from
(4.6) the one dimensional complex Helmholtz differential equation

ψzz + k2ψ = 0 . (4.7)

The Helmholtz differential equation is a special case of the Schrödinger equation (time inde-
pendent Schrödinger equation) and for a = k = 0 we get the Laplace equation ψzz = 0 as a
special case of the Helmholtz equation.

• Let us solve the case k = 0 (Laplace equation) first. The solution is ψ(z) = C1z + C2

where C1, C2 are complex integration constants. From this we get by integration ϕ =
∫

ψdz = C1z
2 + C2z + C3.

• The next case is a = −k2 > 0, then k = iω with ω ∈ R and the Helmholtz equation
reads in this case ψzz − ω2ψ = 0. The solution is ψ(z) = C1e

ωz + C2e
−ωz and ϕ =

∫

ψdz =
C1

ω
eωz − C2

ω
e−ωz + C3.

• The last case is a = −k2 < 0, then k = ω with ω ∈ R and the Helmholtz equation
reads in this case ψzz + ω2ψ = 0. The solution is ψ(z) = C1e

iωz + C2e
−iωz and

ϕ =
∫

ψdz =
C1

iω
eiωz − C2

iω
e−iωz + C3.
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We can ignore the translation of the solutions by the third integration constant C3 and
pass to the notation of [1].

Lemma 4.1. The map ϕ maps a rectangular grid to a Liouville net if and only if ϕ is a
solution of the Helmholtz equation ϕzzz − aϕz = 0 (with complex constants αs, βs):

1. When a > 0: ϕ(z) = ϕ+(z) = α+e
ωz + β+e

−ωz.

2. When a < 0: ϕ(z) = ϕ−(z) = α−e
iωz + β−e

−iωz.

3. When a = 0: ϕ(z) = ϕ0(z) = α0z + β0z
2.

Remarks 4.1. 1. The same solutions appear in [5, Theorem A] as the only solutions to
a functional equation connected with Ivory’s Theorem in the complex plane. This is not
surprising, because the Liouville line element has the property that the parameter lines are
geodesic ellipses and hyperbolas and the geodesic diagonals in each quadrangle formed by
parameter lines satisfy Ivory’s Theorem, i.e., they have the same geodesic length. This geo-
metric characterization of the Liouville line element was proved by Dini, resp. by Zwirner

according to [1].

2. Blaschke addresses in [2] mainly the 3D-case. Surprisingly, he doesn’t speak of a Liou-
ville net but of Stäckel’s first fundamental form which is necessary and sufficient for Ivory’s
Theorem on Riemannian manifolds where geodesics serve as diagonals. It should however be
noted that the Liouville line element is a special case of the Stäckel line element.

3. Some special solutions are:
(a) ϕ(z) = z — cartesian coordinates,

(b) ϕ(z) = z2 — parabolic coordinates,

(c) ϕ(z) = ez — polar coordinates,

(d) ϕ(z) = cosh(z) — elliptic coordinates.

In [1], the authors give conditions such that the metric admits a one-parameter family of
isometries (θ ∈ R).

Theorem 4.2. The metric admits a one-parameter family of isometries (θ ∈ R) in the
following cases:

1. When a > 0: α+β+ = 0. Example for the group of isometries: z 7→ z + iθ.

2. When a < 0: α−β− = 0. Example for the group of isometries: z 7→ z + θ.

3. When a = 0: α0β0 = 0. Example for the group of isometries: z 7→ eiθz.

Remark 4.2. There is a beautiful geometric interpretation of these isometries: When we
project the complex plane stereographically to the unit sphere centered at the origin from
either the north or south pole, then we see that in each case the trajectories contain exactly
one great circle, and these three great circles are pairwise orthogonal.

Proof. We prove the three cases:

1. a > 0: For the case α+ = 0 we set c := β+ and for the case β+ = 0 we set c := α+.
Then both cases lead to ϕ(z + iθ) = ϕ+(z + iθ) = ce±ω(z+iθ) and the metric is characterized
by ϕzϕz = ω2cce±ω(z+z) = ω2cce±2ωx, which is independent of θ.

2. a < 0: For the case α− = 0 we set c := β− and for the case β− = 0 we set c := α−.
Then both cases lead to ϕ(z + θ) = ϕ−(z + θ) = ce±iω(z+θ) and the metric is characterized by
ϕzϕz = ω2cce±ω(iz+iz) = ω2cce∓2ωy, which is independent of θ.
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3. a = 0: For the case α0 = 0 we set c := β0, m = 2 and for the case β0 = 0 we set c := α0,
m = 1. Then both cases lead to ϕ(eiθz) = ϕ0(e

iθz) = c(eiθz)m and the metric is characterized
by ϕzϕz = m2cc(zz)m−1 = m2cc(x2 + y2)m−1, which is independent of θ.

We now calculate ϕ(m) = ∂mϕ/∂zm :

Theorem 4.3. For ϕ : C → C defined as ϕ ∈ {ϕ−, ϕ0, ϕ+} (see Lemma 4.1) we have

ϕ(m) ∈
{

ϕ
(m)
− , ϕ

(m)
0 , ϕ

(m)
+

}

where

ϕ
(m)
+ (z) = ωm

(

α+e
ωz + (−1)m β+e

−ωz
)

(4.8)

ϕ
(m)
− (z) = (iω)m

(

α−e
iωz + (−1)m β−e

−iωz
)

(4.9)

ϕ
(m)
0 (z) = z1−m

(

α0

Γ(2−m)
+

2β0z

Γ(3−m)

)

(4.10)

Remark 4.3. The notation ϕ(m) used above represents for m > 0 repeated (m-fold) differen-
tiation of ϕ with respect to z, and for m < 0 it represents repeated (|m|-fold) integration of
ϕ with respect to z and with a vanishing integration constant.

Proof. Left as exercise for the interested reader. Hint: induction.

Theorem 4.4. The metric of ϕ(m−1) ∈
{

ϕ
(m−1)
− , ϕ

(m−1)
0 , ϕ

(m−1)
+

}

admits the same one-
parameter group of isometries as ϕ under the same conditions.

Proof. Left as exercise for the interested reader. Hint: Basically the same as the proof for
Theorem 4.2, with adapted constants c and m.

Theorem 4.5. The line element of ϕ(m−1) ∈
{

ϕ
(m−1)
− , ϕ

(m−1)
+

}

is Liouville for all m ∈ Z.

The line element of ϕ(m−1) = ϕ
(m−1)
0 is Liouville for all 1 ≤ m ∈ Z and additionally for β0 = 0

and m = 0.

Proof. Left as exercise for the interested reader.

5. Generalization of Ivory’s Theorem in the complex

one-dimensional case

The solutions ϕ ∈ {ϕ−, ϕ0, ϕ+} of the Helmholtz differential equation ϕzzz = aϕz represent
all plane Liouville nets, up to translations. An example for a Liouville map ϕ from C to C

can be seen in Figure 2. The Liouville maps are conformal (they preserve angles) because ϕ
is holomorphic. The diagonals of the rectangles are mapped to isogonal trajectories of the
parameter curves of the Liouville net.

The main theorem of this paper is the following:

Theorem 5.1 (A generalization of Ivory’s Theorem in the plane).

Let ABCD be a rectangle in the complex plane with diagonals d1(t) = A + t(C − A) and
d2(t) = B + t(D − B) for t ∈ [0, 1]. Consider now the curves p1(t) = ϕ(d1(t)) and p2(t) =
ϕ(d2(t)).

Then for ϕ ∈ {ϕ−, ϕ0, ϕ+} the two polygons formed by joining the points p1(
k
m
) and p2(

k
m
),

respectively, where 0 ≤ k ≤ m, the energies are equal for each m ∈ N \ {0}:
E(p1, m) = E(p2, m) and additionally E(p1) = E(p2)

(see Figure 3). In the particular cases
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Figure 2: Mapping a plane rectangle to a plane Liouville net rectangle

Figure 3: Subdivision of the diagonals in a plane Liouville net rectangle

1. ϕ = ϕ− and α− β− = 0,

2. ϕ = ϕ0 and β0 = 0, and

3. ϕ = ϕ+ and α+ β+ = 0
also the lengths of the two polygons are equal, i.e.,

L(p1, m) = L(p2, m) and additionally L(p1) = L(p2).

This theorem contains the plane version of Ivory’s Theorem:

Corollary 5.2 (Ivory’s Theorem).

Take m = 1 in Theorem 5.1. Then for the lengths of the (straight line, geodesic) diagonals
we have

L2(p1, 1) = E(p1, 1) = E(p2, 1) = L2(p2, 1).

Since the proof of the main theorem 5.1 is not short, we split this theorem into two parts
5.3 and 5.4 and prove them separately. Their proofs taken together are the proof of the main
theorem.

Theorem 5.3. Let A and C be two points in the complex plane. Construct the rectangle
ABCD with the points B = re(C) + i im(A) and D = re(A) + i im(C). The diagonals of the
rectangle are d1(t) = A + t(C −A) and d2(t) = B + t(D − B), t ∈ [0, 1].

Then for ϕ ∈ {ϕ−, ϕ0, ϕ+} the image curves p1(t) = ϕ(d1(t)) and p2(t) = ϕ(d2(t)) of these
diagonals have equal energies, i.e., E(p1) = E(p2).

In the particular cases
1. ϕ = ϕ− and α− β− = 0,

2. ϕ = ϕ0 and β0 = 0, and
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3. ϕ = ϕ+ and α+ β+ = 0
also the lengths of the two diagonals are equal, i.e., L(p1) = L(p2).

Proof. For convenience, let a1 = re(A), a2 = im(A), c1 = re(C) and c2 = im(C) in what
follows.

1. Let ϕ = ϕ− and α = α− 6= 0 , β = β− 6= 0. Then we have

ϕ(z) = αeiωz + βe−iωz = γ cos(ωz + δ)

with γ = 2
√
α
√
β and δ = −i ln

(
√
α√
β

)

.

We see that ω ∈ R is a scaling factor in the pre-image plane and δ is a translation in the pre-
image plane. The factor γ defines a stretch-rotation in the image plane. Therefore, without
loss of generality (w.l.o.g.) we can set α = β = 1

2
and ω = 1 to get ϕ(z) = cos z.

We begin by computing ṗ1(t) =
∂p1(t)

∂t
and ṗ2(t) =

∂p2(t)

∂t
:

ṗ1(t) = − sin(d1(t))d
′
1(t) = (A− C) sin(d1(t)),

ṗ2(t) = − sin(d2(t))d
′
2(t) = (B −D) sin(d2(t)).

Next, we compute the squared length ‖ṗk(t)‖2 = ṗk(t) ṗk(t) for k = 1, 2 :

‖ṗ1(t)‖2 = (A− C)(A− C) sin(d1(t)) sin(d1(t))

=
(

(a1 − c1)
2 + (a2 − c2)

2) sin(d1(t)) sin(d1(t)),

‖ṗ2(t)‖2 = (B −D)(B −D) sin(d2(t)) sin(d2(t))

=
(

(a1 − c1)
2 + (a2 − c2)

2) sin(d2(t)) sin(d2(t)).

We can now calculate the difference

‖ṗ1(t)‖2 − ‖ṗ2(t)‖2 =
(

(a1 − c1)
2 + (a2 − c2)

2) sin (a1 + c1) sin((a1 − c1) (1− 2t))

After integration we obtain the desired result for the energies,

E(p1)− E(p2) =

∫ 1

0

‖ṗ1(t)‖2 − ‖ṗ2(t)‖2dt = 0.

Consider now the case α = 0. W.l.o.g. set ω = β = 1. Then we have

‖ṗ1(t)‖2 =
(

(a1 − c1)
2 + (a2 − c2)

2) e2(a2+t(c2−a2)) = ‖ṗ2(t)‖2,

‖ṗ1(t)‖ =
√

(

(a1 − c1)
2 + (a2 − c2)

2) e2(a2+t(c2−a2)) = ‖ṗ2(t)‖.

For the lengths follows

L(p1)− L(p2) =

∫ 1

0

‖ṗ1(t)‖ − ‖ṗ2(t)‖dt =
∫ 1

0

0 dt = 0.

The case β = 0 is similar.
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2. Let ϕ = ϕ0 and α = α0 , β = β0. We begin by computing ṗ1(t) =
∂p1(t)

∂t
and ṗ2(t) =

∂p2(t)

∂t
.

ṗ1(t) = (c1 − a1 + i (c2 − a2)) (α + 2 (1− t)β(a1 + ia2) + 2tβ (c1 + ic2)) ,

ṗ2(t) = (a1 − c1 + i(c2 − a2)) (α + 2tβ(a1 + ic2) + 2iβ (1− t) (a2 − ic1)) .

Next, we compute the squared length ‖ṗk(t)‖2 = ṗk(t) ṗk(t) for k = 1, 2.

‖ṗ1(t)‖2 =
(

(a1 − c1)
2 + (a2 − c2)

2) (α + 2β ((1− t) a1 + i (t− 1) a2 + t (c1 − ic2))
)

· (α + 2βa1 (1− t) + 2iβa2 (1− t) + 2tβ (c1 + ic2)) ,

‖ṗ2(t)‖2 =
(

(a1 − c1)
2 + (a2 − c2)

2) (α + 2β (ta1 + i ((t− 1) (a2 + ic1)− tc2))
)

· (α + 2tβa1 − 2iβ ((t− 1) (a2 − ic1)− tc2)) .

We can now calculate the difference

‖ṗ1(t)‖2 − ‖ṗ2(t)‖2 =2 (1− 2t) (a1 − c1)
(

βα + β (α + 2β (a1 + c1))
)

·
(

(a1 − c1)
2 + (a2 − c2)

2) .

After integration we arrive at the desired result for the energies,

E(p1)− E(p2) =

∫ 1

0

‖ṗ1(t)‖2 − ‖ṗ2(t)‖2dt = 0.

In the case β = 0 we have

‖ṗ1(t)‖2 = αα
(

(a1 − c1)
2 + (a2 − c2)

2) = ‖ṗ2(t)‖2,

‖ṗ1(t)‖ =
√

αα
(

(a1 − c1)
2 + (a2 − c2)

2) = ‖ṗ2(t)‖.

For the lengths follows

L(p1)− L(p2) =

∫ 1

0

‖ṗ1(t)‖ − ‖ṗ2(t)‖dt =
∫ 1

0

0 dt = 0.

3. The case for ϕ+ is similar to ϕ− . The only difference is a 90◦ rotation in the pre-image
plane.

The proof is now complete.

Theorem 5.4. Let ABCD be a rectangle in the complex plane with the diagonals d1(t) =
A+ t(C −A) and d2(t) = B + t(D − B), t ∈ [0, 1].

Then, for ϕ ∈ {ϕ−, ϕ0, ϕ+} and p1(t) = ϕ(d1(t)) and p2(t) = ϕ(d2(t)) two polygons formed
by joining the points p1(

k
m
) and respectively p2(

k
m
), where 0 ≤ k ≤ m, the energies are equal

for each natural number m > 0, i.e., E(p1, m) = E(p2, m) (see Figure 3).

In the particular cases
1. ϕ = ϕ− and α− β− = 0,

2. ϕ = ϕ0 and β0 = 0, and

3. ϕ = ϕ+ and α+ β+ = 0
also the lengths of the two polygons are equal, i.e., L(p1, m) = L(p2, m).
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Proof. We set p1(tk) = ϕ(d1(tk)) and p2(tk) = ϕ(d2(tk)). Now we calculate E(p1, m) −
E(p2, m) and L(p1, m)− L(p2, m) and replace tk by

k

m
, where

E(p,m) =
m
∑

k=1

〈 p (tk)− p (tk−1) , p (tk)− p (tk−1) 〉 ,

L(p,m) =
m
∑

k=1

√

〈 p (tk)− p (tk−1) , p (tk)− p (tk−1) 〉.

There are three cases ϕ ∈ {ϕ−, ϕ0, ϕ+} to distinguish.

1. The case ϕ = ϕ− is similar to the case ϕ+ which will be proved below. The only difference
is a 90◦ rotation in the pre-image plane.

2. Let ϕ = ϕ0, α = α0, β = β0, and

C := −2(a1 − c1)((a1 − c1)
2 + (a2 − c2)

2)(βα+ βα + 2ββ(a1 + c1)).

Then

E(p1, m)−E(p2, m) = C
m
∑

k=1

(tk − tk−1)
2(tk + tk−1 − 1),

L(p1, m)− L(p2, m) =
√
C

m
∑

k=1

(
√
. . .−√

. . .).

For β = 0 follows C = 0; therefore the lengths are equal.

For tk =
k

m
the difference tk − tk−1 =

1

m
is the same for all k. Therefore we can write using

the constant C2 := C
1

m2

E(p1, m)− E(p2, m) = C2

m
∑

k=1

(tk + tk−1 − 1).

We have to show that for sk := tk + tk−1 − 1 =
2k − 1−m

m

m
∑

k=1

sk = 0

for all natural numbers m > 0. Since sk = −sm+1−k, we are done.

3. Let ϕ = ϕ+, α = α+, β = β+ and

C := 4(ααeω(a1+c1) − ββe−ω(a1+c1)).

Then

E(p1, m)−E(p2, m) = C

m
∑

k=1

(cos(ω(a2 − c2)(tk − tk−1))− cosh(ω(a1 − c1)(tk − tk−1)))

· sinh(ω(a1 − c1)(tk + tk−1 − 1)).



C.-Ş. Bǎrbat: A Generalization of Ivory’s Theorem 17

For tk =
k

m
the difference tk − tk−1 =

1

m
is the same for all k. Therefore we can write using

the constant
C2 := C

(

cos
(

ω(a2 − c2)

m

)

− cosh
(

ω(a1 − c1)

m

))

E(p1, m)− E(p2, m) = C2

m
∑

k=1

sinh(ω(a1 − c1)(tk + tk−1 − 1)).

We have to show that for sk := tk + tk−1 − 1 =
2k − 1−m

m

m
∑

k=1

sinh (ω(a1 − c1)sk) = 0

for all natural numbers m. Because of sk = −sm+1−k and sinh(−t) = − sinh(t) we are done
with the energies.

For the lengths we have for α = 0 with a constant C3

L(p1, m)− L(p2, m) = C3

m
∑

k=1

(
√

cosh(qk) + sinh(qk)−
√

cosh(rk) + sinh(rk))

= C3

m
∑

k=1

Tk

with

qk = ω

(

a1

(−2m+ 2k − 1

m

)

+ c1

(

1− 2k

m

)

)

,

rk = ω

(

a1

(

1− 2k

m

)

+ c1

(−2m+ 2k − 1

m

)

)

.

For all 1 ≤ k ≤ m we have qk = rm+1−k. Therefore the two terms

Tk =
√

cosh(qk) + sinh(qk)−
√

cosh(rk) + sinh(rk)

and

Tm+1−k =
√

cosh(qm+1−k) + sinh(qm+1−k)−
√

cosh(rm+1−k) + sinh(rm+1−k)

=
√

cosh(rk) + sinh(rk)−
√

cosh(qk) + sinh(qk)

cancel each other, and the sum above vanishes.

The case β = 0 is similar, only a1 and −c1 get interchanged in the case α = 0, and of course
C has another value.

The proof is now complete.

6. Generalizing Ivory’s Theorem on holomorphic Liouville curves

In the following theorems in this section we deal with the holomorphic Liouville curve ϕ :
C → Cn, 0 < n ∈ N, from [1, Theorem 3.1, p. 29],

ϕ = ϕ− + ϕ0 + ϕ+ (6.1)
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where with the unitary basis (u1, . . . , un) of C
n

ϕ+(z) =

r
∑

p=1

(

αpe
zωp + βpe

−zωp

)

up,

ϕ−(z) =

r+s
∑

p=r+1

(

αpe
izωp + βpe

−izωp

)

up,

ϕ0(z) =

n
∑

p=r+s+1

z (αp + βpz) up

is the solution of the differential equation

ϕzzz = Aϕz

with a hermitian matrix A. It is necessary to make a minor correction to [1, Proposition 3.3,
p. 31] and to [1, Remark 3.5, p. 32], which deal with the isometries of the metric induced by
the holomorphic Liouville curve ϕ : C → Cn. Our proposals are as follows:

Theorem 6.1 ( Replacement for Proposition 3.3 in [1], p. 31).

Let ϕ : C → Cn be given by (6.1). Then the metric induced on C admits a family of isometries
τ(t) indexed by the real variable t in one of the following cases:

1. r = n, s = 0 and αpβp = 0 for 1 ≤ p ≤ n: Example: τ(t) : z 7→ z + it .

2. r = 0, s = n and αpβp = 0 for 1 ≤ p ≤ n: Example: τ(t) : z 7→ z + t .

3. r = 0, s = 0 and αpβp = 0 for 1 ≤ p ≤ n: Example: τ(t) : z 7→ eitz .

Remark 6.1 (Replacement for Remark 3.5 in [1], p. 32)). With

gt

(

n
∑

p=1

γpup

)

=

{
∑n

p=1 γpe
iΘp(t)up, if A is non-singular,

∑n

p=1 γpe
iΘp(t)up + (αnb(t))un, if A is singular,

(6.2)

where we put

Θp(t) =















i ωpb(t), if s = 0 and αp = 0,

−i ωpb(t), if s = 0 and βp = 0,

−ωpb(t), if r = 0 and αp = 0,

ωpb(t), if r = 0 and βp = 0,

(6.3)

we have again three cases:
1. r = n, s = 0 and αpβp = 0 for 1 ≤ p ≤ n : gt as defined by (6.2) for s = 0.

2. r = 0, s = n and αpβp = 0 for 1 ≤ p ≤ n : gt as defined by (6.2) for r = 0.

3. r = 0, s = 0 and αpβp = 0 for 1 ≤ p ≤ n : gt
(
∑n

p=1 γpup
)

=
∑n

p=1 γpe
itup, or,

equivalently, gt(v) = eitv for all v ∈ Cn.

A direct consequence of Theorem 5.1 is the following

Theorem 6.2 (A generalization of Ivory’s Theorem for a Liouville holomorphic curve).
Let ABCD be a rectangle in the complex plane with diagonals d1(t) = A + t(C − A) and
d2(t) = B + t(D − B), t ∈ [0, 1]. Then for ϕ : C → Cn as defined in (6.1) the images
p1(t) = ϕ(d1(t)) and p2(t) = ϕ(d2(t)) of the diagonals have the following property:
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For the two polygons formed by joining the points p1(
k
m
) and, respectively, p2(

k
m
) for 0 ≤ k ≤ m

the energies are equal for each natural number m > 0 and each component with 1 ≤ p ≤ n,
i.e.,

Ep(p1, m) = Ep(p2, m) and also Ep(p1) = Ep(p2).

When in addition both of the following conditions are satisfied,
1. αp βp = 0 for 1 ≤ p ≤ r + s, and

2. βp = 0 for r + s+ 1 ≤ p ≤ n,
then also the lengths of the two polygons are equal, i.e.,

Lp(p1, m) = Lp(p2, m) and Lp(p1) = Lp(p2).

Proof: Apply the one-dimensional case on each component.

By forming the sum of the components in Theorem 6.2 we obtain the following

Corollary 6.3. Let ABCD be a rectangle in the complex plane with diagonals d1(t) = A +
t(C −A) and d2(t) = B + t(D−B), t ∈ [0, 1]. Consider now the curves p1(t) = ϕ(d1(t)) and
p2(t) = ϕ(d2(t)) with ϕ : C → Cn as defined by (6.1).

Then the two polygons formed by joining the points p1(
k
m
) and, respectively, p2(

k
m
) for 0 ≤

k ≤ m the energies are equal for each natural number m > 0, i.e.,

E(p1, m) =
n

∑

p=1

Ep(p1, m) =
n

∑

p=1

Ep(p2, m) = E(p2, m)

and

E(p1) =
n

∑

p=1

Ep(p1) =
n

∑

p=1

Ep(p2) = E(p2).

In addition, when the following two conditions are satisfied,
1. αp βp = 0 for 1 ≤ p ≤ r + s, and

2. βp = 0 for r + s+ 1 ≤ p ≤ n,
the sums of the lengths of the two polygons are equal, too, i.e.,

S(p1, m) =

n
∑

p=1

Lp(p1, m) =

n
∑

p=1

Lp(p2, m) = S(p2, m)

and

S(p1) =

n
∑

p=1

Lp(p1) =

n
∑

p=1

Lp(p2) = S(p2).

Theorem 6.4. The two Theorems 6.2 and 6.3 also apply to the minimal Liouville surfaces
of [1]. In fact they apply not only to the minimal Liouville surfaces, but more generally to
all Liouville surfaces defined as the real part of ϕ. When the metric of ϕ admits isometric
deformations then the theorems above also hold for the deformed surfaces.

Proof: The real part is 1
2
(ϕ + ϕ) and the derivative with respect to z is 1

2
(ϕz). The line

element is therefore 1
4
(ϕz)

∗ϕz dz dz which is 1
4
times the line element of ϕ. Multiplication of

both sides by the same constant does not change the property of being equal in the theorems
above. An isometric deformation does not change the metric, therefore the formulas in the
proofs of the theorems above do not change.
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7. Conclusion

Among the theorems presented in this paper, the Theorems 5.1, 6.2 and 6.3 seem to be new.

Figure 4: Elliptic billiard as conformal map of rectangular billiard

A plane rectangular billiard is mapped by ϕ : C → C conformally to a plane Liouville
billiard. The trajectories in this Liouville billiard are not straight lines, but the wall reflects
them correctly. The trajectories seem to bend in a field, where the foci play a special role (as
attractors?). Figure 4 shows an example for periodic orbits (blue and green lines) which by
our theorems or because of symmetry have the same total energy.

Due to the conformity of ϕ : C → C the diagonals of the rectangles are mapped onto
isogonal trajectories of the parameter curves of the Liouville net. The same holds for the
curved billiard in Figure 4.
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[4] M.P. Do Carmo: Riemannian Geometry. 2nd ed., Birkhäuser Verlag, Boston 1993.
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