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Abstract. Following the common concepts of polygonization of implicit surfaces
we provide a modified discrete physically based method to derive polygonal meshes
from line skeletons. A given line skeleton is considered to be electrically charged
by placing a set of uniformly distributed point charges on it. Furthermore, we
define an implicit iso-surface, representing the equipotential surface of this set of
point charges, which encloses the line skeleton. Finally, with the help of a dynamic
particle system a polygonal mesh is derived from this surface. The shape of the
tubular cross section and the general cylindricality of the mesh can be controlled
with several parameters. Moreover, the algorithm allows for sharp-edged borders.
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1. Introduction

Surfaces around branching points of line skeletons with more than two branches are usually
hard to model. Early methods (e.g., [7, 8]) which approximate the geometry with primitives
like spheres, cylinders or cones do not properly reflect the saddle surfaces occurring in organic
structures around such points. In special cases, explicit analytical formulas can be given
to construct a blend surface between quadrics (e.g., [13]). For the general case implicit
surfaces turned out to be well suitable for modeling of smooth organic structures (e.g., [6, 4])
independent from the complexity of the input line skeleton.

In this paper we present a discrete physically based method to convert a line skeleton
into a tubular 2-manifold polygonal mesh by arranging particles on an equipotential surface
induced by the electrically charged line skeleton. The resulting particle cloud is later used for
triangulation of the surface. However, triangulation is not the focus of this paper. We show
that the algorithm is stable, easy to implement, and is suitable to create a wide variety of
complex organic meshes as results will show.
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The remainder of this paper is structured as follows. Some related work is reviewed
in Section 2. In Section 3 the algorithm and its parameters are described in detail. Results
obtained with the algorithm are shown in Section 4 before the paper is concluded in Section 5.

2. Related work

Smooth branching structures are frequently required in computer graphics for the modeling
of organic shapes like trees or bushes. Bloomenthal [1] was among the first to improve
the realism of branching structures by using generalized cylinders for limbs and by using
free-form surfaces to connect branching limbs. However, as pointed out by Galbraith et
al. [4] his method can not be easily extended to arbitrary branching structures. Galbraith
et al. on the other hand introduced a hierarchical implicit modeling system, called Blob-
Tree, which combines several techniques to allow for smooth and non-smooth blending at the
joints. Tobler et al. [12] used a generalized subdivision scheme, which in contrast to stan-
dard subdivision allows different subdivision rules at different levels, and combined it with a
rule-based mesh growing procedure. By alternating between subdivision and mesh growing,
complex geometry (including structures such as forking trunks) can be generated. Recently,
Zhongke et al. [15] used so-called ball b-spline curves to generate stems of a tree. However,
as the authors point out, the individual branches are only put together without any blending
operations. A good overview of tree modeling is given in the survey of Soner and Day [11]
and the more recent paper of Boudon et al. [2].

Two works which are similar to ours, are the papers of Jin et al. [6] and de Figueiredo
et al. [3]. Jin et al. [6] generated a convolution surface based on line-segment skeletons
with a variable kernel modulated by a polynomial. In contrast to the discrete approach
presented in this paper, they calculated an analytical solution for a specific case of the field
function. However, their approach does not allow for sharp boundaries. De Figueiredo et
al. [3] described two discrete physically based methods to approximate implicit surfaces with
a polygonal mesh. In order to sample the implicit surface, the first method uses a particle
system whose dynamics are driven by the potential function. Their second approach is based
on a mass-spring system — based on a Freudenthal triangulation — which seeks equilibrium
on the implicit surface. There is a huge amount of literature on implicit surface sampling,
see, for example, [9, 14].

3. Algorithm

In this section we first give an overview of the algorithm and then describe the individual
steps in detail.

3.1. Overview

The input of the algorithm is a line skeleton defined as an undirected graph G = (V,E) with
a set of vertices V and a set of edges E. In this paper edges are represented as straight lines.
However, the following description is similarly applicable if edges are represented as arbitrary
curves like, for example, b-splines. In a first step, a set of positive charges C = {c1, . . . ., cn}
with charge values cqi > 0 are evenly placed at static positions1 c posi ∈ R3 on E.

1We will use the superscript pos to refer to the position of different elements.
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These charges induce an electrostatic field E v 1/rα, α ∈ R, α ≥ 2. In case of Coulomb’s
law α = 2, but we allow for larger values to control the cylindricality of the resulting sur-
face. The equipotential surface of C corresponding to potential value λ can then be written
implicitly as

Sλ =

{
~r = (x, y, z) ∈ R3

∣∣∣ n∑
i=1

cqi
‖~r − c posi ‖

α−1 − λ = 0

}
(1)

While λ influences the diameter of the tubular cross section globally (henceforth referred
to as global diameter), the individual charges cqi influence the diameter locally. From Sλ a
polygonal mesh M is derived. For this purpose, Sλ is roughly approximated by geometric
primitives (spheres and cylinders) on which an initial particle cloud — consisting of positive
unit charges — is defined. Afterward, the particles are iteratively moved along the field lines
of E towards Sλ. The particle cloud is later used for triangulation.

3.2. Initial placement of charges

In a first step positive charges are placed at the positions of the vertices V and as evenly as
possible along their connecting edges as shown in Figure 1. At this point it should be noted
that if we refer to the charges of an edge e = (v0, v1), this does not include the charges located
directly at v0 and v1 but only the charges between them. The intended distance between two
neighboring charges is specified by the parameter dc. Clearly, the positions and values of the
charges influence the shape of Sλ and hence also the shape around the leaf vertices. A way
to allow for sharped edged surface boundaries (v0 and v3 in Figure 1) is to place additional
charges on the extension of the edge of the leaf vertex. This ensures the cylindricity of Sλ
around the leaf vertex. Otherwise the shape of Sλ will be spherical at endings, as it is the
case for v5 in Figure 1.

Generally, the choice of the charge values for each charge is arbitrary but for practical
reasons we use — in the following — the same charge value for all charges on the same edge.
That way each edge e is associated with a certain charge value eq.

eq is a measure of the average diameter ed of the tubular surface around e. It would be
convenient for the user to directly define ed for each edge but analytically determining the
suitable charge values to match these diameters in advance is a hard task because changing a
single charge value influences the shape of Sλ globally. This bears comparison with calibration
of a complex interdependent system.

For a smooth blend surface around a vertex v whose incident edges have different charge

Figure 1: Initial placement of charges and particles (illustrated in 2D for reasons of simplicity)
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Figure 2: Examples to illustrate the influence of the charge values
to the blend surface around branching points.

values, the charge value of the charge at v is the arithmetic mean of the charge values of all
incident edges. Figure 2 gives examples for blending surfaces around such branching vertices.
Each case in Figure 2 only uses two distinct charge values.

3.3. Initial placement of particles

Since the particles are later iteratively moved toward Sλ it is reasonable to initially place them
evenly on a simple approximation of Sλ. The better the initial placement of the particles, the
better the resulting distribution on Sλ. For this reason the particles are placed on spheres and
cylinders around the vertices and edges of G. The initial radius R of the cylinders is a user-
definable parameter. At this point we should note that R is the radius used for placement
of the particles and does not correspond to the final radius of the cross-section, which is
influenced locally by the different charge values cqi and globally by λ as well as α. The reason
for using a constant radius is to simplify the placement of the particles. The particles located
on spheres are used to evenly cover the area of the blend surface between adjacent cylinders.
To ensure an organic blend surface, the radius of the sphere has to be greater than R. For
the examples in this paper we defined the sphere radius as 1.5R.

For the placement of particles several cases are distinguished. For charges between vertices
and in case of charges at leaf vertices (v0, v3, v5 in Figure 1), ncirc particles are placed circularly
around their edge. If the ending at a leaf vertex should be closed (v5 in Figure 1) additional
particles are placed on a half-sphere around such a vertex. In case of a charge at vertex v
with two incident edges ea and eb which enclose a rather obtuse angle ∠(ea, eb) > γ (as it is
the case for v4 in Figure 1) the symmetry plane σ of ea and eb is calculated. In practice, a
value of γ = 160◦ turned out to be reasonable. The particles are then placed on a circle lying
in σ with center v. For any other charge at vertex w, nsphere particles are placed as evenly as
possible on a sphere (r = 1.5R) centered at w (see v1 and v2 in Figure 1). However, for the
purpose of triangulation it is beneficial that the initial particle cloud is topologically similar
to the resulting 2d-manifold and therefore all particles which are inside the Boolean union B
of all cylinders and spheres (cf. Figure 1) are removed. In other words, only particles on the
surface of B will be used. Figure 3 (left) shows the initial placement of particles for a simple
3D example. Furthermore, to speed up calculation time later in the algorithm a set of nearest
charges Np is initialized for every particle.
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Figure 3: An example with different tube diameters. Charges are shown as green spheres
on a line skeleton of a tree, whose radius corresponds to their charge value. Particles are
depicted as black dots. Left: Initial placement of the particles. Middle: Arrangement
of the particles after the algorithm has terminated. Right: Triangulation of the particle
cloud.

3.4. Estimation of λ

The implicit surface Sλ as given in Eq. (1) is defined by a set of charges, the field exponent
α, and a specific iso-value λ. In general, λ ∈ [0,∞] can be chosen arbitrarily but is not
necessarily an intuitive parameter. An inappropriate value for λ can result in an iso-surface
which does not reflect the branching structure properly.

Since the values of the charges located on an edge correspond to the local diameter of the
cross section of the tubular mesh they can be used to estimate a reasonable value for λ. For
that purpose we place four test particles evenly on a circle around each edge. Each circle is
centered at the midpoint of its edge and its radius equals the charge value eq associated with
the edge (see Section 3.2). This yields a set of test particles T . λ is then given by the average
potential of all test particles, mathematically

λ =
1

4|E|
∑
t∈T

n∑
i=1

cqi
‖t pos − c posi ‖

α−1 . (2)

Figure 4 illustrates the final particle cloud for different values of λ for a simple line skeleton. As
can be seen from the figure, varying λ does not change the characteristic of the blend surface
around branching points but rather the global diameter of the tube system. In contrast to
λ, a variation of the field exponent α changes the shape of the blend surfaces with respect to
smoothness and roundness. In general, the higher the value of α the more local the influence
of a point charge and therefore the sharper the blending. In other words, α allows the user to
change the characteristic of the surface between organic and cylindrically looking. Figure 5
illustrates this circumstance.

3.5. Arranging particles on Sλ

Once all charges are defined and all particles have been placed at their initial position, the
particles are iteratively moved along the field lines of E towards Sλ. For this purpose, each
particle is considered to be a positive electrical unit charge. This induces a repulsive electro-
static force (in case of α = 2 the Coulomb force) between a particle p and the charges C.2

2For reasons of computational efficiency, repulsive forces between particles are not taken into account.
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Figure 4: The parameter λ influences the
global diameter of the resulting particle
cloud. From left to right: estimated λ, 0.5λ,
0.2λ; α = 4 in each case.

Figure 5: The exponent α of the field func-
tion influences the shape of the resulting
particle cloud. Lower values of α yield
smoother blend surfaces around branching
points, whereas higher values increase the
cylindricality and sharpness. From left to
right: α = 2, α = 3 and α = 5.

However, for an efficient approximation of the force only the set of nearest charges Np of p is
considered (cf. Section 3.3). The force direction is therefore given by

forceDir (p) =
∑
ck∈Np

cqk
‖~rk‖α

~rk
(0), (3)

where ~rk
(0) denotes the unit vector of ~rk = p pos − c posk . Similarly, the electric potential of p

can be approximated by

potential (p) =
∑
ck∈Np

cqk
‖~rk‖α−1

. (4)

If potential (p) > λ then p is moved a small distance δ in force direction, otherwise p is moved a
small distance δ in the opposite direction. This happens iteratively until |potential (p)−λ| ≤ δ.
Once this condition is fulfilled for every particle the algorithm terminates.

Listing 1 summarizes the steps described in Section 3.2 to Section 3.5, and Table 1 provides
an overview of the various parameters discussed. Figure 3 (middle) shows the final position
of the particles for the simple 3D example.

setCharges (); // Section 3.2

setParticles (); // Section 3.3

estimate λ; // Section 3.4

do { // Section 3.5

for(i=0;i<nParticles;i++) {

Vector3D dir = forceDir(pi);
normalize(dir);

float dp = potential(pi) - λ;
p pos
i += sgn(dp)*δ*dir;

}

} while (breakCondition == false);

Listing 1: Pseudocode to derive the particle cloud representing the implicit surface.
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Figure 6: A branching system based on a
line skeleton generated with a L-system. The
triangulation is also shown (4068 particles,
8132 triangles, orthographic projection, flat
shaded).

Figure 7: A more complex branch generated
by a L-system and a close-up of a 3-way
branch (24369 particles, 48700 triangles, or-
thographic projection, flat shaded).

Table 1: Parameters of the algorithm

Parameter Description

ncirc Number of particles placed circularly around a charge
nsphere Number of particles placed spherically around a charge
R Initial radius of the tubular cross section
dc Distance between the individual charges
λ Potential value of the resulting equipotential surface
α Exponent of the field function
cqi Individual charge values to control radius locally

3.6. Triangulation

The particle cloud as arranged by the above algorithm is used to derive the polygonal mesh
M . However, triangulation of point clouds is a complex topic and is out of scope of this paper.
Triangulation of unordered point clouds can, for example, be performed with the open-source
Point Cloud Library3.

4. Results

Figure 6 through Figure 10 show results obtained with the described algorithm. All examples
in these figures were produced by using the same charge value for all charges.

3www.pointclouds.org
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Figure 8: A textured organic structure based on
Voronoi-Paths [5].

Figure 9: Part of a surface based on a
line skeleton generated by the Voronoi-
Path algorithm.

Figure 10: A complex organic structure. The triangulation of the point cloud has been
smoothed in a post-processing step (235175 particles, 471374 triangles, orthographic
projection, smooth shaded).

The line-skeletons for Figures 6 and 7 have been generated with L-systems4. In contrast,
the line-skeletons for Figures 8, 9 and 10 have been generated with the Voronoi-Path algorithm
described in [5].

For Figures 6 to 8, the triangulation was performed directly on the point cloud as calcu-
lated and no manual post-processing of the triangulation was conducted. For the examples
in Figures 9 and 10 the triangulation has been smoothed.

5. Conclusions

Although the task of generating organic looking shapes seems quite complex the algorithm
presented above provides a relatively simple solution that delivers satisfying results. The
algorithm has proven to be stable even for large line skeletons. Generally, there are no
restrictions for the input skeleton. By choosing a proper initial placement which topologically
corresponds to the intended 2-manifold polygonal mesh, repulsion between particles can be
omitted. However, line skeletons with quite acute angles between adjacent edges can cause
clusters of particles in the resulting particle cloud which makes triangulation more difficult.

4L-systems were invented by Aristid Lindenmayer as a mathematical theory to model the growth of
plants. A good introduction to L-systems can be found in [10].
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Figure 11: If two edges of the line skele-
ton are near to each other, the iso-surface
is the fusion of the initial cylindrical particle
clouds.

Figure 12: If vertices are close to each other
then the connecting cylinders will fuse into a
single iso-surface with characteristic dimples.

In such a case repulsive forces between particles should be taken into account to ensure a
rather uniform distribution of the particles.

The essential parameters to control the shape of the resulting surface are the individual
charge values cqi , the iso-parameter λ and the field exponent α. The values cqi influence to
local diameter and allow to design bulges or to fuse surface parts together (see Figures 11 and
12 for examples). In contrast, λ influences the global diameter of the tubular cross section
and α controls the smoothness of the blend surfaces around branching points. Together, all
three parameters allow to generate a wide variety of organic shapes.

The current implementation uses a quite large number of particles because particles are
also initially placed in small distances between the vertices of G. This ensures a good approx-
imation of the equipotential surface and allows for better post-processing of the triangulated
mesh. Alternatively, the number of particles could be reduced considerably by only calculat-
ing areas around branching points with the proposed algorithm and by approximating edges
with cylinders or truncated cones. Finally, it can be noted that the input needs not necessarily
be restricted to line skeletons but could also be extended with charges placed on surfaces.
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