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Abstract. We determine the three circles in the interior of an acute triangle ∆
which touch the nine-point circle n from the outside and two sides of ∆ from the
inside. Some perspective triangles related to ∆ and the three circles are found. A
more general result on tangent triangles related to Apollonian configurations of
circles leads to a specific result in the case of a special Apollonian configuration
derived from the three circles in question. All constructions are linear once the
excircles of the base triangle are constructed.
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1. Prerequisites

Among the totality of ten circles touching the nine-point circle n (sometimes called Euler’s
or Feuerbach circle) and at least two sides of a triangle ∆ we find the incircle i and the three
excircles eA, eB, and eC . The latter four circles touch all three sides of ∆.

In [1] those circles were determined that touch n from the inside and two sides of ∆.
Naturally, these three circles lie entirely in the interior of ∆. The authors of [1] found that
the centers of these circles are collinear. The line carrying these centers is the central line
L4,10 joining the orthocenter X4 with the Spieker center X10 of ∆. We use the symbols Xi

and Li,j in order to denote the i-th center and the central line joining the i-th and j-th center
in the list of triangle centers given in [3, 4].

In the following, we assume that the triangle ∆ is acute and its vertices are labelled with
A, B, and C. ∆ shall be refered to as the base triangle. A line joining two points P 6= Q is
denoted by [P,Q]. With X Y we shall denote the length of the line segment bounded by two
points X and Y . We use homogeneous and exact trilinear coordinates of points with respect
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62 B. Odehnal: A Triad of Tritangent Circles

to the base triangle ∆. By cosA we denote the cosine of the interior angle of ∆ at the vertex
A.

Since cyclic symmetry plays an important role we define the following two operators:

• The function ζ applies to scalar and vector valued functions. If f(a, b, c) is a function
depending on the side lengths a, b, and c of ∆, then ζ(f(a, b, c)) = f(c, a, b). Applying
ζ to a vector valued function means to apply it to each component of the vector.

• The second useful operator is denoted by σ and performs a cyclic shift of the coordinates
of a vector. Thus, σ(x0, x1, x2) = (x2, x0, x1).

Note that the xi may be functions of a, b, and c. Therefore, the expression ζ(σ(x0, x1, x2))
makes sense. Because

ζ(σ(x0, x1, x2)) = σ(ζ(x0), ζ(x1), ζ(x2)) = (ζ(x2), ζ(x0), ζ(x1))

and

σ(ζ(x0, x1, x2)) = ζ(x2, x0, x1) = (ζ(x2), ζ(x0), ζ(x1))

hold, ζ and σ commute.

In Section 2 we determine the centers and radii of the circles lA, lB, and lC which are
tangent to n (from the outside) and tangent to ∆’s sides (from the inside). As byproducts
we find some perspective triangles. Moreover, we shall give a new meaning to some triangle
centers from Kimberling’s list (see [4]) such as the points X181, X429, X442, and X3822.
Section 3 is devoted to the Apollonian problem solved for the three circles lA, lB, lC .

Finally, in Section 4 we show a general result on tangent triangles, i.e., two triangles built
by the common tangents of either lk (with k ∈ {A,B,C}) and the two associated (conjugate)
Apollonian circles of the given three circles. This leads to a result on two special tangent
triangles.

At this point we shall remark that once the excircles are constructed the construction of
all further points and circles done afterwards is linear. Points that are found on circles appear
in any case as the intersection of a line with the carrier circle where one point of intersection
is already known.

2. Circles tangent to the nine-point circle from outside and tangent

to two triangle sides

First, we determine the circle lA that is tangent to the nine-point circle n from outside and to
the sides [A,B] and [C,A]. (The remaining two circles lB and lC can be found in an analogous
way.)

We consider the inversion with respect to the ortho circle oA of n. It is centered at A and
intersects n twice at right angles. We determine oA’s radius ρ by applying the power theorem
to the segments emanating from A to the midpoint MAB of AB and to the pedal point FAB

of ∆’s altitude from C to [A,B] (see Figure 1). Obviously, we have

AB = c , AMAB =
c

2
, AFAB = b cosA ,

and thus,

ρ2 =
1

2
bc cosA .



B. Odehnal: A Triad of Tritangent Circles 63

lA

u′ B uFABMAB

a1

ρ1

n=n′

A1

A

oA

NA

N ′

A

Figure 1: Construction of the circle lA touching [A,B], [C,A], and n: The inverse
of the excircle a1 with respect to the ortho-circle oA of n is the desired circle lA.

The point of contact of the excircle a1 and the line [A,B] is at distance u = 1

2
(a+ b+ c) from

A. Its inverse in oA is the point of contact of the circle lA and [A,B] which is at distance u′

from A with

uu′ = ρ2 ⇐⇒ u′ =
bc cosA

a+ b+ c
=

b2 + c2 − a2

2(a+ b+ c)
.

This leads directly to the radius ρA and the center CA of lA. The radius reads

ρA = u′ tan
A

2
=

b2 + c2 − a2

2(a+ b+ c)

√

(c+ a− b)(a + b− c)

(a+ b+ c)(b+ c− a)

and the actual trilinear coordinates of CA are

CA = (xA : ρA : ρA).

The coordinate xA equals the signed distance from CA to [B,C]. LetW denote the intersection

of the interior angle bisector through A with the side line [B,C]. Then, xA = CAW sin
(A

2
+B

)

and CAW = AW −ACA. With

ACA =
ρA

sin A
2

and AW =
c sinB

sin
(

A
2
+B

)

we find

xA = c sinB −
ρA sin

(

A
2
+B

)

sin A
2

,

or equivalently,

xA =
tan A

2

2a(a+ b+ c)

(

a3 − a(b+ c)2 − 2bc(b+ c)
)

.

The radii ρB and ρC of the circles lB and lC associated with the vertices B and C are ρB =
ζ(ρA) and ρC = ζ(ρB). The respective centers CB and CC have actual trilinear coordinates

CB = (ρB : yB : ρB) and CC = (ρC : ρC : zC)
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Figure 2: The three circles lA, lB, and lC touching n from outside and touching ∆’s sides.

with yB = ζ(xA) and zC = ζ(yB). For an admissible (i.e., acute) triangle the circles lA, lB,
and lC are shown in Figure 2.

It is not at all surprising that the base triangle ∆ and its excentral triangle ∆e are
perspective to the triangle (CA, CB, CC) built by the centers of the circles lA, lB, and lC for
the center of either lk (with k ∈ {A,B,C}) lies on an interior angle bisector.

The excircle a1 opposite to A touches the nine-point circle at

NA =
(

− sin2 B − C

2
: cos2

C −A

2
: cos2

A−B

2

)

(cf. [3]). The points NB and NC where a1 and a2 touch the nine-point circle are given by
NB = ζ(σ(NA)) and NC = ζ(σ(NB)). Since these points lie collinear with the respective
centers of inversion and the inverses with respect to oA, oB, and oC we find

N ′

A =
(

(b2 + ab+ ac + c2)(−b3 − c3 + cb2 + bc2 + a2b+ a2c+ 2abc)bc

: (a + b− c)(c2 − a2 + b2)(a+ c)2ac

: (a− b+ c)(c2 − a2 + b2)(a+ b)2ab
)

,

(1)

and furthermore, N ′

B = ζ(σ(N ′

A)) and N ′

C = ζ(σ(NB)).

The triangle ∆′

F = (N ′

A, N
′

B, N
′

C) of points of contact of n with lA, lB, lC is perspective to
the base triangle (A,B,C). This is clear since the Feuerbach triangle ∆F of ∆ is perspective
to the base triangle and the triplets (A,NA, N

′

A), (B,NB, N
′

B), and (C,NC, N
′

C) are triplets of
collinear points. The common perspector of ∆, ∆F , and ∆′

F is the center X12 which can easily
be checked with the trilinear representation of all involved points. The trilinear coordinates
of X12 can be found in [3, 4].

Now, we can easily verify the following:
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Theorem 2.1. 1. The orthic triangle ∆o of ∆ and ∆′

F are perspective with perspector

X429.
1

2. The triangle ∆′

F is perspective to the medial triangle ∆m of ∆ with respect to the point

X442.
2

Proof. We use the trilinear representation of all involved points and show the linear depen-
dency of lines with help of vanishing determinants.

The three points of contact N ′

A, N
′

B, and N ′

C of n and the three circles lA, lB, lC define
a new triangle ∆ti, called the interior tangent triangle. Its side lines ti1, ti2, and ti3 are the
common tangents of n and either lk (with k ∈ {A,B,C}) at the points of contact N ′

A, N
′

B,
and N ′

C , respectively. The vertices of ∆ti are denoted by TAi, TBi, and TCi. For example, we
find TAi = ti2 ∩ ti3 with trilinear coordinates

TAi =
(

−bc(b + c)2(a3 + b3 + c3 − b2c− bc2)

: ca(a + c)(a4 − ca3 + ab3 + abc2 + ab2c+ ac3 − c4 + b2c2 + b3c− bc3)

: ab(a + b)(a4 − a3b+ ab3 + abc2 + ab2c+ ac3 − b4 + b2c2 − b3c+ bc3)
)

,

and then, TBi = ζ(σ(TAi)), TCi = ζ(σ(TBi)). Now we oberserve the following:

Figure 3: The inner tangent triangle ∆ti is perspective to orthic triangle ∆o (left), the
Feuerbach triangle ∆F (middle), and the medial triangle ∆m (right) (cf. Theorem 2.2).

Theorem 2.2. 1. The inner tangent triangle ∆ti is perspective to the orthic triangle ∆o

of the base triangle ∆.

2. The inner tangent triangle ∆ti is perspective to the Feuerbach triangle ∆F of the base

triangle ∆.

3. The inner tangent triangle ∆ti is perspective to the medial triangle ∆m of the base

triangle ∆.

Proof. 1. First, we compute the trilinear coordinates of the vertices TAi, TBi, and TCi by
intersecting the tangents of n at the respective points of contact. For example, we have
TAi = tN ′

A
∩ tN ′

B
, TBi = ζ(σ(TAi)), and TCi = ζ(σ(TBi)). Then, it is elementary to verify that

1X429 is the Euler X58-5
th-substitution point (see [4]).

2The center X442 is the complement of the Schiffler point X21 (see [4]).
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the lines [TAi, OA], [TBi, OB], and [TCi, OC] are concurrent in the innominate triangle center
(cf. [3, 4]) P1 = (α1 : β1 : γ1) with

α1 = bc(b+ c)(a3 + b3 + c3 − b2c− bc2)(b3 + c3 − a2b− a2c− abc).

2. We use Eq. (1) in order to compute the coordinates of the lines [NA, TAi], [NB, TBi], and
[NC , TCi]. It is an elementary task to show the linear dependency of the respective coordinates.
The perspector P2 = (α2 : β2 : γ2) of ∆ti and ∆F with

α2 = bc(b+ c)2(a5 − a3(b2 + bc + c2) + a2(b+ c)(b2 − 3bc + c2)

+ bc(b− c)2a− (b+ c)(b− c)2(b2 − bc + c2)

is a triangle center of ∆ which is not mentioned in [3, 4].

3. The perspectivity is shown in the usual way. The perspector P3 = (α3 : β3 : γ3) with

α3 = bc(b+ c)(a3 + b3 + c3 − b2c− bc2)(b3 + c3 − a2b− a2c+ abc)

is a triangle center of the base triangle that does not show up in [3, 4].

Figure 3 shows the inner tangent triangle of the circles lk (with k ∈ {A,B,C}) and the
perspective triangles ∆o (left), ∆F (in the middle), and ∆m (right) as described in Theo-
rem 2.2.

Let Lk,AB be the point of contact of the circle lk (k ∈ {A,B,C}) with the line [A,B].
With analogous symbols we denote all the other points of contact. Since [A,B] is a common
tangent of lA and lB, the midpoint PAB of LA,AB and L2,AB has equal power to both circles
lA and lB. Now we are able to show:

Lemma 2.1. The lines [TAi, PBC ], [TBi, PCA], and [TCi, PAB] are the radical lines of the three

circles lA, lB, and lC .

Proof. We only have to show that the line rA := [TAi, PBC ] is orthogonal to the line [CB, CC ]
joining the centers of lA and lB. For that purpose we compute the trilinear coordinates of
the points Pjk of equal power with respect to lj and lk on the side line [j, k] of ∆ where
(j, k) ∈ {(A,B), (B,C), (C,A)}. Note that Pjk is the midpoint of Lj,rs and Lk,rs on the side
[r, s] with (r, s) ∈ {(A,B), (B,C), (C,A)}. We find

PAB =
(

b(a2 − b2 + c2 + ac+ bc) : a(b2 + c2 − a2 + ac + bc) : 0
)

,

PBC =
(

0 : c(a2 + b2 − c2 + ab+ ac) : b(a2 − b2 + c2 + ab+ ac)
)

,

PCA = (c(a2 + b2 − c2 + ab+ bc) : 0 : a(b2 + c2 − a2 + ab+ bc)).

Then, we use a formula given in [3, p. 31] in order to characterize orthogonal lines and show
that rA is orthogonal to [CB, CC]. Since rA contains PBC it is the radical line of lA and lB. In
the same way we proceed for the other radical lines.

Figure 4 (left) shows the radical lines of the circles lk (k ∈ {A,B,C}) together with the
radical center.

As a consequence of Lemma 2.1, the point R = [TAi, PBC ]∩ [TBi, PCA] is the radical center
of the three circles lA, lB, lC . It turns out that the following holds:

Theorem 2.3. The radical center of the circles lA, lB, lC is the triangle center X3822 .

Proof. Compute the point [TCi
, PAB] ∩ [TAi

, PBC ], show that it is a center which is incident
with [TBi

, PCA]. Then, compare with the trilinear representation given in [4].
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Figure 4: The center X3822 is the radical center of the three circles lA, lB, lC (left). The outer
Apollonian circle m of lA, lB, and lC touches at the points N ′′

A, N
′′

B, and N ′′

C (right).

3. The outer Apollonian circle of lA, lB, and lC

The three circles lA, lB, and lC define eight tritangent circles, i.e., their Apollonian circles.
In any case and independent of the shape of the base triangle ∆, the Apollonian circles are
eight different circles.

Now that we have found the radical center of the circles lk (cf. Lemma 2.1 and The-
orem 2.3) we can give a simple, and in fact, linear construction for that Apollonian circle
which encloses all three circles li since the Apollonian circle m that is enclosed by the lks is
the nine-point circle n.

We follow the construction given by Gergonne (see [2]): Assume we are given three
circles lk (with k ∈ {A,B,C}). Determine one axis a of similarity (i.e., the line joining two
centers of similarity from different circles). Find the poles Ak of a with respect to lk. Then,
the points of contact of the tritangent circles on either lk are constructed as the intersections
of the lines joining Ak with the radical center R of the lks.

Consequently, we do not have to determine the axis a of similarity to lA, lB, and lC
which would be the polar line of X48 with regard to the base triangle ∆. The line a carries
the three exterior centers of similarity of the lis, and thus, a = [SAB, SBC ] with SAB =
[A,B] ∩ [CA, CB] and SBC = [B,C] ∩ [CB, CC]. Since one solution (associated to a) of the
Apollonian problem is already known (namely n together with the points N ′

A, N
′

B, N
′

C of
contact), we just determine the points N ′′

A, N
′′

B, N
′′

C of contact of the second solution m (the
outer one) as N ′′

A = {[X3822, N
′

A]∩ lA} \ {N
′

A} and similarly for N ′′

B and N ′′

C . The construction
of the latter three points is linear and shown in Figure 4.
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For example, N ′′

A is given by its homogeneous trilinear coordinates as

N ′′

A =
(

(b+ c)2a5 + (b+ c)(c2 + 6bc+ b2)a4

− (b2 − 8bc + c2)(b+ c)2a3 − (b+ c)(c4 + 2bc3 − 14b2c2 + 2b3c + b4)a2

− 4bc(b2 − bc− c2)(b2 + bc− c2)a− 4b2c2(b+ c)(b− c)2

: ab(a + c)2(a+ b− c)(−a2 + b2 + c2)

: ac(a + b)2(a− b+ c)(−a2 + b2 + c2)
)

from which we obtain N ′′

B = ζ(σ(N ′′

A)) and N ′′

C = ζ(σ(N ′′

B)).

The center M of the outer Apollonian circle m can be found as [CA, N
′′

A] ∩ [CB, N
′′

B] and
its trilinear coordinates are (αM : βM : γM) with center function

αM = 2(b+ c)a5 + (b+ c)2a4 − (b+ c)(3b2 − 2bc+ 3c2)a3

− (b4 + 4b3c+ 4b2c2 + 4bc3 + c4)a2 + (b+ c)(b4 − 2b3c− 2bc3 + c4)a

+2bc(b− c)2(b+ c)2

and βM = ζ(αM) and γM = ζ(βM). Obviously, the point M is a center of the base triangle
∆. It is not yet mentioned in [4].

We can state the following:

Theorem 3.1. The points M , X3822, and X5 are collinear.

Proof. The points M and X5 are the centers of the two Apollonian circles n and m (the outer
one) to lA, lB, and lC for the special choice of the axis of similarity, namely a. These two
solutions are known to be inverse with respect to a circle about the radical center of the given
circles. Thus, the radical center X3822 is collinear with M and X5.

One could also show that the trilinear coordinate vectors of M , X3822, and X5 are linearly
dependent.

The triangle ∆ce = (N ′′

A, N
′′

B, N
′′

C) of contact points of the exterior Apollonian circle has a
perspective colleague:

Theorem 3.2. The triangle ∆ce is perspective to the base triangle ∆ with the Apollonius

point X181
3 for its perspector.

Proof. This is easily verified by using the trilinear representation of the vertices of ∆ce and
∆.

4. Tangent triangles related to an Apollonian configuration

The circles n and m are two particular but associated (conjugate) solutions of the Apollonian
problem to given circles lk. We show the following remarkable result which applies to any
Apollonian configuration.

3Let w denote the Apollonian circle that encloses the three excircles eA, eB, eC of the triangle ∆. The
triangle of contact points w ∩ eA, w ∩ eB, w ∩ eC is perspective to the base triangle ∆ and the perspector
is the point X181 (cf. [3, 4]). Further, X181 is the external center of similarity of the incircle and Apollonius
circle w.
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Figure 5: The tangent triangles ∆i = (I1, I2, I3) and ∆e = (E1, E2, E3) of the interior
Apollonian circle i and exterior Apollonian circles to three given circles c1, c2, and c3
are perspective. The perspector equals the radical center R of c1, c2, and c3. The
perspectrix of ∆i and ∆e is the axis of similarity of the triplet of circles.

Lemma 4.1. Let e and i be the exterior and interior Apollonian circles to three circles c1,

c2, and c3. Further, let ∆e and ∆i be the two triangles built by the common tangents of e and

ck, or i and ck with k ∈ {1, 2, 3}, respectively, and call them exterior and interior tangent

triangles.

Then, the tangent triangles ∆e and ∆i are perspective with respect to the radical center R and

the perspectrix is the axis a of similarity of c1, c2, and c3.

Proof. We follow Gergonne’s way of constructing Apollonian circles to three given circles
[2]. Therefore, we first construct the axis a of similarity of the given circles c1, c2, and c3
and the poles Ak of a with regard to ck. According to Gergonne, the points of contact
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TAi

TBi

TCi

TAe
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TCe

Figure 6: The interior tangent triangle ∆ti is perspective to the exterior tangent
triangle ∆te with the radical center X3822 of li for their perspector.

of any Apollonian circle are the points of intersection of the lines [R,Ak] with ck, for any
k ∈ {1, 2, 3}.

Since conjugacy with respect to a conic is symmetric, the pole of the line [Ce
k, C

i
k] joining

the exterior point of contact Ce
k and interior point of contact C i

k of the k-th circle with the
exterior and interior Apollonian circle e and i lies on a. Consequently, any pair of tangents
of a circle ck (consisting of a tangent to e and a tangent to i) intersects in a point on a. This
shows that corresponding sides of ∆e and ∆i intersect in points of a and the two triangles are
perspective to the line a. According to the theorem of Desargues they are also perspective
to a point. It is clear from the construction that this point, i.e., the perspector is the radical
center of the circles.

To be more precise, we shall replace the phrase interior and exterior Apollonian circle by
a pair of conjugate Apollonian circles since these come along as the solutions of a quadratic
equation.

Figure 4 illustrates the contents of Lemma 4.1 for a special choice of the axis of similarity.
However, the Lemma holds for any choice of axis of similarity, and thus there are up to four
pairs of perspective tangent triangles related to a complete Apollonian configuration.

As a consequence of Lemma 4.1 we have the following result (illustrated in Figure 6):
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Theorem 4.1. The interior tangent triangle ∆ti of lk and the exterior tangent triangle ∆te

of lk, k ∈ {A,B,C}, are perspective with perspector X3822.
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