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1. Introduction

The calculus of variations is playing an increasingly important role in the fields analysis,
physics, geometry and engineering. So, many mathematicians have been interested in the
calculus of variations, especially in elasticity theory, [1, 6, 7, 8, 9, 10, 12, 13].

For any curve with arc-length s, 0 ≤ s ≤ L, and curvature k1 the associated energy is
given by

K =

∫ L

0

k2
1ds (1.1)

The integral K is called the total squared curvature. For an elastic line of length L this
integral is minimal.

The analysis of the total squared curvature has a long history going back to the infancy
of the subject: the Calculus of Variations. Many of the qualitative properties of the corre-
sponding variational solutions have been known ever since. The same cannot be said for the
precise quantitative properties, especially when the length is not fixed. James Bernoulli
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posed a problem related to the elastic curves already in 1691 (possibly to quite his brother
John who solved the problem of the catenary and then taunted James for wasting time trying
to prove that the parabola provided the solution). Three years passed without a response
to the challenge and James subsequently published his own solution. Huygens criticized
James for omitting several elastic curves in his analysis. In 1742 Daniel Bernoulli wrote a
letter to Euler proposing the total squared curvature as the correct quantity to minimize.
Euler finished his book on the Calculus of Variations in 1744 and applied his theory to
the elastic curves using Daniel’s suggestion. This work appeared in the first appendix ‘De
Curvis Elasticis’ to his book, and the objections raised by Huygens were addressed. Note
that this early work predates the rich theory of elliptic functions developed by Jacobi and
others one century later. In recent years the modified total squared curvature has emerged as
a useful quantity in the study of geodesics, i.e., the straightest paths in a surface. Langer

and Singer initiated the research in a series of papers dealing with closed elastic curves in
spaces of constant curvature (flat, spherical and hyperbolic spaces), [7].

In Eq. (1.1), L is the length and k1(s) the curvature of the curve parametrized by its
arc-length s. If no boundary conditions are imposed at s = L and if no external forces act
at any s, the elastic line is relaxed, [6]. The trajectory of a relaxed elastic line in space and
on a plane must be straight because the position-independent quantity K takes its minimum
value of zero when the squared curvature vanishes for all s. The trajectory of a relaxed elastic
line constrained to lie on a general surface is, however, dependent on the intrinsic curvature
of the surface, which in general bounds the possible values of K away from zero.

Hilbert andCohn-Vossen [4] stated incorrectly that a relaxed elastic line with specified
position and tangent at s = 0 always has the trajectory of a geodesic. Manning [9] obtained
the intrinsic equations and Nickerson-Manning [10] have proved that the conclusion of
Hilbert and Cohn-Vossen [4] that a relaxed line always follows a geodesic is incorrect.
Furthermore, Nickerson-Manning [9] has got the intrinsic equations of a relaxed line on
an oriented surface. On the other hand, for understanding the mechanics of nuclesomal DNA,
the Euler-Lagrange equations of a relaxed line on a restricted surface have been investigated
by Manning in [9].

Elastic lines of second kind on an oriented surface in E3 have been studied by Z. Ünan

and M. Yilmaz in [13]. In the underlying paper, the relaxed elastic lines of second kind on
a curved oriented hypersurface M in the Euclidean space En are investigated.

2. Preliminaries

To begin with, we recall the fundamentals of the differential geometry of curves and hyper-
surfaces in the Euclidean n-space En with its inner product 〈 , 〉. The Euclidean metric is
given by

ds2 = dx2
1 + dx2

2 + · · ·+ dx2
n =

n∑

i=1

dx2
i

where (x1, x2, . . . , xn) are cartesian coordinates in En.

Definition 1. Let α : I ⊂ R → En be a unit speed curve, i.e., parametrized by its arc-
lengths, and let (V1, V2, . . . , Vn) be the Frenet frame field of α. Then, for each i, 1 ≤ i < n,
the function

ki : I ⊂ R → R (2.1)



A. Sarıoğlugil, A. Tutar, H. Stachel: On Relaxed Elastic Lines of Second Kind 83

defined for s ∈ I by

ki(s) = 〈V̇i(s), Vi+1(s)〉 (2.2)

is called the ith curvature function of the curve α, and ki(s) is called the ith curvature of α at
α(s), [3].

Theorem 1. [Frenet Formulas] If α : I ⊂ R → En is a unit speed curve then

V̇i = −ki−1(s)Vi−1(s) + ki(s)Vi+1(s), 1 ≤ i ≤ n, (2.3)

where k0 = kn = 0, [3].

Thus, it is possible to write the Frenet formulas in matrix form as




V̇1

V̇2

V̇3
...

V̇n−2

V̇n−1

V̇n




=




0 k1 0 · · · 0 0 0
−k1 0 k2 · · · 0 0 0
0 −k2 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 kn−2 0
0 0 0 · · · −kn−2 0 kn−1

0 0 0 · · · 0 −kn−1 0







V1

V2

V3
...

Vn−2

Vn−1

Vn




(2.4)

where k1 and k2 are are usually called (ordinary) curvature and torsion, respectively, [3].

Let M be a hypersurface in En with the parameter representation

X : U ⊂ En−1 → En

(u1, u2, . . . , un−1) 7→ X(u1, u2, . . . , un−1).
(2.5)

The tangent space is defined as

TM(P ) = Sp
{
Xu1

, Xu2
, . . . , Xun−1

}
, (2.6)

where the Xui
, 1 ≤ i ≤ n − 1, are the partial derivatives of X . For the sake of brevity, we

set Xi = Xui
. We exclude singularities by the assumption dim TM(P ) = n − 1 for all points

P ∈ M . Then the unit normal vector of M is

ξ = (−1)n−1 X1 ∧X2 ∧ · · · ∧Xn−1

‖X1 ∧X2 ∧ · · · ∧Xn−1‖
(2.7)

where ∧ denotes the exterior product of the vectors X1, X2, . . . , Xn−1.

Definition 2. Let M be a hypersurface in En. The linear map

S : TM (P ) → TM(P )
v 7→ S(v) = Dv ξ

(2.8)

is called the shape operator or Weingarten map of M at P ∈ M .

Theorem 2. Let M be a hypersurface in En. Then the map S is self-adjoint.



84 A. Sarıoğlugil, A. Tutar, H. Stachel: On Relaxed Elastic Lines of Second Kind

Definition 3. Let M be a hypersurface in En. The map

Iq : TM(P )× TM (P ) → C∞(M,R), 1 ≤ q ≤ n,

(v, w) 7→ Iq(v, w) = 〈Sq−1(v), w〉
(2.9)

is called the qth fundamental form of M at P ∈ M . In particular, for q = 1 the map

I : TM(P )× TM(P ) → C∞(M,R)
(v, w) 7→ I(v, w) = 〈v, w〉

(2.10)

is called first fundamental form of M at P ∈ M . For q = 2 the map

I2 : TM(P )× TM(P ) → C∞(M,R)
(v, w) 7→ I2(v, w) = 〈S(v), w〉

(2.11)

is called second fundamental form of M at P ∈ M and denoted by I2 = II . Finally, the map

I3 : TM (P )× TM(P ) → C∞(M,R)
(v, w) 7→ I3(v, w) = 〈S2(v), W 〉

(2.12)

is the third fundamental form of M at P ∈ M and denoted by I3 = III.

Using (2.9), the first, the second and the third fundamental form can be rewritten respec-
tively as follows:

I(v, w) =

n−1∑

i,j=1

giju̇iu̇j =

n−1∑

i,j=1

〈Xi, Xj〉u̇iu̇j , (2.13)

II (v, w) =

n−1∑

i,j=1

bij u̇iu̇j = −

n−1∑

i,j=1

〈Xij, ξ〉u̇iu̇j , (2.14)

III (v, w) =

n−1∑

i,j=1

nij u̇iu̇j =

n−1∑

i,j=1

〈ξi, ξj〉u̇iu̇j . (2.15)

Definition 4. Let M be a hypersurface in En and α be a unit speed curve on M . The
function

kn : M → R

P 7→ kn(P ) = 〈S(V ), V 〉 = II (V, V )
(2.16)

is called normal (or asymptotic) curvature function, and kn(P ) is called the normal (or
asymptotic) curvature of the curve α at α(s), [3]. If the normal curvature is zero then the
curve α is called an asymptotic curve.

Definition 5. Let M be a hypersurface in En and α be a unit speed curve on M with the
Darboux frame field (E1, E2, . . . , En−1, ξ). Then, for each i, 1 ≤ i < n− 1, the function

kig : I ⊂ R → R

s 7→ kig(s) = 〈Ėi(s), Ei+1(s)〉
(2.17)

is called the ith geodesic curvature function of α, and ki(s) is called the ith geodesic curvature
of α at α(s), [2].
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Theorem 3. Let M be a hypersurface in En and α be a curve on M . Then the derivatives
of the natural (Darboux) frame field {V1 = E1, E2, . . . , En−1, ξ} (see Figure 1) are

{
Ėi = −k(i−1)gEi−1 + kigEi+1 + II1i ξ ,

ξ̇ = −II11E1 − II12E2 − · · · − II1(n−1)En−1 ,
1 ≤ i ≤ n− 1, (2.18)

where ξ is the unit normal vector of M and kig is the ith geodesic curvature function of α, [2].
Here, k0g = k(n−1)g = 0 and II1j = II (E1, Ej).

M

α

P

V1=E1

V2

V3

E2

E3=ξ

T
(P )
M

Figure 1: The Frenet frame (V1, V2, . . . , Vn) and the Darboux frame (E1, E2, . . . , En−1)
of the curve α on M at the point P = α(s).

From V1 = E1 follows V̇1 = Ė1 , hence by Eqs. (2.3) and (2.18) k1V2 = k1gE2 + II11ξ, and
therefore

k2
1 = k2

1g + II 2
11.

V̈1 = Ë1 implies for n > 3

k̇1V2 + k1k2V3 =
(
k̇1g − II11II12

)
E2 + (k1gk2g − II11II13)E3 − II11II14E4 − · · ·

− II11II1(n−1)En−1 +
(
k1gII12 + ˙II11

)
ξ .

After computing
‖k̇1V2 + k1k2V3‖

2 = k̇2
1 + k2

1k
2
2

we obtain

k2
2 =

1

k21

[
− k̇2

1 + k̇2
1g +

˙II
2

11 + II 2
11

n−1∑

i=2

II 2
1i + k2

1g

(
k2
2g + II 2

12

)

−2II11

(
k1gk2gII13 + II11II12

(
k1g

II11

). ) ]
.

(2.19)

A curve α on M is called geodesic if k1g = 0 for all s. In this case we have k2
1 = II 211, and

Eq. (2.19) reduces to

k2
2 =

n−1∑

i=2

II 21i . (2.20)
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3. Elastic lines of second kind

Now we define elastic lines of second kind on a curved hypersurface M in En.

Definition 6. Let α be a Ck-curve parametrized by its arc-length s, 0 ≤ s ≤ L, on an
oriented curved surface in M . The integral

Ω =

L∫

0

k2
2 ds (3.1)

with the torsion k2 is called the total squared second curvature. The curve α is called a relaxed
elastic line of second kind if it is an extremal for the variational problem of minimizing the
total second squared curvature Ω within the family of all arcs of length L on M having the
same initial point and initial direction.

When the geodesic curvature of α vanishes identically, we get after substituting (2.20)
into (3.1)

ΩII =

L∫

0

[ n−1∑

i=2

II 2
1i

]
ds . (3.2)

The geodesic unit speed curve α on a curved hypersurface M in En is a relaxed elastic line
of second kind if it is an extremal for the variational problem of minimizing the value of ΩII .

Let α be the curve that minimizes ΩII among all curves of length L on a curved hypersur-
face M with stated boundary conditions at s = 0. For any other curve with stated boundary
conditions we have

Ω =

L∫

0

1

k21

[
− k̇2

1 + k̇2
1g +

˙II
2

11 + II 2
11

n−1∑

i=2

II 2
1i + k2

1g

(
k2
2g + II 2

12

)

−2II11

(
k1gk2gII13 + II11II12

(
k1g

II11

). )]
ds

≥ Ω ,

(3.3)

while if α is a geodesic

Ω =

L∫

0

k
2

2 ds

=

L∫

0

1

k
2
1

[
− k̇

2

1 + k̇
2

1g +
˙II

2

11 + II
2

11

n−1∑

i=2

II
2

1i + k
2

1g

(
k
2

2g + II
2

12

)

−2II11

(
k1g k2g II13 + II11II12

(
k1g

II11

). )]
ds

=

L∫

0

[ n−1∑

i=2

II
2

1i

]
ds = ΩII .

(3.4)

In other words, if the curve that minimizes ΩII is a geodesic, then this curve has least total
second squared curvature.
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To implement this rule for a given curved hypersurface, we first must find the curve that
minimizes ΩII . Then we must show that this curve is a solution of the differential equations
of geodesic curves for the given curved hypersurface. If this is true then we have proved that
the relaxed elastic line follows a geodesic trajectory.

4. Incomplete variational problem on a hypersurface

M

α

X(β(s))=α(s)

O

x1

x2

xn

O′

u1
u2

un−1

U

s

β(s)

β
α

X

R

Ên−1
En

Figure 2: The curve α = X ◦ β on the hypersurface M

Let M be a hypersurface in En and let α be a curve on M . By Figure 2 we have

α = X ◦ β : I → M

s 7→ α(s) = X (u1(s), u2(s), . . . , un−1(s))
(4.1)

where
β : I → U ⊂ Ên−1

s 7→ β(s) = (u1(s), u2(s), . . . , un−1(s)) .
(4.2)

The tangent vector E1 of α is

E1 =
dα

ds
= Xu1

u̇1 +Xu2
u̇2 + · · · +Xun−1

u̇n−1 (4.3)

where u̇1 =
dui

ds
, 1 ≤ i ≤ n− 1. We write the side condition I(E1, E1) = 〈E1, E1〉 = 1 in the

following as
g (u1, u2, . . . , un−1, u̇1, u̇2, . . . , u̇n−1) = 1 (4.4)

on the curved hypersurface M . Here

I(E1, E1) =
n−1∑

i,j=1

giju̇iu̇j (4.5)

where gij are the coefficients of the first fundamental form of M .
By (2.16) the normal curvature of M is written as

kn = II (E1, E1) =

n−1∑

i,j=1

bij u̇iu̇j (4.6)
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where bij are the coefficients of the second fundamental form of M . The first geodesic curva-
ture of the curve α on M is

k1g =
n−1∑

i,j=1

gijγiγj (4.7)

where

γi = üi +
n−1∑

k,l=1

Γi
klu̇ku̇l, 1 ≤ i ≤ n− 1. (4.8)

The Γi
kl, 1 ≤ i, k, l ≤ n − 1, are Christoffel symbols of M . The equation of a geodesic curve,

which is characterized by identically vanishing k1g, is given by γi = 0, [9]. The Christoffel
symbols Γr

kl, 1 ≤ k, l ≤ n− 1, can be written as

Γr
kl =

n−1∑

r=1

〈Xukul
, Xur

〉 gri (4.9)

where gri for 1 ≤ i, r ≤ n− 1 are the entries of the matrix [gri] = [gri]
−1.

On the other hand, we can write

II (E1, E2) =
1

W

n∑

i,j=1

bijγiu̇j (4.10)

where W = II (E1, E1).
The problem now is to find functions ui(s), 1 ≤ i ≤ n− 1, that give stationary values to

the integral

ΩII =

L∫

0

[ n−1∑

i=2

II 2
1i

]
ds (4.11)

subject to the side condition Eq. (4.4). We call this problem incomplete because it seeks to
minimize ΩII but not the total squared second curvature, [9].

Thus, the Euler equations for this incomplete problem are





Hu1
− (Hu̇1

). + (Hü1
).. = 0

Hu2
− (Hu̇2

). + (Hü2
).. = 0

...
...

Huk−1
−
(
Hu̇k−1

).
+
(
Hük−1

)..
= 0

Huk
− (Hu̇k

). + (Hük
).. = 0

Huk+1
−
(
Hu̇k+1

).
+
(
Hük+1

)..
= 0

...
...

Hun−2
−
(
Hu̇n−2

).
+
(
Hün−2

)..
= 0

Hun−1
−
(
Hu̇n−1

).
+
(
Hün−1

)..
−
(
H ˙̈un−1

)...
= 0

(4.12)

where

H =
[ n−1∑

i=2

II 2
1i

]
+ λ(g − 1), (4.13)
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and λ = λ(s) is a Lagrange multiplier function.
The system is of order (4n− 3), of fourth order in each ui, of first order in λ. There are

(4n− 3) constants of integration in the general solution.
One of them is fixed by the following argument: Differentiate Eq. (4.4) once with respect

to the arc-length s to make it of fourth order in the ui’s, so that the system of (4n−3)th order
is transformed into normal form. When the resulting equation ˙̈g = 0 is integrated, Eq. (4.4)
dictates that the constants of integration are 0, 0 and 1.

The other (4n − 3) integration constants in the general solution are determined by
the boundary conditions. Since the side condition (4.4) does not contain the parame-
ter üi , the boundary terms of the variation are not determined in the usual straightfor-
ward way. We nevertheless find the following (4n − 6) boundary terms if (4.4) can be
solved for u̇k as a function of ü1, ü2, . . . , ük−1, ük+1, . . . , ün−1, and u1, u2, . . . , un−1 to give
u̇k = V (u1, u2, . . . , un−1, u̇1, u̇2, . . . , u̇k−1, u̇k+1, . . . , u̇n−1), evaluated at s = 0 and L:





[
Hu̇1

− (Hü1
). +Hük

Vu1

]
δu1

∣∣L
0[

Hu̇2
− (Hü2

). +Hük
Vu2

]
δu2

∣∣L
0

...
[
Hu̇k−1

−
(
Hük−1

).
+Hük

Vuk−1

]
δuk−1

∣∣L
0[

Hu̇k
− (Hük

). +Hük
Vuk

]
δuk

∣∣L
0[

Hu̇k+1
−
(
Hük+1

).
+Hük

Vuk+1

]
δuk+1

∣∣L
0

...
[
Hu̇n−2

−
(
Hün−2

).
+Hük

Vun−2

]
δun−2

∣∣L
0[

Hu̇n−1
−
(
Hün−1

).
+Hük

Vun−1

]
δun−1

∣∣L
0[

Hü1
+Hük

Vu̇1

]
δu̇1

∣∣L
0[

Hü2
+Hük

Vu̇2

]
δu̇2

∣∣L
0

...
[
Hük−1

+Hük
Vu̇k−1

]
δu̇k−1

∣∣L
0[

Hük+1
+Hük

Vu̇k+1

]
δu̇k+1

∣∣L
0

...
[
Hün−2

+Hük
Vu̇n−2

]
δu̇n−2

∣∣L
0[

Hün−1
+Hük

Vu̇n−1

]
δu̇n−1

∣∣L
0

(4.14)

Suppose that we place no other restrictions on the elastic line than the confinement to the
hypersurface. Then the (4n − 6) integration constants are determined by setting equal zero
each of the (4n − 6) factors multiplying δui and δu̇i in the “V boundary terms”. These
conditions are completely natural [11].

If the natural conditions are allowed at s = L, but the initial position and direction of
the relaxed elastic line of the second kind are specified, too, then we get a different set of
equations to determine the (4n− 6) integration constants. The (2n− 3) boundary conditions
are obtained by setting equal to zero each of the (2n − 3) integration constants multiplying
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δuk and δu̇k, with the integration constants evaluated at s = L. In addition, (n−1) boundary
conditions are specified by the values of uk at s = 0 by uk(0) = 0 for 1 ≤ k ≤ n − 1. Thus
the initial tangent vector of a relaxed elastic line of the second kind is

V1(0) =

n−1∑

i=1

u̇i0Xui

(
u10, u20, . . . , u(n−1)0

)
. (4.15)

5. The complete variational problem

Now, we will investigate the complete variational problem, which seeks to minimize the total
squared torsion by given

Ω =

L∫

0

1

k21

[
− k̇2

1 + k̇2
1g +

˙II
2

11 + II 211

n−1∑

i=2

II 2
1i + k2

1g

(
k2
2g + II 212

)

−2II11

(
k1gk2gII13 + II11II12

(
k1g

II11

). )]
ds

(5.1)

The problem at hand is to find functions ui(s) and λ(s) that give stationary values to the
above integral, subject to the side condition (4.4).

The Euler-Lagrange equations for the complete variational problem are





Hu1
− (Hu̇1

). + (Hü1
).. −

(
H ˙̈u1

)...
= 0

Hu2
− (Hu̇2

). + (Hü2
).. −

(
H ˙̈u2

)...
= 0

...
...

Huk
− (Hu̇k

). + (Hük
).. −

(
H ˙̈uk

)...
= 0

...
...

Hun−2
−
(
Hu̇n−2

).
+
(
Hün−2

)..
−
(
H ˙̈un−2

)...
= 0

Hun−1
−
(
Hu̇n−1

).
+
(
Hün−1

)..
−
(
H ˙̈un−1

)...
= 0

(5.2)

where

H =
1

k21

[
− k̇2

1 + k̇2
1g + ˙II

2

11 + II 2
11

n−1∑

i=2

II 2
1i + k2

1g

(
k2
2g + II 2

12

)

−2II11

(
k1gk2gII13 + II11II12

(
k1g

II11

). )]
+ λ(g − 1).

(5.3)

The system is of order 6n − 5, of sixth order in each ui and of first order in λ. There are
(6n− 5) constants of integration in the general solution. To get the system in normal form,
(4.4) must be differentiated five times with respect to s. Reintegration of g(5) = 0 gives the
respective fixed values 0, 0, 0, 0, and 1 to the resulting five constants of integration. The other
(6n− 5) constants in the general solution are determined by the boundary conditions. Since
the side condition Eq. (4.4) does not contain the parameters ü1, ü2, . . . , ün−1, the boundary
terms of the variation are not determined in the usual straightforward way. We nevertheless
find the following boundary terms if Eq. (4.4) can be solved for uk, 1 ≤ k ≤ n − 1, as
a function of the parameters u1, u2, . . . , un−1, u̇1, u̇2, . . . , u̇k−1, u̇k+1, . . . , u̇n−1, in order to
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give u̇k = V (u1, u2, . . . , un−1, u̇1, u̇2, . . . , u̇k−1, u̇k+1, . . . , u̇n−1), evaluated at s = 0 and L.





[
Hu̇1

− (Hü1
). +

(
H ˙̈u1

)..
+
[
Hük

−
(
H ˙̈uk

).
+H ˙̈uk

Vu̇k

]
Vu1

]
δu1|

L
0[

Hu̇2
− (Hü2

). +
(
H ˙̈u2

)..
+
[
Hük

−
(
H ˙̈uk

).
+H ˙̈uk

Vu̇k

]
Vu2

]
δu2|

L
0

...[
Hu̇k−1

−
(
Hük−1

).
+
(
H ˙̈uk−1

)..
+
[
Hük

−
(
H ˙̈uk

).
+H ˙̈uk

Vu̇k

]
Vuk−1

]
δuk−1|

L
0[

Hu̇k
− (Hük

). +
(
H ˙̈uk

)..
+
[
Hük

−
(
H ˙̈uk

).
+H ˙̈uk

Vu̇k

]
Vuk

]
δuk|

L
0[

Hu̇k+1
−
(
Hük+1

).
+
(
H ˙̈uk+1

)..
+
[
Hük

−
(
H ˙̈uk

).
+H ˙̈uk

Vu̇k

]
Vuk+1

]
δuk+1|

L
0

...[
Hu̇n−1

−
(
Hün−1

).
+
(
H ˙̈un−1

)..
+
[
Hük

−
(
H ˙̈uk

).
+H ˙̈uk

Vu̇k

]
Vun−1

]
δun−1|

L
0[

Hü1
−
(
H ˙̈u1

).
+H ˙̈u1

Vu̇1
+
[
Hük

−
(
H ˙̈uk

).
+H ˙̈uk

Vu̇k

]
Vu̇1

]
δu̇1|

L
0[

Hü2
−
(
H ˙̈u2

).
+H ˙̈u2

Vu̇2
+
[
Hük

−
(
H ˙̈uk

).
+H ˙̈uk

Vu̇k

]
Vu̇2

]
δu̇2|

L
0

...[
Hük−1

−
(
H ˙̈uk−1

).
+H ˙̈uk−1

Vu̇k−1
+
[
Hük

−
(
H ˙̈uk

).
+H ˙̈uk

Vu̇k

]
Vu̇k−1

]
δu̇k−1|

L
0

[
Hük+1

−
(
H ˙̈uk+1

).
+H ˙̈uk+1

Vu̇k+1
+
[
Hük

−
(
H ˙̈uk

).
+H ˙̈uk

Vu̇k

]
Vu̇k+1

]
δu̇k+1|

L
0

...[
Hün−2

−
(
H ˙̈un−2

).
+H ˙̈un−2

Vu̇n−2
+
[
Hük

−
(
H ˙̈uk

).
+H ˙̈uk

Vu̇k

]
Vu̇n−2

]
δu̇n−2|

L
0

[
Hün−1

−
(
H ˙̈un−1

).
+H ˙̈un−1

Vu̇n−1
+
[
Hük

−
(
H ˙̈uk

).
+H ˙̈uk

Vu̇k

]
Vu̇n−1

]
δu̇n−1|

L
0

(5.4)

On the other hand, if Vuk
for 1 ≤ k ≤ n − 1 is singular it can involve a division by zero.

Then we must be use a different set of (12n− 16) boundary terms, after solving Eq. (3.4) for
u̇k = V (u1, u2, . . . , un−1, u̇1, u̇2, . . . , u̇k−2, u̇k−1, . . . , u̇n−1).

Suppose that we place on the elastic line no other restriction than the confinement to the
hypersurface. Then, (3n − 5) integration constants are determined by setting equal to zero
each of the (3n− 5) factors of δuk

and δu̇k
, 1 ≤ k ≤ n− 1, in the V boundary terms. These

boundary conditions are completely natural (free) (see for details [9] and [12]).

6. Relaxed elastic lines of second kind on a hypercylinder

A spherical hypercylinder with radius 1 in En is given by

Cn−1 =
{
(x1, x2, . . . , xn) :

n−1∑

i=1

x2
i = 1

}
(6.1)

It can be parameterized by

X =
(
cos u1, sinu1 cos u2, sinu1 sinu2 cos u3, . . . ,

(n−3∏

i=1

sinui

)
cosun−2,

(n−2∏

i=1

sinui

)
, un−1

)
(6.2)

where the ui’s for 1 ≤ i ≤ n− 2 are polar angles, and xn determines the axis.
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The derivatives of X with respect to the parameter ui, 1 ≤ i ≤ n− 1, are





Xu1
=
(
− sinu1, cos u1 cos u2, cos u1 sinu2 cos u3, . . . , cos u1

( n−3∏
i=2

sinui

)
cos un−2,

cos u1
n−2∏
i=2

sinui , 0
)

Xu2
=
(
0, − sinu1 sinu2, sinu1 cos u2 cos u3, . . . , sinu1 cos u2

( n−3∏
i=3

sinui

)
cos un−2,

sinu1 cos u2
n−2∏
i=3

sinui , 0
)

Xu3
=
(
0, 0, − sinu1 sinu2 sinu3, . . . , sinu1 sinu2 cos u3

( n−3∏
i=4

sinui

)
cos un−2,

sinu1 sinu2 cos u3
n−2∏
i=4

sinui , 0
)

...
...

Xun−3
=
(
0, 0, . . . , 0, −

( n−4∏
i=1

sinui

)
cos un−3 cos un−2,

( n−4∏
i=1

sinui

)
cos un−3 sinun−2, 0

)

Xun−2
=
(
0, 0, . . . , −

( n−3∏
i=1

sinui

)
sinun−2,

( n−3∏
i=1

sinui

)
cos un−2, 0

)

Xun−1
= (0, 0, . . . , 0, 1)

(6.3)

The vector system
(
Xu1

, Xu2
, . . . , Xun−1

)
is an orthogonal basis of TCn−1(P ). After applying

the method of Gram-Schmidt orthonormalization, we have





E1 =
(
− sinu1, cos u1 cos u2, cos u1 sinu2 cos u3, . . . , cos u1

( n−3∏
i=2

sinui

)
cos un−2,

cos u1
n−2∏
i=2

sinui , 0
)

E2 =
(
0, − sinu2, cos u2 cos u3, . . . , cos u2

( n−3∏
i=3

sinui

)
cos un−2, cos u2

n−2∏
i=3

sinui , 0
)

E3 =
(
0, 0, − sinu3, . . . , cos u3

( n−3∏
i=4

sinui

)
cos un−2, cos u3

n−2∏
i=4

sinui , 0
)

...
...

En−3 =
(
0, 0, . . . , 0, − cos un−2, sinun−2, 0

)

En−2 =
(
0, 0, . . . , − sinun−2, cos un−2, 0

)

En−1 =
(
0, 0, 0, . . . , 0, 1

)

(6.4)

From here we get

ξ =

(
cos u1, sin u1 cosu2, . . . ,

( n−3∏

i=1

sin ui

)
cosun−2,

n−2∏

i=1

sin ui , 0

)
. (6.5)
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By (6.3) we have 



g11 = 1
g22 = sin2 u1

g33 = sin2 u1 sin
2 u2

...
...

g(n−3)(n−3) =
( n−4∏

i=1

sin ui

)
cos2 un−3

g(n−2)(n−2) =
n−3∏
i=1

sin ui

g(n−1)(n−1) = 1
gij = 0 for i 6= j.

(6.6)

Substituting (6.3) into (4.4) we obtain

u̇21 + sin2 u1u̇
2
2 + sin2 u1 sin

2 u2u̇
2
3 + · · ·+

( n−4∏

i=1

sin2 ui

)
u̇2n−3 +

( n−3∏

i=1

sin2 ui

)
u̇2n−2 + u̇2n−1 = 1 (6.7)

Furthermore, the entries gij of the matrix
(
gij
)
−1

are

gij =





0 for i 6= j
1

gij
for i = j, 1 ≤ i ≤ n− 1.

(6.8)

On the other hand, the coefficients bij of the second fundamental form II of Cn−1 are

bij =





0 for i 6= j

−gij for i = j = 1, 2, . . . , n− 2
0 for i = j = n− 1.

(6.9)

From Eq. (4.6) we obtain

k2
n = [II (E1, E1)]

2 =
[ n−2∑

i,j=1

giju̇iu̇j

]2
. (6.10)

By Eq. (4.7) we have

k2
1g =

[ n−1∑

i,j=1

gijuiuj

]2
. (6.11)

By straigthtforward computation we get

Γk
ij = 0 . (6.12)

Thus we have
γ1 = ü1

γ2 = ü2
...

...
γn−2 = ün−2

γn−1 = ün−1

(6.13)
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On the other hand
II11 = 1

II (E1, E2) = 0
II (E1, E3) = 0

...
...

II (E1, En−3) = 0
II (E1, En−2) = 0

II (En−1, En−1) = 0

(6.14)

Furthermore, we have

k1g = 〈Ė, E2〉 = 0 and k2g = 〈Ė, E3〉 = 0. (6.15)

Substituting (6.10) and (6.11) into (6.13) we get

H = λ(g − 1).

Then, H satisfies (5.2).
From (6.12) and (6.15) we get

ui = ai s+ bi, ai, bi ∈ R, 1 ≤ i ≤ n− 1 . (6.16)

Thus we obtain the parametric representation of the relaxed line of second kind on Cn−1 as

α(s) =





α1(s) = cos(a1s+ b1)
α2(s) = sin(a1s+ b1) cos(a2s+ b2)
...

...

αn−2(s) =
n−3∏
i=1

sin(ais+ bi) cos(ai+1s+ bi+1)

αn−1(s) =
n−2∏
i=1

sin(ais+ bi)

αn(s) = an−1s+ bn−1

(6.17)

Figure 3: Projection of a relaxed line of second kind on a hypercylinder C4
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For example, we set n = 4 : We immediately obtain a relaxed line of second kind of the
spherical cylinder C3. In Figure 3 the hypercylinder C3 (with radius 2) is projected into the
hyperplane x1 = 0, [2].
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