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Abstract. Assuming a discrete set of circles pi in the plane, a real envelope is
looked for. The new approach of this work is reformulating the original task as a
constrained optimization in the point set model. The quadratic objective function
minimizes the Euclidean distance between the cyclographic images of circles pi
and a cubic B-Spline b by observing the footpoint problem, which brings a better
fit, but results in a non-linear problem. The reality of the envelope results in a
quadratic, but non-convex constraint, which can be linearized. This linearization
is discussed in detail, as its formulation is central to this work.
The ideas discussed for circles are also generalized for spheres; in the 1-parameter
case that leads to a new method for interpolation points in R3,1 by curves, which
translates to interpolation of spheres by canal surfaces.
Approximating 2-parameter sets of points by surfaces in R3,1 gives rise to general
envelope surfaces of 2-parameter families of spheres, that have not been studied
before in this generality. For this, a calculus was reinvented and applied, that
classifies 2-planes in R3,1 according to their steepness.
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1. Introduction

Circles in R2 can be represented by points in Minkowski space R2,1. In order to find envelopes
for the circles, we have to approximate the corresponding points by curves c(u) in R2,1 (see
Figure 1). This would be a standard quadratic approximation problem if reality of envelopes
would be ignored. But the envelopes are real if and only if c(u) has no pseudo-Euclidean
tangents, which is a non-convex quadratic constraint of the curve fitting.
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Figure 1: Left: Given a set of circles in R2, its envelope (curves in red and green) can be
found as the inverse cyclographic image ζ−1(c(u)) of an interpolating curve c(u) (pur-
ple) in Minkowski space R2,1 through points Qk (red dots) which are the ζ-images of the
given circles. The envelopes are real if and only if c(u) has no pseudo-Euclidean tangents,
which is guaranteed through a constraint of the curve fitting.
Middle: One dimension higher, the input is a set of spheres (gray) for which we find the
optimal envelope (light blue surface).
Right : Analogously, given a 2-parameter set of spheres (gray) what is the optimal sur-
faces enveloping them? These questions are answered through a non-convex constrained
optimization which ensures reality of the envelopes.

1.1. Minkowski space

We only show some aspects of Minkowski space and Laguerre geometry; a more complete
introduction to this classical topic can be found in [4].

Pseudo-Euclidean inner product

Minkowski space R2,1 is equipped with an indefinite inner product

〈a,b〉L = a1b1 + a2b2 − a3b3 (1)

and thus for a vector a ∈ R2,1 the product 〈a, a〉L can be negative/zero/positive; the vector
is then called pseudo-Euclidean/isotropic/Euclidean (see Figure 2, left). The (convex) set
{(x1, x2, x3) ∈ R2 × R : x23 ≥ x21 + x22} is called Lorentz cone Γ.

Quadratic constraint

Due to this geometric constraint, the tangents of these curves have to enclose an angle less
than or equal to

π

4
with the plane x3 = 0. One can reformulate this constraint by saying that

the hodograph (derivative curve) has to stay outside the Lorentz cone Γ; it follows that this
constraint is quadratic and non-convex.

1.2. Previous work

The problem of finding envelopes of circles has been dealt with before, but not in this gener-
ality as we will see in a quick literature overview.

Pottmann and Peternell [4] consider curves c in R3,1 and interpret them as canal
surfaces. If c is a NURBS curve, its (convex hull, variation diminishing) properties translate
into certain properties for the rational canal surfaces. Only curves with Euclidean tangents
are considered, i.e., the question of reality of envelopes is not touched. The paper gives a
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Figure 2: Left: The scalar product 〈a, a〉L is negative/zero/positive if and only if the vec-
tor a is pseudo-Euclidean/isotropic/Euclidean (colors red / black / green); the Lorentz
cone is shown in gray.
Right: The cyclographic preimage of a curve c(u) in Minkowski space R2,1 is the en-
velope of oriented circles. If the tangent direction ċ(u) encloses an angle with the
plane x3 = 0 that is more than/equal/less than

π

4
; we call the tangent line pseudo-

Euclidean/isotropic/Euclidean, consequently ζ−1(c(u)) is either imaginary or it consists
of one or two real curves.

full description of Dupin cyclides as images of intersections of three cones in R3,1. They also
define pseudo-Euclidean (‘pe’ in brief) circular splines and pe biarcs.

Slabaugh et al. have published [6] about envelopes of 1-parameter families of circles and
[7] as a direct extension to 1-parameter families of spheres.

Their 2D method is to look at the two envelope curves separately and choose a point
of contact Si for every circle, which automatically gives a tangent direction Ti. Given the
circles, these points of contact can be coded as an angle αi. For two consecutive circles, a
cubic Hermite interpolation is computed. This interpolation is then set up as an unconstrained
quadratic optimization in the unknown αi with minimization of arc length and curvature as
objective function. In 3D the points of contact are substituted by circles of contact, the rest
extends straight forward.

The drawback of this method is that the curves are only C1 and the knot vector of the
piecewise cubic spline is determined by the rules of Hermite interpolation, thus the shape is
not very flexible. We also assume that our algorithm converges faster to a specified input,
even though a formal proof of convergence is still missing (see Section 4).

Kunkli and Hoffmann [3] do a G1 interpolation of circles via the circle of Apollonius:
for three consecutive circles S1, S2, S3 two other touching circles A1, A2 are constructed and
the points of contact with A1 are used for one envelope and the ones with A2 for the other.
Then, for two consecutive circles, tangents at the points of contact are computed and a
Hermite interpolation is performed.

Their extension for spheres is to take the plane ε through the centers of three consecutive
spheres Si, thus get three circles and once again apply Apollonius’ method. Through two
touching points a plane orthogonal to ε intersects Si in a circle, which is used for another
Hermite interpolation.

Such a Hermite interpolation is only a local construction and success is heavily dependent
on the input. As we will see in Section 2, the admissible set of circles of the present algorithm
is more restricted than the definition given in [3].
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2. Envelopes of circles

Finding an envelope of an ordered set of circles in R2 can be translated by cyclography into
the following task: Given a set of points Qk in R2,1, find a curve c(u) that interpolates these.
The inverse cyclographic mapping maps c(u) to the two branches of the circles’ envelope (see
Figure 2, right).

A first look at the objective function

For given points Qk, we want to

minimize
n−1∑
k=0

|Qk − c(u)|2, (2)

which means solving a least squares problem for unknown control points of a cubic B-spline
curve c(u). In fact, this approximation uses a footpoint, i.e., a point c(uk) which changes in
an iterative sub-routine, thus making (2) non-linear.

Note that the norm in Eq. (2) is the Euclidean norm, because the Minkowski norm of
Eq. (1) can become zero even for isotropic vectors, which is impractical for this curve fitting.

2.1. Introducing the constraint

The main challenge is that not every curve c through points Qk maps to a real envelope. As
we have seen in Section 1 this is only satisfied if

c′21 + c′22 ≥ c′23 , (3)

where
∂c

∂u
= c′ = (c′1, c

′
2, c
′
3) ∈ R2,1 is called hodograph. Wherever (3) is strictly >, the

envelopes do not coincide. The condition (3) is equivalent to saying

⇐⇒ 〈c′, c′〉L ≥ 0 by using the Lorentz inner product of Eq. (1), i.e., the derivative vectors
are Euclidean everywhere.

Figure 3: Left : a cubic Bézier curve (green) and its control polygon,
Right : the hodograph (blue) is the curve of the first derivatives, which is a quadratic
Bézier curve in the legs (black), i.e., the difference vectors. They originate at the origin
of the Lorentz cone Γ (turquoise).
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⇐⇒ the angle between c′ and the xy-plane is ≤ π

4
,

⇐⇒ that the hodograph has to stay outside the Lorentz cone Γ (see Figure 3).

This quadratic constraint is in fact non-convex as we will see shortly, thus standard optimiza-
tion algorithms can not be applied. We will present a possibility to linearize it in Section 2.2.

Quadratic objective in matrix notation

The objective function Eq. (2) can be written as (cT − qT ) · (c− q)→ min , thus

f(b) = bT ·G · b− 2 · bT · e + qT · q (4)

where G = blkdiag(NTN, NTN, NTN) is a symmetric block-diagonal matrix, and e equals
the product e = blkdiag(NT , NT , NT ) · q. f(b) is also called numerical convergence rate.

Solution via a linear system

To solve (4) iteratively, one writes bi+1 = bi + ∆bi and arrives at an optimum for

∇bf = G · (bi + ∆bi)− e = 0 ⇐⇒ G ·∆bi = e−G · bi,

which is a linear system in ∆bi for fixed parameters uk. We will assume to have found an
optimum, whenever the absolute value of the change in error measure ‖∇f‖ is smaller than
some threshold.

2.2. Non-convex quadratic constraint

The curve c ∈ R2,1 shall be constrained to have only Euclidean tangents, or equivalently, its
cyclographic preimage shall be a real envelope to circles ζ−1(Qk). The derivative curve or
hodograph is given as

[c′1 | c′2 | c′3] = N′ · [b1 | b2 | b3] ,
with the same control points b = [b1|b2|b3] as the curve itself, and N′ denoting the collocation
matrix of the derivatives of the basis functions. Then the constraint (3) can be reformulated
as

bT1 N′TN′b1 + bT2 N′TN′b2 − bT3 N′TN′b3 ≥ 0 ⇐⇒ bT ·A · b ≥ 0 (5)

with A = blkdiag(N′TN′, N′TN′, −N′TN′). Note that the collocation matrix of the curve’s
derivative N′ does not need to be given at the same parameter values uk, and the uk do not
need to change at every iteration.

Nevertheless, matrix A is indefinite by construction, so methods like ‘Quadratically con-
strained quadratic program’ (QCQP) cannot be applied. Note that since A stems from eval-
uating basis functions at finitely many points, this condition is necessary, but not sufficient
to satisfy the constraints.

2.3. Optimization procedure

Now that we have defined the matrices representing both objective function and the constraint
in Eqs. (4) and (5) respectively, we can restate the original problem:

minimize bT ·G · b − 2 · bT · e + d (6a)

subject to bT ·A · b ≥ 0, (6b)
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Figure 4: An example of envelopes using the Interior Point algorithm at different stages,
From left to right : fifth iteration after initialization with a flat curve, after ten iterations,
after 15 iterations, final result after 30 iterations.
Right: curves in R2,1 for the first 15 iterations. Note that the position of circles was
inspired by [3] for easy comparison of methods and to prove that the present algorithm
can also handle this situation.

where G is positive definite and A is indefinite (both by construction).
Due to the indefiniteness of the constraint, (6) is a non-convex problem. If we take

reparametrizations into account, which are necessary in order to include footpoints, the ob-
jective function is nonlinear.

Outline of the optimization procedure

To overcome these challenges, we will follow this procedure:

(1) Start with a good initial position b0 for the curve’s control polygon.

(2) Choose footpoints ci(uk).

(3) Compute a linearization Di of the quadratic constraint depending on the current control
points bi.

(4) Minimize the distance from ci to Qk while staying feasible w.r.t. Di and update the
control points.

Repeat (2) – (4) until an optimum is reached.
We will make sure that the error introduced in (3) stays small by iteratively adapting the

linearization in (2) and (3). Therefore, step (4) turns the non-convex, quadratically constraint
problem (6) into a “Quadratic Program”. This important linearization will be carried out in
the coming section.

2.4. Linearizing the quadratic constraint

In this section we will present a local linearization and proceed in three steps:

• Show in Section 2.4 that bounding the samples of the hodograph away from the Lorentz
cone can locally be accomplished through Γ’s tangent planes.

• Present a routine that computes the corresponding tangent plane for each sample in
Section 2.4 with the help of a projection

• Give a matrix formulation of the linearized constraint that only depends on the control
points of the last iterate in Section 2.4.
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Local linearization of Γ

As was said in the introduction, the quadratic constraint is equivalent to the hodograph c′

staying outside the Lorentz cone Γ.
Note that the space R2,1 \ Γ is not a vector space; a linear combination of two Euclidean

vectors is not necessarily Euclidean. So rather than giving a condition on the control polygon
of the hodograph, we look at sampling points c′(uk).

The linearization for condition “c′(uk) must stay outside Γ ” will be “c′(uk) must stay on
the positive side of a tangent plane of Γ ”. The former can be written as c′21 + c′22 − c′23 ≥ 0,
the latter as p1c

′
1 + p2c

′
2 − p3c′3 ≥ 0 for p = (p1, p2, p3) on the cone.

This connection comes naturally when looking at the equation of the border of the Lorentz
cone ∂Γ, which is given by

∂Γ: x2 + y2 − z2 = 0 (7)

thus the normal vector of its (isotropic) tangential plane ε is

∇(x2 + y2 − z2) = (2x, 2y,−2z) = (x, y,−z).

Therefore, given a point p on the cone it is contained in the plane

ε : p1x + p2y − p3z = 0 . (8)

For this tangent plane, the normal is pointing away from Γ and thus the linear form 〈p,x〉L
derived from Eq. (8) is positive for x close to p and outside Γ. This linear form is also a good
local approximation of the quadratic form 〈x,x〉L for a suitable p.

Projection orthogonal to Γ

We have seen in the last section that a local linearization of Γ depends on the choice of a
suitable point p = (p1, p2, p3) on the cone for a point p = (p1, p2, p3), such that 〈p,p〉L is
positive/negative/zero for a Euclidean/pseudo-Euclidean/isotropic point.

Keep in mind that these “points” are actually derivative vectors and hence belong to the
tangent space of R2,1. A suitable choice is

p = p− λ · nε
‖nε‖

, λ =
p21 + p22 ∓ p3

√
p21 + p22√

2(p21 + p22)
(9)

for the smaller of the two λ’s.

2.5. Matrix formulation of the linearization

We are now ready to write the linearization of the quadratic constraint (5) in a matrix
formulation that can be used in an optimization algorithm.

We have seen in Section 2.4 that for a derivative vector dk = c′(uk) = N′(uk) · b the
quadratic constraint 〈dk,dk〉L ≥ 0 can be linearized as

〈
dk,dk

〉
L

=
[
dk1, dk2, dk3

]
diag(1, 1,−1)

 dk1
dk2
dk3


=
[
dk1 ·N′(uk), dk2 ·N′(uk), −dk3 ·N′(uk)

]
· b ≥ 0,
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with dk the projection of dk onto Γ as described in Eq. (9), N′(uk) one row of the collocation
matrix of the hodograph c′ and b the (3m× 1)-vector of the m control points of c.

If we want to carry out this operation for all dk with a single matrix multiplication,
we have to write the dk coordinate-wise in diagonal matrices and multiply these with the
(n×m)-matrix N′:

D :=
[
diag(d11 . . . d1n)N′, diag(d21, . . . , d2n)N′, −diag(d31, . . . , d3n)N′

]
and get the matrix (=linear form) linearizing the quadratic form of the constraint

D · b =
[〈

d1,d1

〉
L
, . . . ,

〈
dn, dn

〉
L

]T
. (10)

Remember that an entry
〈
dk, dk

〉
L

in (10) is actually the signed distance for a point c′(uk) to
a certain (closest) tangent plane of Γ. Also keep in mind that even though N′ might remain
unchanged throughout the iteration, Di depends on the control points bi−1 of the last iterate,
because c′i = N′ · bi−1 .

2.6. Initial position

We would like to have a much bigger number m of control points b than the number n of
points Qk ∈ R2,1 representing the circles in order to have more flexibility in optimization.
Trying to solve this directly would lead to a rank-deficient linear system whose solution b
can, of course, not be trusted.

To circumvent this problem, we introduce an auxiliary cubic B-spline curve caux, inter-
polating the input Qk with a minimal knot vector and ignoring the steepness constraint (see
Figure 5, right).

We take m1 > m+ 4 equally spaced auxiliary parameter values vi, a knot vector of length
m + 4 and compute thus the collocation matrix Naux of rank m. The z-coordinates of the
control points baux of caux are then moved half the way to the mean value of the z-coordinates
of the Qk, called mean(Qk,z). Should caux still have pseudo-Euclidean tangents, repeat this
scaling; sample the final Euclidean curve Ri = caux(vi).

The initial control polygon b for the optimization procedure is the least squares fit of the
over-determined system Naux · b = Ri. It is Euclidean by construction and the number of
control points m is a user-specified number.

Note that due to the repeated scaling of the z-coordinates of caux, the B-spline defined by
b can be quite far from the Qk (only in z-direction); in the worst case, it is approximating
the top view projection of the Qk in the plane z = mean (Qk,z).

3. Envelopes of spheres

The direct extension of the theory of Section 2 to the 4-dimensional R3,1 would be curves
in R3,1, which represent envelopes of 1-parameter families of spheres, i.e., canal surfaces.
Basically, the theory stays the same as in Section 2; we refer the interested reader to [1] to
see which formulas have to be adapted to the higher dimension.

The main contribution of the section lies with surfaces in R3,1, whose inverse cyclographic
image are envelopes of 2-parameter families of spheres. The constraint of having real envelopes
means that the tangent planes of these surfaces have to stay Euclidean. In fact, we are talking
of 2-planes in 4-space and Section 3.1 introduces a calculus that allows to classify such planes
through a bilinear form.
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Qk

Ri

caux

baux

b

Figure 5: Left: The original points in R2,1 in red and their connecting lines in blue —
note that the blue line in the middle has an angle of

π

4
with the xy-plane by construction.

The final curve (purple) avoids steep tangents, as can be seen by the final control polygon
in green.
Right: Procedure to find the initial position of the control polygon: Compute auxiliary
curve caux (blue curve) with control polygon baux (blue lines) through input points Qk

(red dots). Move this control polygon toward the mean of the z-coordinates of the Qk

until no steep tangents appear, then sample points Ri (green dots). A finer control
polygon b (black) for approximating those is found via a linear system.

3.1. Wedge product in 4-space

We want to define the wedge product x ∧ y of two vectors x,y ∈ R4 (or R3,1; the differences
between those two exterior algebras solely depend on the choice of basis), which is a vector

in the
(
4

2

)
= 6-dimensional vector space

∧2R4.

Let (e0, e1, e2, e3) be a basis of R4, then a basis of
∧2R4 is given as (e0∧e1, e0∧e2, e0∧

e3, e2 ∧ e3, e3 ∧ e1, e1 ∧ e2). This linear space is the set of all 2-spaces (=planes through the
origin) in 4-space.

Thus for two vectors x = (x0, x1, x2, x3), y = (y0, y1, y2, y3) the coefficients of the
wedge product x ∧ y are given by the numbers lij = xiyj − xjyi for i, j = 0, . . . , 3,
i 6= j, and the coordinates of the plane through the origin spanned by x ∧ y ∈

∧2R4 are
L = (l01, l02, l03, l23, l31, l12). Note that a vector L satisfies the Plücker identity

Ωq(L) = l01l23 + l02l31 + l03l12 = 0, (11)

if and only if it represents a 2-plane in R4 (see [5] and the use of this formalism in line
geometry). We heavily rely on the fact that (projective) lines in projective three-space P3 are
isomorphic to 2-planes through the origin in R4.

The bilinear form Φ3,1

We want to relate the inner product and the wedge product in
∧2R4.

Lemma 1. Let the Plücker coordinates of a plane u ∧ v be lij for u,v ∈ R3,1 and those of
x ∧ y be mij. Then the following holds

det

(
〈u,x〉L 〈v,x〉L
〈u,y〉L 〈v,y〉L

)
= l01m01 + l02m02 + l12m12 − l03m03 − l13m13 − l23m23
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Figure 6: Two examples of envelopes of spheres using the Interior Point algorithm gener-
alized to R3,1, e.g. canal surfaces. The original spheres are shown in black, the resulting
envelope in turquoise. The curve approximation and the steepness constraint carry over
directly from R2,1 to R3,1.

We define a bilinear form Φ3,1 :
∧2R3,1 ×

∧2R3,1 → R by setting

Φ3,1(u ∧ v,x ∧ y) := l01m01 + l02m02 + l12m12 − l03m03 − l13m13 − l23m23,

where lij are the Plücker coordinates of a plane u∧ v and mij those of x∧ y as in Lemma 1.

Let u,v ∈ R3,1 be two vectors. Then we get the important relation

Φ3,1(u ∧ v,u ∧ v) = 〈u,u〉L · 〈v,v〉L − 〈u,v〉
2
L .

This is analogous to the lower dimensional case, which serves as a classification of 1-planes in
R2,1 (see [1]).

3.2. Classification of 2-planes in Minkowski space

In this section we present a classification of 2-planes in R3,1 that fits consistently to the lower
dimensional case, and extend a proposition on the classification of 1-planes in Minkowski
space R2,1.

Lemma 2. The bilinear form Φ3,1 allows for classification of 2-planes in R3,1: The plane
u ∧ v is

1. Euclidean ⇐⇒ Φ3,1(u ∧ v,u ∧ v) > 0 ⇐⇒ l201 + l202 + l212 > l203 + l213 + l223,

2. isotropic ⇐⇒ Φ3,1(u ∧ v,u ∧ v) = 0 ⇐⇒ l201 + l202 + l212 = l203 + l213 + l223,

3. pseudo-Euclidean ⇐⇒ Φ3,1(u ∧ v,u ∧ v) < 0 ⇐⇒ l201 + l202 + l212 < l203 + l213 + l223

Note that this lemma first appeared in [2], and was reinvented in [1], where an alternative
proof was found. We will use this classification of 2-planes in Section 3.3 to ensure that a
tangent plane to a surface in R3,1 is Euclidean in an optimization routine.
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3.3. Surface optimization

We want to turn our attention to surfaces in R3,1, e.g., the optimization of envelopes for
2-parameter families of spheres. The optimization problem thus becomes

minimize
k∑
i=1

|Qi − f(u, v)|2 (12a)

subject to ζ−1(f(u, v)) is real, (12b)

and the distance in the objective function (12a) is the Euclidean distance, rather than the
distance based on the Minkowski norm of Eq. (1). In the latter case we would run into all
sorts of problems with isotropic directions, which we want to avoid altogether.

The constraint (12b) means that the inverse cyclographic image of the surface
parametrization in R3 stays real, or, equivalently, that the tangent planes of f(u, v) ⊂ R3,1

stay Euclidean. The formulation of this constraint is more involved than in the curve case,
and we will explain it in several steps in Section 3.4.

Computation and parametrization

We have introduced a formalism in Section 3.2 that allows us to check whether a 2-plane in
R3,1 is pseudo-Euclidean, isotropic or Euclidean; here we want to apply it to tangent planes
of a surface. We must therefore choose a parametrization f(u, v) and for practical reasons we
restrict our attention to tensor product B-spline surfaces.

Handling the constraint — three levels of rigidity

For three different classes of surfaces we present three levels of rigidity for the steepness
constraint:

1. The most general class of surfaces we will look at are bicubic tensor product B-spline
surfaces f(u, v), i.e., the parameter lines in u- and v-direction are all cubic B-spline
curves. On these, we use a sampling of the surface and can only guarantee that the
tangent planes are Euclidean at each sampling point, which means that the envelope of
a 2-parameter family of spheres ζ−1(f(u, v)) is real at a discrete number of points. This
general approach, which is the foundation of all three, will be explained in Section 3.4.

2. If we consider tensor product B-splines surfaces of bidegree (3, 1), i.e., strips of ruled
surfaces, one direction of parameter lines, say u-lines, will be cubic B-splines and the
other direction linear B-splines, i.e., polylines. We will sample the cubic u-parameter
lines and given that they are Euclidean (on a sampling), the tangent planes along the
rulings (= the v-parameter lines) can be guaranteed to be Euclidean — without the use
of a sampling.

3. If both directions are linear, the single patches of the tensor product surface are hyper-
bolic paraboloids in R3,1. For this class of surfaces, we can even guarantee Euclidean
surfaces without the need of a sampling.

For brevity, we will only describe the most general class here and refer to [1] for the other
two.
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Figure 7: The surface f(u, v) = (u, v, 3− r

2
, 3

sin(r)

r
):

Top row, Left: an axonometric view of the hyperplanar section x3 = 0, Right: an
axonometric view of the hyperplanar section x2 = 0; surface evaluated on a grid, points
with pseudo-Euclidean (mixed) partial derivatives in red ;
Second row: the cyclographic preimage of an initial value for a bicubic B-spline surface
approximation; Left: values in the hyperplanar section x3 = 0, Right: in hyperplanar
section x2 = 0 from start (blue) and intermediates to finish (black).

3.4. Constraints for surface optimization

Analogously to Section 2.4, we have to give a linearized version of the quadratic constraint
(12b), which in the surface case is actually slightly more involved. The constraint should be,
that for a surface f(u, v) its tangent planes stay Euclidean everywhere. We will sample the
parameter lines to check the steepness of the partial derivatives.

We describe this constraint in the following steps:

1. We ensure Euclidean tangents in the direction of the parameter lines, i.e., the constraint
shall be fulfilled for a sampling of the partial derivatives fu(ui, vj) and fv(ui, vj).

2. If both fu(ui, vj) and fv(ui, vj) are Euclidean, we test if the tangent plane at f(ui, vj) is
Euclidean by computing Φ3,1(fu ∧ fv, fu ∧ fv)(ui, vj). We give a matrix formulation for
constraining the tangent plane of a surface in R3,1 to be Euclidean.

For the special cases of strips of ruled surfaces and patches of hyperbolic paraboloids, further
steps are necessary (see [1]).

The constraint on parameter lines

We assume f(u, v) is parametrized as a bicubic tensor product B-spline surface, hence the
parameter lines in u and v-direction are cubic B-spline curves. Therefore, constraining them
to have only Euclidean tangents is exactly constraint (12b), i.e., the constraint for a curve in
R3,1 to have only Euclidean tangents.

Then, for k sample points on the surface f(u, v), the (k × 4)-matrix of partial derivatives
w.r.t. u is given as fu = Ndu ·b and we define fu to be the projection — again a (k×4)-matrix
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— of fu onto Γ as defined in Section 2.4.

Then Du ·
[
bTx |bTy |bTz |bTw

]T
=
〈
fu, fu

〉
L

is a vector, whose kth entry is less than zero if
and only if fu(uk, vk) is pseudo-Euclidean.

The matrix Du thus linearizes the quadratic constraint that the angle between the partial
derivatives w.r.t. u, fu(uk, vk), and the hyperplane x4 = 0 is less than

π

4
for a sampling of all

parameter lines in u-direction.

The constraint for a discrete sampling of the surface

Knowing that the partial derivatives fu(ui, vj) and fv(ui, vj) are Euclidean does not necessarily
mean that the tangent plane at f(ui, vj) is Euclidean.

We thus employ the calculus summarized in Lemma 2: Compute Φ3,1(fu∧fv, fu∧fv)(ui, vj);
if it is ≤ 0, the tangent plane at fv(ui, vj) is isotropic or pseudo-Euclidean, even though the
dual variables of the optimization are positive by assumption. We hence change their sign
and thus activate this constraint.

Algorithm for constraining the tangent planes of a surface

Let us summarize the ideas of this section as an algorithm:

1. For a sampling of a B-spline surface f(ui, vj), compute the matrices Du and Dv of the
linearized constraint.

2. For index pairs (i, j) for which the slack variables > 0, compute the bilinear form
Φ3,1(fu ∧ fv, fu ∧ fv)(ui, vj).

3. For those (i, j) for which Φ3,1 ≤ 0, change the sign of the slack variable to be minus.

With the simple trick in 3., which is at the heart of the primal-dual interior point algo-
rithm used to solve these problems, we have activated the constraint with the help of Φ3,1,
even though both partial derivatives are Euclidean. This way, isotropic or pseudo-Euclidean
tangent planes enter the optimization.

4. Conclusions and future work

This paper summarizes the author’s PhD thesis [1], which finds envelopes for circles in the
plane and for 1- and 2-parameter families of spheres in 3-space via a nonlinear quadratic
optimization in Minkowski space. Methods for handling a non-convex constraint are employed
and results are presented through examples.

For future work we point out, that a formal proof of convergence for a given set of circles
or spheres of the presented algorithm is still missing.

Futhermore, we have tried to avoid self-intersections of the envelope curves ζ(p(t)) by
adding a penalty term to the objective function, whenever the curve of regression of the
torsal surface of constant slope through p(t) intersects the xy-plane. In our implementation,
this penalty term was too restrictive, i.e., the envelope never got close enough to the input
circles. One can also imagine constellations of circles, for which self-intersections are necessary
in order to achieve a good fit.
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