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1. Introduction

The Fibonacci and Lucas sequences {Fn} and {Ln} are defined by the recurrence relations

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for n ≥ 2

and
L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2 for n ≥ 2.

The Binet forms of Fibonacci and Lucas sequences are

Fn =
αn − βn

√
5

, Ln = αn + βn, where α =
1 +

√
5

2
, β =

1−
√
5

2
.

Using these Binet forms, one can easily have F−n = (−1)n+1Fn and L−n = (−1)nLn.

Čerin in [3] studied some geometric properties of triangles such as orthologic and par-
alogic triangles in the plane with coordinates of vertices from Fibonacci and Lucas sequences.
He also studied certain area properties, Brocard angles and distances between circumcen-
ters of these triangles. In this paper, we work on areas of polygons whose coordinates are
from Fibonacci and Lucas sequences. Restricting the polygons to triangles, we explore some
geometric properties like orthology and paralogy for these triangles.
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2. Area of polygons

For k ∈ Z
+, let ABC and PQR denote the triangles with vertices A = (Fk, Fk+1),

B = (Fk+1, Fk+2), C = (Fk+2, Fk+3) and P = (Lk, Lk+1), Q = (Lk+1, Lk+2), R = (Lk+2, Lk+3),
respectively. The following theorem was proved by Čerin [3] using the Binet forms of Fi-
bonacci and Lucas sequences.

Theorem 2.1. For all k ∈ Z
+ the areas |ABC| and |PQR| of the triangles ABC and PQR

respectively are as follows:

|ABC| = 1

2
and |PQR| = 5|ABC| = 5

2
.

In this section, we consider some results relating to area of the polygons involving Fi-
bonacci and Lucas numbers as coordinates of vertices. The following index reduction formulas
of Fibonacci and Lucas numbers (see [4]) will be frequently used in evaluating determinants
occuring in the proofs of main theorems, without further reference.

Theorem 2.2 (Index reduction formulas of Fibonacci and Lucas numbers).
If a, b, c, d and r are integers and a+ b = c+ d then

(a) FaFb − FcFd = (−1)r[Fa+rFb+r − Fc+rFd+r],

(b) FaLb − FcLd = (−1)r[Fa+rLb+r − Fc+rLd+r].

Let △n+2,k = {(Fk+i, Fk+i+1) : i = 0, 1, · · · , (n + 1)} and ∇n+2,k = {(Lk+i, Lk+i+1) :
i = 0, 1, · · · , (n + 1)} for n ∈ Z

+ and k ∈ Z denote the polygons with (n + 2) vertices and
the area of these polygons be denoted by |△n+2,k| and |∇n+2,k|, respectively. The following
theorem provides a formula for |△n+2,k|.

Theorem 2.3. For n ∈ Z
+ the area |△n+2,k| is independent of k, and

|△n+2,k| =
{

1

2
Fn+1 if n is odd,

1

2
(Fn+1 − 1) if n is even.

Proof. The proof is based on induction on n. By virtue of the Theorem 2.1, |△3,k| = 1

2
= 1

2
F2

and hence the statement is true for n = 1. Let us assume that the statement be true for
n = p. For n = p+ 1, we distinguish two cases.

Case I, p is odd:

The area of |△n+3,k| is obtained by the sum of |△n+2,k| and the area of the triangle formed
by the vertices (Fk+p+1, Fk+p+2), (Fk+p+2, Fk+p+3) and (Fk, Fk+1).

|△p+3,k| = |△p+2,k|+
1

2
abs
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∣
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=
1

2
Fp+1 +

1

2
abs

∣

∣

∣

∣

∣

∣

Fk+p+1 Fk+p Fk

Fk+p+2 Fk+p+1 Fk+1

1 0 1
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∣

∣

∣

∣

∣

=
1

2
Fp+1 +

1

2
abs [Fk+pFk+1 − FkFk+p+1 + Fk+p+1Fk+p+1 − Fk+pFk+p+2]

=
1

2
Fp+1 +

1

2
abs [(−1)kFp + (−1)k+pF1]

=
1

2
Fp+1 +

1

2
(Fp − 1)

=
1

2
(Fp+2 − 1).

Case II, p is even:

The proof in this case is similar to that of case I; moreover,

|△p+3,k| =
1

2
(Fp+1 − 1) +

1

2
abs

∣

∣
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∣
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Fk+p+1 Fk+p+2 Fk

Fk+p+2 Fk+p+3 Fk+1

1 1 1

∣
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∣

∣

∣

∣

=
1

2
(Fp+1 − 1) +

1

2
abs [(−1)kFp + (−1)k+pF1]

=
1

2
(Fp+1 − 1) +

1

2
(Fp + 1) =

1

2
Fp+2.

The proof of the following theorem is similar to that of Theorem 2.3 hence it is omitted.

Theorem 2.4. For n ∈ Z
+ and k ∈ Z we have |∇n+2,k| = 5|△n+2,k|.

Let △′

n+2,k = {(Fk+2i, Fk+2i+1) : i = 0, 1, · · · , (n + 1)} and ∇′

n+2,k = {(Lk+2i, Lk+2i+1) :
i = 0, 1, · · · , (n+ 1)} for n ∈ Z

+ denote the polygons with n + 2 vertices and let the area of
these polygons be denoted by |△′

n+2,k| and |∇′

n+2,k|, respectively. The following two theorems
give the area of these polygons.

Theorem 2.5. For n ∈ Z
+ the area |△′

n+2,k| is independent of k, and
|△′

n+2,k| = 1

2
(F2n+2 − n− 1).

Proof. The area of the triangle formed by the vertices (Fk, Fk+1), (Fk+2, Fk+3) and (Fk+4, Fk+5)
is

1

2
abs
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=
1

2
abs [Fk+2Fk+4 − F 2

k+3 − FkFk+4 + Fk+1Fk+3]

=
1

2
abs [(−1)k+1F1 − (−1)k+3F3]

=
1

2
=

1

2
[F4 − 1− 1].

Hence the statement is true for n = 1. Let us assume that the statement is true for n = p.
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For n = p + 1, we have

|△′

p+3,k| = |△′

p+2,k|+
1

2
abs
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2
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∣

∣

∣
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=
1

2
(F2p+2−p−1) +

1

2
abs [Fk+2p+3Fk+1 − FkFk+2p+4 + Fk+2p+2Fk+2p+4 − F 2

k+2p+3]

=
1

2
(F2p+2 − p− 1) +

1

2
abs [(−1)kF2p+3 + (−1)k+2p+3F1]

=
1

2
(F2p+2 − p− 1) +

1

2
[F2p+3 − F1]

=
1

2
[F2p+4 − p− 2].

So the statement is true for n = p+ 1, and by induction the statement is true for all n.

Theorem 2.6. For k ∈ Z |∇′

3,k| = 5 |△′

3,k|.

Proof.

|∇′

3,k| =
1

2
abs

∣

∣

∣

∣

∣

∣

Lk Lk+2 Lk+4

Lk+1 Lk+3 Lk+5

1 1 1

∣

∣

∣

∣

∣

∣

=
5

2
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= 5|△′

3,k|.

The proof of the following theorem is similar to that of Theorem 2.5; hence it is omitted.

Theorem 2.7. For n ∈ Z
+ and k ∈ Z holds |∇′

n+2,k| = 5|△′

n+2,k|.

Let △∗

n+2,k = {(Fk+i, Lk+i) : i = 0, 1, · · · , (n + 1)} for n ∈ Z
+ and k ∈ Z denote the

polygon with (n+2) vertices, and let the area of this polygon be denoted by |△∗

n+2,k|. In the
following theorems we give the formulas for |△∗

n+2,k|.

Theorem 2.8. For n ∈ Z
+ |△∗

n+2,k| is independent of k, and

|△∗

n+2,k| =
{

Fn+1 − 1 if n is even,

Fn+1 if n is odd.
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Proof. The area of the triangle formed by the vertices (Fk, Lk), (Fk+1, Lk+1) and (Fk+2, Lk+2)
is

1

2
abs

∣
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∣

∣
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∣

∣

∣
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∣

∣

∣

∣

∣

=
1

2
(2F2) (using Theorem 2.3)

= 1 = F1+1.

Hence the statement is true for n = 1. Let us assume that the statement is true for n = m.

For n = m+ 1, we distinguish two cases.

Case I, m is even:

In this case

|△∗
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m+2,k|+
1
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= Fm+1 − 1 + Fm + 1

= Fm+2.

Case II, m is odd:

In this case

|△∗

m+3,k| = Fm+1 +
1

2
abs

∣

∣
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∣
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∣

∣

∣

∣

∣

∣

= Fm+1 + [Fm − 1]

= Fm+2 − 1.

So the assertion is true for n = m+ 1 and by induction the statement is true for all n.

Let Φn+2,k,p = {(Fk+i, Fk+p+i) : i = 0, 1, · · · , (n + 1)} and Φ′

n+2,k,p = {(Lk+i, Lk+p+i) :
i = 0, 1, · · · , (n+1)} for n ∈ Z

+ and k, p ∈ Z denote the polygons with n+2 vertices and let
the area of these polygons be denoted by |Φn+2,k,p| and |Φ′

n+2,k,p| respectively. The following
two theorems present formulas for |Φn+2,k,p| and |Φ′

n+2,k,p|.
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Theorem 2.9. For n ∈ Z
+ and p ∈ Z the area |Φn+2,k,p| is independent of k, and

|Φn+2,k,p| =
{

1

2
FpFn+1 if n is odd,

1

2
Fp(Fn+1 − 1) if n is even.

Proof. The area of the triangle formed by the vertices (Fk, Fk+p), (Fk+1, Fk+p+1) and
(Fk+2, Fk+p+2) is
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Hence the statement is true for n = 1. Let us assume that the statement is true for n = m.
For n = m+ 1, we distinguish two cases.

Case I, m is odd:

In this case
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Case II, m is even:

In this case
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So the assertion is true for n = m+ 1 and by induction the statement is true for all n.

The proof of the following theorem is similar to that of Theorem 2.9; hence it is omitted.

Theorem 2.10. For n ∈ Z
+ and k, p ∈ Z we have |Φ′

n+2,k,p| = 5 |Φn+2,k,p|.
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For n ∈ Z
+, k ∈ Z and p ∈ Z let Ψn+2,k,p = {(Fk+i, Lk+p+i) : i = 0, 1, · · · , (n + 1)} and

Ψ′

n+2,k,p = {(Lk+i, Fk+p+i) : i = 0, 1, · · · , (n + 1)} denote the polygons with n + 2 vertices
and let the area of these polygons be denoted by |Ψn+2,k,p| and |Ψ′

n+2,k,p|, respectively. The
following two theorems give the formulas for |Ψn+2,k,p| and |Ψ′

n+2,k,p|.

Theorem 2.11. For n ∈ Z
+ and p ∈ Z, |Ψn+2,k,p| is independent of k and

|Ψn+2,k,p| =
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2
Lp(Fn+1 − 1) if n is even.

Proof. The area of the triangle formed by the vertices (Fk, Lk+p), (Fk+1, Lk+p+1) and
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Hence the statement is true for n = 1. Let us assume that the statement is true for n = m.
For n = m+ 1, we distinguish two cases.

Case I, m is odd:
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So the assertion is true for n = m + 1 and by mathematical induction the statement is true
for all n.
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Theorem 2.12. For n ∈ Z
+ and k, p ∈ Z holds |Ψ′

n+2,k,p| = |Ψn+2,k,p|.

Proof. Recall that the area of the triangle formed by the vertices (a1, a2), (b1, b2), (c1, c2) is
equal to the area of the triangle formed by the vertices (a2, a1), (b2, b1), (c2, c1). Now the
proof follows from Theorem 2.10 and 2.11.

3. Geometric properties

Recall that the triangles ABC and XY Z are called orthologic triangles when the perpendic-
ulars at vertices of ABC onto the corresponding sides of XY Z are concurrent. Let the point
of concurrence be [x, y]. It is also well known that the relation of orthology for triangles is re-
flexive and symmetric. Hence, the perpendiculars at vertices of XY Z onto the corresponding
sides of ABC are concurrent at the point [y, x].

By replacing perpendiculars with parallels in the above definition we get the analogous
notion of paralogic triangles. In this section, we frequently use formulas stated in Theorem 2.2.

Theorem 3.1. For k ∈ Z the triangles △′
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Proof. It is well-known (see [1]) that the triangles ABC and XY Z with coordinates (a1, a2),
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∣

∣

∣

∣

∣

∣

a1 b1 c1
x1 y1 z1
1 1 1

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

a2 b2 c2
x2 y2 z2
1 1 1

∣

∣

∣

∣

∣

∣

= 0.

Since
∣

∣

∣

∣

∣

∣

Fk Fk+2 Fk+4

Lk Lk+2 Lk+4

1 1 1

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

Fk+1 Fk+3 Fk+5

Lk+1 Lk+3 Lk+5

1 1 1

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

Fk Fk+2 Fk+3

Lk Lk+2 Lk+3

1 1 0

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

Fk+1 Fk+3 Fk+4

Lk+1 Lk+3 Lk+4

1 1 0

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

Fk Fk+1 Fk+3

Lk Lk+1 Lk+3

1 0 0

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

Fk+1 Fk+2 Fk+4

Lk+1 Lk+2 Lk+4

1 0 0

∣

∣

∣

∣

∣

∣

= [Fk+1Lk+3 − Fk+3Lk+1] + [Fk+2Lk+4 − Fk+4Lk+2]

= (−1)k[F1L3 − F3L1] + (−1)k+1[F1L3 − F3L1] = 0,

△′

3,k and ∇′

3,k are orthologic triangles.

Theorem 3.2. For k ∈ Z the triangles △′

3,k and ∇′

3,k are paralogic.

Proof. Recall that the triangles ABC and XYZ with coordinates (a1, a2), (b1, b2), (c1, c2),
(x1, x2), (y1, y2), and (z1, z2) are paralogic if and only if

∣

∣

∣

∣

∣

∣

a1 b1 c1
x2 y2 z2
1 1 1

∣

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∣

a2 b2 c2
x1 y1 z1
1 1 1

∣

∣

∣

∣

∣

∣

= 0.
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Since
∣

∣

∣

∣

∣

∣

Fk Fk+2 Fk+4

Lk+1 Lk+3 Lk+5

1 1 1

∣

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∣

Fk+1 Fk+3 Fk+5

Lk Lk+2 Lk+4

1 1 1

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

Fk Fk+2 Fk+3

Lk+1 Lk+3 Lk+4

1 1 0

∣

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∣

Fk+1 Fk+3 Fk+4

Lk Lk+2 Lk+3

1 1 0

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

Fk Fk+1 Fk+3

Lk+1 Lk+2 Lk+4

1 0 0

∣

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∣

Fk+1 Fk+2 Fk+4

Lk Lk+1 Lk+3

1 0 0

∣

∣

∣

∣

∣

∣

= [Fk+1Lk+4 − Fk+3Lk+2]− [Fk+2Lk+3 − Fk+4Lk+1]

= (−1)k[F1L4 − F3L2]− (−1)k[F2L3 − F4L1] = 0,

△′

3,k and ∇′

3,k are paralogic triangles for every k.

Theorem 3.3. For k ∈ Z the triangles △′

3,k and ∇′

3,k are reversely similar.

Proof. It is well known that two triangles are reversely similar if and only if they are orthologic
and paralogic (see [2]). Hence the proof follows from Theorems 3.1 and 3.2.

Theorem 3.4. For k ∈ Z and p ∈ Z the triangles Φ3,k,p and Φ′

3,k,p are orthologic if and only

if p is odd.

Proof. Since
∣

∣

∣

∣

∣

∣

Fk Fk+1 Fk+2

Lk Lk+1 Lk+2

1 1 1

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

Fk+p Fk+p+1 Fk+p+2

Lk+p Lk+p+1 Lk+p+2

1 1 1

∣

∣

∣

∣

∣

∣

= [Fk+1Lk − FkLk+1] + [Fk+p+1Lk+p − Fk+pLk+p+1]

= (−1)k[F1L0] + (−1)k+p[F1L0]

= (−1)k2[1 + (−1)p] = 0

if and only if p is odd, the result follows.

Theorem 3.5. For k ∈ Z and p ∈ Z the triangles Φ3,k,p and Φ′

3,k,p are paralogic for all p.

Proof. Since
∣

∣

∣

∣

∣

∣

Fk Fk+1 Fk+2

Lk+p Lk+p+1 Lk+p+2

1 1 1

∣

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∣

Fk+p Fk+p+1 Fk+p+2

Lk Lk+1 Lk+2

1 1 1

∣

∣

∣

∣

∣

∣

= [Fk+1Lk+p − FkLk+p+1]− [Fk+p+1Lk − Fk+pLk+1]

= (−1)k[F1Lp]− (−1)k[Fp+1L0 − FpL1]

= (−1)k[Lp − 2Fp+1 + Fp] = 0,

the result follows.

Theorem 3.6. For k ∈ Z and p ∈ Z the triangles Φ3,k,p and Φ′

3,k,p are reversely similar if

and only if p is odd.
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Proof. The proof follows from Theorems 3.4 and 3.5.

Theorem 3.7. For k ∈ Z and p ∈ Z the triangles Ψ3,k,p and Ψ′

3,k,p are orthologic if and only

if p is even.

Proof.
∣

∣

∣

∣

∣

∣

Fk Fk+1 Fk+2

Lk Lk+1 Lk+2

1 1 1

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

Lk+p Lk+p+1 Lk+p+2

Fk+p Fk+p+1 Fk+p+2

1 1 1

∣

∣

∣

∣

∣

∣

= [Fk+1Lk − FkLk+1] + [Lk+p+1Fk+p − Fk+p+1Lk+p]

= (−1)k[F1L0 − 0] + (−1)k+p[0− F1L0]

= (−1)k2[1− (−1)p] = 0

if and only if p is even.

Theorem 3.8. For k, p ∈ Z the triangles Ψ3,k,p and Ψ′

3,k,p are paralogic if and only if p = 0.

Proof. Since
∣

∣

∣

∣

∣

∣

Fk Fk+1 Fk+2

Fk+p Fk+p+1 Fk+p+2

1 1 1

∣

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∣

Lk+p Lk+p+1 Lk+p+2

Lk Lk+1 Lk+2

1 1 1

∣

∣

∣

∣

∣

∣

= [Fk+1Fk+p − Fk+p+1Fk]− [Lk+p+1Lk − Lk+pLk+1]

= (−1)k[F1Fp]− (−1)k[Lp+1L0 − LpL1]

= (−1)k[Fp − 2Lp+1 + Lp]

= (−1)k+14Fp = 0

if and only if p = 0, the result follows.

Theorem 3.9. For k ∈ Z the triangles Ψ3,k,0 and Ψ′

3,k,0 are reversely similar.

Proof. The proof follows from Theorems 3.7 and 3.8.
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