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Abstract. The paper considers some extremum problems related to the ratio
of the areas of triangles formed by the intersection of three cevians in connection
with Routh’s Theorem. The solution of the problems brings surprising results
related to the golden ratio.
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1. Introduction

Given is a triangle ABC. We denote by D, E, F some three points that are located on the
sides BC, AC and AB, respectively. We also denote by G, H and I the intersection points
of the cevians CF , BE and AD (Fig. 1). Routh’s Theorem [1–3] states that

S∆GHI

∆
=

(1− αβγ)2

(1 + α + αβ)(1 + β + βγ)(1 + γ + γα)

where γ = AF/FB, β = CE/EA and α = BD/DC. ∆ = S∆ABC and S∆GHI denote the
areas of the triangles ABC and GHI, respectively.

One can also write down the ratio of the areas of the triangles DEF and ABC as

S∆DEF

∆
=

1 + αβγ

(1 + α)(1 + β)(1 + γ)
.
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Figure 1: Routh’s Theorem treats
the area S∆GHI
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Figure 2: How to characterize the
maximum area S1?

When considering the areas’ difference W = S∆DEF−S∆GHI, it is intuitively clear that W can
vary between 0 (when the points D, E, F coincide with the vertices of the triangle ABC)
and the maximal value Wmax. In other words, 0 ≤ W ≤ Wmax < ∆.

Since W is composed of the three areas S∆FGE, S∆FHD and S∆DIE, it is natural to seek
the maximal value of each of these areas. To this end we consider the partial configuration,
when only two cevians, BE and CF , are given in the triangle ABC which divide ABC into
five triangles with the areas S1, . . . , S5, as shown in Figure 2.

Intuitively, depending on the location of the points E and F , the areas S2, . . . , S5 can
have any value between 0 and ∆. On the other hand, the area S1 cannot be as large as ∆.
Therefore there is a maximal value S1max of the area S1, such that 0 ≤ S1 ≤ S1max < ∆.

In the paper we will prove that S1max =
1

ϕ5
∆, where ϕ =

1 +
√
5

2
is the golden ratio, and

that Wmax =
1

4
∆.

2. Finding S1max

Theorem 1. The area of the triangle FGE is maximal iff the points F and E divide the

sides AB and AC by the golden ratio ϕ, or in other words

AF

FB
=

AE

EC
=

1 +
√
5

2
= ϕ .

Proof. We first prove the following lemma.

Lemma 1.
S∆FGE

∆
=

βγ

(1 + β)(1 + γ)(1 + β + βγ)
. (1)

Proof of Lemma 1: S∆FGE = ∆− (S∆AFE + S∆BCE + S∆BFG). It is easy to show that

S∆AFE =
γ

(1 + β)(1 + γ)
·∆ and S∆BCE =

β

1 + β
·∆ .

In order to express S∆BFG, we note that according to Menelaus’ Theorem for the triangle
AFC, there holds

AB

BF
· FG

GC
· CE

EA
= 1 or

FG

GC
=

1

β(1 + γ)
.
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Therefore we have
S∆BFG

S∆BFC

=
FG

FC
=

1

β(1 + γ) + 1
,

and since

S∆BFC =
BF

AB
·∆ =

∆

1 + γ
,

we obtain

S∆BFG =
1

(1 + γ)(1 + β + βγ)
·∆ ,

and therefore

S∆FGE =
βγ

(1 + β)(1 + γ)(1 + β + βγ)
·∆.

Proof of Theorem 1: We denote x =
1

β
, y = γ; therefore

S∆FGE

∆
= f(x, y) =

xy

(1 + x)(1 + y)(1 + x+ y)
.

In order to find the maximum of f(x, y) for x, y > 0, one must solve the following system of
equations:

∂f

∂x
= 0 ,

∂f

∂y
= 0

(this is a necessary condition for a function f(x, y) to have an extremum at some point). The
solution results in the following system of equations:

x2 = y + 1
y2 = x+ 1 .

The equations define two parabolas which intersect four times. Because of x, y > 0 we can
conclude that only one solution is acceptable:

x = y =
1 +

√
5

2
= ϕ .

It can be verified that for these values of x, y, the function f(x, y) receives the maximum value

fmax =
5
√
5− 11

2
=

1

ϕ5
;

in other words S1max =
1

ϕ5
∆.

It is important to note that as a conseqence of Theorem 1

W = S∆DEF − S∆GHI <
3

ϕ5
∆ .

Later we show that W satisfies a stronger inequality which gives a maximum value for W :

W = S∆DEF − S∆GHI ≤
1

4
∆ <

3

ϕ5
∆ ≈ 0.27∆.
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Conclusion 1

It is easy to show that when S1 receives its maximum value, the values of the other areas are

S2 =
1

ϕ2
∆ , S5 =

1

ϕ3
∆ and S3 = S4 =

1

ϕ4
∆ .

This means that in this case the areas S1, S3, S5, S2 form a geometric progression with the
quotient ϕ.

It is interesting to note that the converse is also true, i.e., if S1, S3, S5, S2 form a geometric

progression with a ratio q, then q = ϕ and γ =
1

β
= ϕ. Really, in this case we obtain

S∆AFE

S∆BFE

= γ =
S2

S1 + S3

=
S1q

3

S1 + S1q
=

q3

1 + q
,

S∆FGE

S∆AFE

=
β

1 + β + γ
=

S1

S2

=
S1

S1q3
=

1

q3
,

S∆BFG

S∆BFC

=
1

1 + β(1 + γ)
=

S3

S3 + S5

=
S1q

S1q + S1q2
=

1

1 + q
.

From these three equations we obtain that

γ =
q3

1 + q
, β =

q + 1

q3

and therefore q4− q3− q− 1 = 0 , or (q2+1)(q2− q− 1) = 0 . From the last equations follows

q = ϕ and then γ =
1

β
= ϕ.

3. Finding the value of Wmax

In order to find the value of Wmax, we first prove the following theorem:

Theorem 2. The following algebraic inequality holds for any three positive real numbers

x, y, z:

xy

(1 + x)(1 + y)(1 + x+ xy)
+

yz

(1 + y)(1 + z)(1 + y + yz)
+

zx

(1 + z)(1 + x)(1 + z + zx)
≤ 1

4
. (3)

The equality holds only if x = y = z = 1.

Proof. For the proof of this theorem we need another lemma.

Lemma 2. If a, b, c are three positive real numbers and abc = 1 then

1

2 + a
+

1

2 + b
+

1

2 + c
≤ 1 .

The equality holds only if a = b = c = 1.

Proof of Lemma 2: Indeed

1− 1

2 + a
− 1

2 + b
− 1

2 + c
=

ab+ bc + ca+ abc− 4

(2 + a)(2 + b)(2 + c)
≥ 0 ,

since abc = 1 and according to the average equality ab + bc + ca ≥ 3
3
√
a2b2c2 = 3 . Equality

holds only if a = b = c = 1.



V. Oxman, A. Sigler, M. Stupel: Surprising Relations Between the Areas of Triangles 203

Proof of Theorem 2: Based on the relations 1 + x ≥ 2
√
x , 1 + y ≥ 2

√
y , 1 + xy ≥ 2

√
xy we

obtain
xy

(1 + x)(1 + y)(1 + x+ xy)
≤ xy

4
√
xy (x+ 2

√
xy)

=
1

4
· 1

2 +
√

x

y

.

A similar inequality exists for the other two terms of (3). The claim of Theorem 2 follows
from this and from Lemma 2.

Theorem 3. W = S∆DEF − S∆GHI ≤
1

4
∆ .

Proof. Formulas that are similar to (1) can be written for S∆DFH and S∆EID. Therefore

W = S∆DEF − S∆GHI = S∆FGE + S∆DHF + S∆EID =
(

βγ

(1 + β)(1 + γ)(1 + β + βγ)
+

γα

(1 + γ)(1 + α)(1 + γ + γα)
+

αβ

(1 + α)(1 + β)(1 + α+ αβ)

)

·∆ .

Hence, from Theorem 2 we obtain W ≤ 1

4
∆ . Equality holds only if the points D,E, F are

the middles of the sides of the triangle ABC, and in this case W = Wmax =
1

4
∆ .

Conclusion 2

If αβγ = 1, then S∆DEF ≤ 1

4
∆.

Indeed, in this case according to the inverse of Ceva’s theorem, the cevians AD, BE and CF
are concurrent and S∆GHI = 0 .

Conclusion 3

If αβγ = 1 (that is, if the cevians AD, BE and CF are concurrent), then S∆DEF =
1

4
∆ only

if ∆DEF is the medial triangle of the triangle ABC.
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