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Abstract. The following 3D extension of the Simson–Wallace theorem is proved
by a method which differs from that used in the past (Theorem 1): Let K,L,M,N
be orthogonal projections of a point P to the faces BCD, ACD, ABD, and
ABC of a tetrahedron ABCD. Then, all points P with the property that the
tetrahedron KLMN has a constant volume belong to a cubic surface (1). Next,
the main theorem (Theorem 2) is proved which states that also the converse of
Theorem 1 holds. Furthermore, we verify Theorem 2 for a regular tetrahedron
by descriptive geometry methods using dynamic geometry software. To do this
we take advantage of the fact that this cubic surface can be represented by a
parametric system of conics which lie in mutually parallel planes (Theorem 3).
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1. Introduction

The well-known Simson–Wallace theorem belongs to the most beautiful theorems of plane
geometry. This theorem states (cf. [4]):

The orthogonal projections of a point P onto the sides of a triangle ABC are collinear
if and only if P is a point of the circumcircle of ABC.

There exist several generalizations [6, 8, 10, 11, 12, 14] of this theorem. A generalization
ascribed to Gergonne [2] is as follows (see Figure 1):

If P is a point of a circle which is concentric with the circumcircle of a triangle ABC
then the orthogonal projections of P onto the sides of ABC form a triangle with constant
area.

When the given area is zero, we get the classical Simson–Wallace theorem.
One could think that a generalization of the Simpson–Wallace theorem onto a tetrahedron

in the three-dimensional space leads, by analogy with the planar case, to a sphere. But this
is not the case. In [10, 11, 12] the 3D-extension of the Simpson–Wallace theorem onto a
tetrahedron ABCD is given:
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Figure 1: If P moves along the circle the triangle KLM has constant area

Theorem 1. Let K,L,M,N be orthogonal projections of an arbitrary point P to the faces
BCD, ACD, ABD, ABC of a tetrahedron ABCD. Then the point P such that the tetrahe-
dron KLMN has a constant volume s belongs to the cubic surface (1).

First we give the proof of Theorem 1, so that we can realize the method we use throughout
the paper. This proof differs from that given [11, 12], where the software CoCoA [1] was used.
To avoid successive elimination, here the software Epsilon [15] is applied. All computational
methods we use in this paper are methods of the theory of automated geometry theorem
proving [2, 3, 7, 13, 15].

In Theorem 2 we show that also the converse to Theorem 1 holds. This ensures that the
locus of the point P is the “whole” surface (1). The author tried to prove it a few years ago
without success [12]. It turns out that the use of the software Epsilon which is based on the
Wu–Ritt method [15, 16] can help in solving this problem.

Further some properties of the cubic surface (1) are investigated. If the volume s equals
zero then we obtain a special cubic surface called the Cayley cubic. In Theorem 3 it is
shown that if we take a regular tetrahedron and s = 0 then its associate Cayley cubic can be
represented by a set of conics which are parallel to two opposite edges of the tetrahedron.

In the last section we verify Theorem 2 by descriptive geometry methods together with
the dynamic geometry system GeoGebra [5].

2. The main theorem

First, we recall the basic ideas of the proof of Theorem 1. The novelty of this proof is the
use of the software Epsilon with characteristic sets whereas in the previous proof [11, 12]
we used the software CoCoA and successive elimination of variables. Secondly, we prove the
main theorem — Theorem 2 — which states that also the converse statement holds.

Proof of Theorem 1: Let K,L,M,N be orthogonal projections of P onto the faces BCD,
ACD, ABD and ABC of a tetrahedron ABCD.
Choose a rectangular system of coordinates so that A = (0, 0, 0), B = (a, 0, 0), C = (b, c, 0),
D = (d, e, f), K = (k1, k2, k3), L = (l1, l2, l3), M = (m1, m2, m3), N = (n1, n2, n3), P =
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(p, q, r), and let s be the oriented volume of KLMN . Suppose that a 6= 0, c 6= 0 and f 6= 0
since otherwise ABCD is planar. Then

PK ⊥ BCD ⇐⇒
{

h1 : (b− a)(p− k1) + c(q − k2) = 0,
h2 : (d− a)(p− k1) + e(q − k2) + f(r − k3) = 0,

K ∈ BCD ⇐⇒ h3 : −acf − aek3 + afk2 + ack3 + cfk1 + bek3 − cdk3 − bfk2 = 0,

PL ⊥ ACD ⇐⇒
{

h4 : b(p− l1) + c(q − l2) = 0,
h5 : d(p− l1) + e(q − l2) + f(r − l3) = 0,

L ∈ ACD ⇐⇒ h6 : cfl1 + bel3 − cdl3 − bfl2 = 0,

PM ⊥ ABD ⇐⇒
{

h7 : p−m1 = 0,
h8 : d(p−m1) + e(q −m2) + f(r −m3) = 0,

M ∈ ABD ⇐⇒ h9 : em3 − fm2 = 0,

PN ⊥ ABC ⇐⇒
{

h10 : p− n1 = 0,
h11 : b(p− n1) + c(q − n2) = 0,

N ∈ ABC ⇐⇒ h12 : n3 = 0.

The conclusion h13 is of the form

Volume of KLMN = s ⇐⇒ h13 :
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− 6s = 0.

We eliminate the dependent variables k1, k2, k3, l1, l2, l3, m1, m2, m3, n1, n2, n3 in the system
of algebraic equations h1 = 0, h2 = 0, . . . , h13 = 0 with variable ordering p ≺ q ≺ r ≺ a ≺
b ≺ · · · ≺ f ≺ s ≺ k1 ≺ k2 ≺ · · · ≺ n3. The use of the Wu–Ritt method with characteristic
sets in the Maple package Epsilon [15, 16] gives

with(epsilon);

CharSet({h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11,h12,h13},[p,q,r,a,b,c,d,e,f,s,

k[1],k[2],k[3],l[1],l[2],l[3],m[1],m[2],m[3],n[1],n[2],n[3]]);

the equation
F := ac2f 3G+ sQ = 0, (1)

where

G = c2f 2p2q+ cf(e2 + f 2 − ce)p2r+ cf 2(a− 2b)pq2 + cf 2(a− 2d)pr2+2cef(b− d)pqr+ b(b−
a)f 2q3+ f(be(a− b)+ cd(d−a)+ cf 2)q2r+ f 2(b2−ab+ c2−2ce)qr2+(be(a− b)+ cd(d−a)+
ce(e− c))fr3 − ac2f 2pq + acf(ce− e2 − f 2)pr + abcf 2q2 + (a(c2d− 2bce+ be2)− (cd− be)2 +
f 2(ab−b2−c2))fqr+(ce2(ab+ad−2bd)+c2de(d−a)+be3(b−a)+f 2(a(cd−be)+e(b2+c2)))r2

and

Q = 6(e2 + f 2)((cd− be)2 + f 2(b2 + c2))((c(a− d)− e(a− b))2 + f 2((a− b)2 + c2)).

As a 6= 0, c 6= 0 and f 6= 0 we see that (1) describes a cubic surface. �

Furthermore we can show the reverse statement as well, namely that for every point
P = (p, q, r) of the surface (1) the volume of the tetrahedron KLMN equals s. We enter
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with(epsilon);

Simson:=Theorem({h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11,h12,F},{h13},[f,e,d,c,b,

a,p,q,r,s,k[1],k[2],k[3],l[1],l[2],l[3],m[1],m[2],m[3],n[1],n[2],n[3]]):

Prove(Simson);

and get the answer

The theorem is true under the following subsidiary conditions:

1) c 6= 0,

2) f 6= 0,

3) e2 + f 2 6= 0,

4) (be− cd)2 + f 2(b2 + c2) 6= 0,

5) (e(a− b)− c(a− d))2 + f 2((a− b)2 + c2) 6= 0.

All conditions 1) – 5) are fulfilled as we suppose that c 6= 0 and f 6= 0.

Remark 1. Note the variable ordering f ≺ e ≺ d ≺ c ≺ b ≺ a ≺ p ≺ q ≺ r ≺ s ≺ k1 ≺ k2 ≺
· · · ≺ n3. By this ordering we get subsidiary conditions in such a form which directly depends
on the non-zero values c and f . We can accept them without restricting the hypotheses of
the theorem.

We can state the main theorem:

Theorem 2. Let K,L,M,N be orthogonal projections of a point P to the faces BCD, ACD,
ABD, ABC of a tetrahedron ABCD. Then the locus of P such that the tetrahedron KLMN
has a constant volume s is the surface (1).

We call the surface F the associate surface of the tetrahedron ABCD and the tetrahedron
ABCD the associate tetrahedron of the surface F .

3. Properties of the surface F

The surface (1) belongs to the family of algebraic surfaces of third degree called cubic surfaces,
or briefly just cubics [7, 9]. We mention only those properties of (1) which we refer to in this
article.

First suppose that s = 0. This surface has four singular points, the maximum number of
singular points of a general cubic surface, which are placed at the vertices of the tetrahedron
ABCD. A cubic surface with four singular points is called a Cayley cubic. (Do not mistake
this surface for the ruled Cayley surface!) The Cayley cubic contains six lines AB, BC, CD,
DA, AC and BD, the edges of ABCD, which are torsal lines of (1). Another three straight
lines of the surface are intersections of tangent planes along opposite edges of ABCD. These
three lines are coplanar [11, 12].

If s 6= 0 then the surface (1) does not have any singular point, and the vertices A,B,C,D
of the associate tetrahedron do not lie on it. Note that the equation of this surface differs
from the previous Cayley cubic only in a nonzero constant sQ.

In the following we demonstrate how the cubic surface (1) changes its shape with respect
to different values of the volume s.



P. Pech: On a 3D Extension of the Simson–Wallace Theorem 209

Figure 2: Cayley cubic (2) with s = 0. Four singular points are at vertices of the tetrahedron

Let the basic tetrahedron ABCD be given by its vertices A = (0, 0, 0), B = (1, 0, 0),
C = (0, 1, 0), and D = (0, 0, 1). Substituting the values a = 1, b = 0, c = 1, d = 0, e = 0, and
f = 1 into (1), we get the equation of the associate cubic surface

p2q + pq2 + p2r + q2r + pr2 + qr2 − pq − pr − qr + 18s = 0. (2)

• For s = 0 we get the Cayley cubic with singular points at the vertices A,B,C, and D
(Figure 2).

• For s > 0, for instance for s = 1/1800, we get the following cubic surface (Figure 3 left).
Note that the cubic surface consists of two separated parts.

• Similarly the Cayley surface with negative s, for instance for s = −1/1800, is as follows
(Figure 3 right).

Thus we obtain three types of cubic surfaces in accordance with the sign of the volume s (cf.
the Gergonne generalization of the Simson–Wallace theorem in a plane, where we also get
three types of loci (circles) [11]).

Figure 3: Cubic surfaces (2) with positive s (left), and negative s (right)
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4. Regular tetrahedron and its associate surface

In this section we study a regular tetrahedron and its associate cubic surface. The resulting
surfaces related to a tetrahedron have many algebraic, geometric and projective properties.
E.g., in the case s = 0 the tetrahedron of singular points (Figure 2) and the straight lines
on the surface are such properties. Obviously planes through such a line of F intersect F in
conic sections. Aiming just at such projective geometric properties, it makes sense to look for
a sort of normal forms of a Cayley cubic. In the following we connect such a normal form to
the regular tetrahedron. For regular tetrahedra it turns out that the intersection of F with
the ideal plane ω is completely reducible and F ∩ω consists of three real lines. We omit here
the discussion of tetrahedra with respect to affine geometry and reducibility of F ∩ ω.

Setting A = (0, 0, 0), B = (2, 0, 0), C = (1,
√
3, 0), and D = (1, 1/

√
3,
√

8/3), we get a
regular tetrahedron. The cubic surface associated with this tetrahedron for a given s has the
equation

3p2q+ 3

2

√
2p2r− q3 + 3

2

√
2q2r−

√
2r3 +2

√
3q2 + 5

2

√
3r2 − 6pq− 3

√
2pr−

√
6qr+ 243

16

√
6s = 0.

To avoid radicals and to obtain a simpler equation of the Cayley cubic associated with a
regular tetrahedron, we use the mapping

(p, q, r, 1) → (p, q, r, 1) ·M, (3)

where

M =
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The similarity (3) maps the regular tetrahedron ABCD with vertices A = (0, 0, 0), B =
(2, 0, 0), C = (1,

√
3, 0), and D = (1, 1/

√
3,
√

8/3) to the regular tetrahedron A′B′C ′D′ with
vertices A′ = (1, 0, 0), B′ = (0, 1, 0), C ′ = (0, 0, 1), and D′ = (1, 1, 1) (Figure 4).

Figure 4: Regular tetrahedron in another coordinate system
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The associate cubic surface for a given s transforms into

4pqr − (p+ q + r − 1)2 − 81

4
s = 0. (4)

Similarly, for a regular tetrahedron ABCD with vertices A = (a, 0, 0), B = (0, a, 0), C =
(0, 0, a), D = (a, a, a) and s we get by (3) the equation of an associate cubic surface in the
form

4pqr − a(p+ q + r − a)2 − 81

4
s = 0. (5)

Note that the constant by s in (5) does not depend on a.

Now we investigate properties of the surface (5) for s = 0,

4xyz − a(x+ y + z − a)2 = 0. (6)

We changed the notation from p, q, r to common x, y, z which is now more comfortable.
Suppose that a > 0.

Exploring sections of (6) with a pencil of mutually parallel planes z = k, where k is a real
parameter, we get

4kxy − a(x+ y + k − a)2 = 0.

This yields for a fixed parameter k the conic

ax2 + 2(a− 2k)xy + ay2 + 2a(k − a)x+ 2a(k − a)y + a(k − a)2 = 0 (7)

with a canonical form

2kx2 + 2(a− k)y2 − ak(a− k) = 0. (8)

Exploring (8) we get: If k < 0 or k > a the conic is a hyperbola, if k = 0 or k = a the conic
is a double line, and finally if 0 < k < a the conic is an ellipse (Figure 5).

We can also study planar sections of (6) through a line which lies on the cubic surface.
Recall that every plane intersects a cubic surface in a cubic curve.

If we want to get a conic section then a related cubic curve must be decomposed into a
conic and a line. Thus the only conics on a cubic surface we get if the planar sections pass
through a line which belongs to the cubic surface. As a cubic surface contains 27 lines (with
multiplicities, some of them may be imaginary or ideal lines), then we get 27 systems of conics
lying on the cubic.

In the case of a regular tetrahedron ABCD the tangent planes of its associate Cayley cubic
along a pair of opposite edges are mutually parallel and intersect at a line at infinity. This
implies that planar sections of (6) which are parallel to two opposite edges of a regular ABCD
must be conics. Hence, for the surface (6), which is associated with a regular tetrahedron, we
obtain the following theorem:

Theorem 3. The level lines of the Cayley cubic (6) associated with a regular tetrahedron
(Figure 4) are conics (7). Their top view image is a pencil of conics touching a square
(Figure 5).

In the next section we apply this theorem to a numerical verification of Theorem 2.
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Figure 5: Horizontal view of planar sections of a Cayley cubic

5. Verification of Theorem 2 using descriptive geometry

We have seen that the 3D extension of Simson–Wallace theorem leads to a cubic surface and
not to a sphere as one could expect. Whereas in the planar case of the Simson–Wallace
theorem we can easily verify that the locus is the circumcircle of a triangle — either by ruler
and compass or by a dynamic geometry software (DGS) —, in the 3D case the verification
is problematic. For the presented normal form of a Cayley cubic we demonstrate Theorem 2
using descriptive geometry and the DGS GeoGebra [5]. We aim at the most interesting
part of (6) — the tetrahedral part — or more precisely, the part which is described by the
system (7) of conics for 0 ≤ k ≤ 1 (Figure 6).

The verification of the Simson–Wallace theorem in the dynamic geometry system will be
performed using the Monge orthogonal projection onto two mutually orthogonal planes. We
prove that the feet K,L,M,N of perpendiculars from a point P of the Cayley cubic which
is associated with a regular tetrahedron ABCD onto the faces of ABCD are coplanar. To
do this it is sufficient to show that the straight lines KL and MN intersect at the point S
(Figure 7).

We denote the horizontal projections with the index 1 whereas vertical and side projections

Figure 6: Cayley cubic associated with regular tetrahedron — tetrahedral part
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get the indices 2 and 3, respectively.
We place the tetrahedron in a such position that the edge AB lies in the horizontal

projection plane and is parallel to the vertical projection plane. The opposite edge CD is
parallel to the horizontal plane and orthogonal to the vertical projection plane. To obtain a
better view, we rotate the surface (6) through 45◦. In the position displayed in the Figure 7
we have A = (− 1√

2
, 0, 0), B = ( 1√

2
, 0, 0), C = (0,− 1√

2
, 1) and D = (0, 1√

2
, 1). The associate

Cayley cubic has the equation

2x2z − 2y2z + 2y2 + z2 − z = 0. (9)

By Theorem 3, this Cayley cubic can be represented by a set of conics

2kx2 + 2(1− k)y2 − k(1− k) = 0, (10)

which lie in the planes z = k. Note that (10) follows from (8) for a = 1.
Let a point P move along an ellipse of the surface (9). From the point P we construct

projections of the feet K,L of perpendiculars to the faces BCD and ACD. We used the side
projection to simplify the construction. Similarly, we construct projections of the feet M,N
of perpendiculars of P to the faces ABC and ABD. Note that the vertical projection of the
associate Cayley cubic (9) of ABCD is a parabola z = −2x2 + 1 and a line z = 0.

Figure 7: Points K,L,M,N are coplanar
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The whole system is fully interactive. We can move both, an ellipse of a section using a
slider with a parameter k of the ellipse (10), and a point P along the ellipse using a pointer.
In this way we can cover the whole tetrahedral part. Finally we construct the intersection S1

of the lines K1N1 and L1M1, and the intersection S2 of lines K2N2 and L2M2. Now using the
window “Relation between two objects” we get the answer that S2 lies on the line through
S1 and which is orthogonal to x axis, i.e., the lines KN and LM are concurrent. This can be
connected with the text “Points K,L,M,N are coplanar”. Thus moving the point P along the
Cayley cubic, we see the text that the points K,L,M,N are coplanar. If we detach the point
P from the cubic, i.e., from the ellipse, using the window “Detach point”, the text disappears.
In this way we are able to verify the validity of the theorem for infinitely many positions of
the point P . The verification by DGS is now complete.

Note that this verification is based on a numerical description of geometry objects. From
the mathematical point of view, this cannot be considered as a rigorous mathematical proof.

6. Conclusions

The Wallace–Simson theorem has been generalized several times in history. The 3D extension
given in this paper is based on results of commutative algebra in the last third of the last
century.

In this paper we proved that if K,L,M,N are orthogonal projections of a point P onto
the faces of a tetrahedron ABCD then the locus of the point P such that the tetrahedron
KLMN has a given volume s is the cubic surface (1).

The special case of the cubic surface (1) for s = 0 is a Cayley cubic. We have shown that
the Cayley cubic which is associated to a regular tetrahedron can be represented by a set of
conics as level lines. This enables a verification of Theorem 2 by the methods of descriptive
geometry in connection with a dynamic geometry software.

Acknowledgements

The author thanks the referees for valuable suggestions that improved the text.

References

[1] A. Capani, G. Niesi, L. Robbiano: CoCoA, a System for Doing Computations in
Commutative Algebra. http://cocoa.dima.unige.it

[2] S.C. Chou: Mechanical Geometry Theorem Proving. D. Reidel Publishing Company,
Dordrecht 1987.

[3] D. Cox, J. Little, D.O’Shea: Ideals, Varieties, and Algorithms. Second Edition,
Springer, New York, Berlin, Heidelberg 1997.

[4] H.S.M. Coxeter, S.L. Greitzer: Geometry revisited. Toronto, New York 1967.

[5] GeoGebra [online]: http://www.geogebra.at

[6] O. Giering: Affine and Projective Generalization of Wallace Lines. J. Geometry Graph-
ics 1, 119–133 (1997).

[7] G.M. Gruel, G. Pfister, H. Schönemann: Singular 2.0. A Computer Algebra
System for Polynomial Computations. Univ. Kaiserslautern 2001.



P. Pech: On a 3D Extension of the Simson–Wallace Theorem 215

[8] M. Guzmán: An Extension of the Wallace–Simson Theorem: Projecting in Arbitrary
Directions. Amer. Math. Monthly 106, 574–580 (1999).

[9] B. Hunt: The Geometry of Some Special Arithmetic Quotients. Springer, New York
1996.
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