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Uwe Bäsel1, Hans Dirnböck2
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Abstract. The oloid is the convex hull of two circles with equal radius in perpen-
dicular planes so that the center of each circle lies on the other circle. It is part of
a developable surface which we call extended oloid. We determine the tangential
system of all contacting quadrics Qλ of the extended oloid O where λ is the sys-
tem parameter. From this result we conclude parameter equations of the touching
curve Cλ between O and Qλ, and of the edge of regression of O. Properties of the
curves Cλ are investigated, including the case that λ → ∞. The self-polar tetra-
hedron of the tangential system Qλ is obtained. The common generating lines of
O and any ruled surface Qλ are determined. Furthermore, we derive the curves
which are the images of Cλ when O is developed onto the plane.
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1. Introduction

The oloid was discovered by Paul Schatz in 1929. It is the convex hull of two circles with
equal radius r in perpendicular planes so that the center of each circle lies on the other circle.
The oloid has the remarkable properties that its surface area is equal to 4πr2 and the two
circles terminate on each generator a segment of the same length r

√
3. The boundary of the

oloid is part of a developable surface [3, 9].
In the following this developable surface is called extended oloid. According to [3, pp. 105-

106], in an appropriate cartesian coordinate frame the circles with r = 1 can be defined by

kA :=
{
(x, y, z) ∈ R

3
∣∣ x2 + (y + 1/2)2 = 1 ∧ z = 0

}
,

kB :=
{
(x, y, z) ∈ R

3
∣∣ (y − 1/2)2 + z2 = 1 ∧ x = 0

}
.
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Figure 1: The extended oloid O, the circles kA, kB (dashed lines), and the edge
of regression R (solid lines) in the box −2.5 ≤ x, y, z ≤ 2.5

In this case we denote the extended oloid by O (see Figure 1).
Now we introduce homogeneous coordinates x0, x1, x2, x3 with x = x1/x0, y = x2/x0,

z = x3/x0. Then the real projective space — as a set of points P = [x0, x1, x2, x3] — is given
by

P3(R) =
{
[x0, x1, x2, x3] | (x0, x1, x2, x3) ∈ R

4 \ {0}
}
,

where [x0, x1, x2, x3] = [y0, y1, y2, y3] if there exist a µ ∈ R \ {0} such that xj = µyj for
j = 0, 1, 2, 3. If necessary, complex coordinates will be used instead of the real ones. For the
description of the corresponding projective circles KA and KB to kA and kB, respectively, we
write

KA =
{
[x0, x1, x2, x3] ∈ P3(R)

∣∣ 3x20 − 4x0x2 − 4x21 − 4x22 = 0 ∧ x3 = 0
}
,

KB =
{
[x0, x1, x2, x3] ∈ P3(R)

∣∣ 3x20 + 4x0x2 − 4x22 − 4x23 = 0 ∧ x1 = 0
}
.

2. Contacting quadrics

Lemma 1. The sets of the tangent planes ū = [u0, . . . , u3] of the circles KA and KB satisfy
the respective equations

F0(ū) = 4u20 − 4u0u2 − 4u21 − 3u22 = 0 and F1(ū) = 4u20 + 4u0u2 − 3u22 − 4u23 = 0 .

Proof. Instead of following [4, pp. 41–42] or [5, pp. 160, 164–165], we conclude as follows: The
plane [u0, u1, u2, u3] is tangent to the circle KA if and only if its intersection with the plane
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x3 = 0 satisfies the tangential equation of KA. Therefore, the coefficient matrix of F0(ū) is
obtained — up to a real factor 6= 0 — by inverting the symmetric 3× 3 coefficient matrix of
the equation of KA, 


3 0 −2
0 −4 0

−2 0 −4



−1

=
1

16




4 0 −2
0 −4 0

−2 0 −3


,

hence F0(ū) = 4u20 − 4u0u2 − 4u21 − 3u22. Analogously, one finds F1(ū) from the coefficient
matrix of KB.

Remark 1. If the coordinates u0, . . . , u3 are considered as homogenized cartesian coordinates
x0, . . . , x3 (cf. [1, p. 139]), then the equations in Lemma 1 define elliptic cylinders. Their
inhomogeneous equations are

x2
(
2/
√
3
)2 +

(y + 2/3)2

(4/3)2
= 1 and

(y − 2/3)2

(4/3)2
+

z2
(
2/
√
3
)2 = 1 .

This means that the extended oloid, which is the connecting torse of the two circles kA and
kB, is dual to the curve of intersection of two elliptic cylinders. The equations in Lemma 1
were already given in [3, p. 115].

Theorem 2. All regular quadrics which contact the extended oloid O along a curve are given
by

Qλ =
{
(x, y, z) ∈ R

3
∣∣ fλ(x, y, z) = 0

}
,

where

fλ(x, y, z) =





x2

1− λ
+

(y − λ+ 1/2)2

1− λ+ λ2
+

z2

λ
− 1 if λ ∈ R \ {0, 1} ,

x2 − z2 + 2y if λ = ∞ .

Proof. Because of the homogeneity of the coordinates we may write the tangential equations
of all contacting quadrics in question as linear combinations of F0(ū) and F1(ū) (see Lemma 1),

Fλ(ū) := (1− λ)F0(ū) + λF1(ū) or F∞(ū) := −F0(ū) + F1(ū).

The formula for F∞(ū) is the limit of Fλ(ū)/λ for λ→ ∞. The homogeneous point equation
f̃λ(x0, x1, x2, x3) = 0 of any regular Qλ is obtained — up to a real factor 6= 0 — by inverting
the symmetric coefficent matrix of Fλ(ū),




4 0 2(2λ− 1) 0
0 4(λ− 1) 0 0

2(2λ− 1) 0 −3 0
0 0 0 −4λ




−1

= −1

4




− 3

4(1− λ+ λ2)
0

1− 2λ

2(1− λ+ λ2)
0

0
1

1− λ
0 0

1− 2λ

2(1− λ+ λ2)
0

1

1− λ+ λ2
0

0 0 0
1

λ



,

hence

f̃λ(x0, x1, x2, x3) = − 3x20
4(1− λ+ λ2)

+
x21

1− λ
+

x22
1− λ+ λ2

+
x23
λ

+
(1− 2λ)x0x2
1− λ+ λ2

=
x21

1− λ
+

(
x2 +

(
1
2
− λ
)
x0
)2

1− λ+ λ2
+
x23
λ

− x20 , (1)
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and
f̃∞(x0, x1, x2, x3) = lim

λ→∞
λf̃λ(x0, x1, x2, x3) = −(x21 + 2x0x2 − x23) .

We write the equations in inhomogeneous coordinates as

fλ(x, y, z) = f̃λ(1, x, y, z) =
x2

1− λ
+

(y − λ+ 1/2)2

1− λ+ λ2
+
z2

λ
− 1 ,

f∞(x, y, z) = −f̃∞(1, x, y, z) = x2 − z2 + 2y .

Corollary 3. a) Every quadric Qλ and the extended oloid O are symmetric with respect to
the planes x = 0 and z = 0.

b) The axial symmetries (x, y, z) 7→ (z,−y, x) and (x, y, z) 7→ (−z,−y,−x) exchange the
quadrics Qλ and Q1−λ.

Proof. a) Since fλ(−x, y, z) = fλ(x, y, z) and fλ(x, y,−z) = fλ(x, y, z), every quadric is sym-
metric with respect to x = 0 and z = 0. The symmetry of O with respect to these planes
follows immediately.

b) From

f1−λ(x, y, z) =
x2

1− (1− λ)
+

(y − (1− λ) + 1/2)2

1− (1− λ) + (1− λ)2
+

z2

1− λ
− 1

=
z2

1− λ
+

(−y − λ+ 1/2)2

1− λ+ λ2
+
x2

λ
− 1 = fλ(z,−y, x)

and fλ(x, y, z) = f1−λ(z,−y, x) follows that the isometry (x, y, z) 7→ (z,−y, x) exchanges the
quadrics Qλ and Q1−λ, while all points (t, 0, t) with t ∈ R remain fixed. The same holds for
(x, y, z) 7→ (−z,−y,−x), which fixes all points (t, 0,−t).

Table 1: Types of contacting quadrics Qλ

Parameter Equation of Qλ Type of Qλ

λ < 0
x2

a2
+

(y − λ+ 1/2)2

b2
− z2

c2
= 1 Hyperboloid of one sheet

λ = 0 x2 + (y + 1/2)2 = 1 ∧ z = 0 Circle kA

0 < λ < 1
x2

a2
+

(y − λ+ 1/2)2

b2
+

z2

c2
= 1 Ellipsoid

λ = 1 (y − 1/2)2 + z2 = 1 ∧ x = 0 Circle kB

λ > 1
(y − λ+ 1/2)2

b2
+

z2

c2
− x2

a2
= 1 Hyperboloid of one sheet

λ = ∞ x2 − z2 + 2y = 0 Hyperbolic paraboloid

Table 1 shows the classification of the quadrics Qλ, λ ∈ R∪{∞}, in the Euclidean space.
In this table the abbreviations a2 := |1− λ|, b2 := 1− λ+ λ2 > 0 and c2 := |λ| are used.

A point of the circle kA is given by

A =
(
α1(t), α2(t), α3(t)

)
with α1(t) = sin t , α2(t) = −1

2
− cos t , α3(t) = 0 .
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There are two points B1, B2 of the circle kB such that the connecting lines AB1 and AB2 are
generators of O:

B1 =
(
β1(t), β2(t), β3(t)

)
, B2 =

(
β1(t), β2(t),−β3(t)

)
,

where

β1(t) = 0 , β2(t) =
1

2
− cos t

1 + cos t
, β3(t) =

√
1 + 2 cos t

1 + cos t

(see [3, pp. 106–107]). Hence, for fixed t ∈ [−2π/3, 2π/3], a parametrization of the line AB1

is
ωi(m, t) := (1−m)αi(t) +mβi(t), i = 1, 2, 3, with m ∈ R .

We obtain
ω1(m, t) = (1−m) sin t,

ω2(m, t) =
2(m− 1) cos2 t + (2m− 3) cos t+ 2m− 1

2(1 + cos t)
,

ω3(m, t) =
m

√
1 + 2 cos t

1 + cos t
.





(2)

Consequently,

1) x = ω1(m, t), y = ω2(m, t), z = ω3(m, t) ,

2) x = ω1(m, t), y = ω2(m, t), z = −ω3(m, t) ,

}
t ∈ [−2π/3, 2π/3], m ∈ R ,

is a parametrization of O with the generators as m-lines. The restriction of m to the interval
[0, 1] yields the oloid in the narrow sense, which is the convex hull of kA and kB.

Corollary 4. For a fixed value of λ ∈ R, we can parametrize the touching curve Cλ between
O and Qλ as

γ(λ, ·) : [−2π/3, 2π] → R
3 , t 7→ γ(λ, t) =

{
γ1(λ, t) if t ∈ [−2π/3, 2π/3] ,

γ2(λ, t) if t ∈ (2π/3, 2π] ,

where

γ1(λ, t) =
(
κ1(λ, t), κ2(λ, t), κ3(λ, t)

)
,

γ2(λ, t) =
(
κ1(λ, 4π/3− t), κ2(λ, 4π/3− t), −κ3(λ, 4π/3− t)

)
,

and

κ1(λ, t) =
(1− λ) sin t

1 + λ cos t
, κ2(λ, t) =

2λ− 1 + (λ− 2) cos t

2(1 + λ cos t)
, κ3(λ, t) =

λ
√
1 + 2 cos t

1 + λ cos t
.

Proof. For a fixed t the generator

Lt :=
{
(x, y, z) ∈ R

3
∣∣ x = ω1(m, t), y = ω2(m, t), z = ω3(m, t); m ∈ R

}

of O is tangent to Qλ for one value m̃ of m. As a double root of the equation

fλ(ω1(m, t), ω2(m, t), ω3(m, t)) = 0
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we find

m̃ = ψ(λ, t) :=
λ(1 + cos t)

1 + λ cos t
,

and consequently

ω1(ψ(λ, t), t) =
(1− λ) sin t

1 + λ cos t
, ω2(ψ(λ, t), t) =

2λ− 1 + (λ− 2) cos t

2(1 + λ cos t)
,

ω3(ψ(λ, t), t) =
λ
√
1 + 2 cos t

1 + λ cos t
.

We put κj(λ, t) := ωj(ψ(λ, t), t) for j = 1, 2, 3. This yields

γ1(λ, t) :=
(
κ1(λ, t), κ2(λ, t), κ3(λ, t)

)

as the contact point between Lt and Qλ for all lines Lt with t ∈ [−2π/3, 2π/3]. Due to the
symmetry of O with respect to the plane z = 0, we have

γ2(λ, t) :=
(
κ1

(
λ,

4π

3
− t
)
, κ2

(
λ,

4π

3
− t
)
, −κ3

(
λ,

4π

3
− t
))

if t ∈ (2π/3, 2π]. Obviously,

γ2(λ, 2π/3) = γ1(λ, 2π/3) and γ2(λ, 2π) = γ1(λ,−2π/3)

for every λ ∈ R.

Examples with contacting quadric and touching curves are shown in the Figures 2 and 3.

Remark 2. In the special case λ = 1/2 one gets the equations of the central inscribed ellipsoid,
as mentioned in [3, p. 115, Eq. (27)].

3. Properties of the touching curves Cλ
From Corollary 3 follows that all touching curves Cλ are symmetric with respect to the planes
x = 0 and z = 0. We denote by X1, X2 the intersection points of Cλ with the plane x = 0,
and by Z1, Z2 those with the plane z = 0, and find

X1(λ) = γ(λ, 0) =

(
0, −3(1− λ)

2(1 + λ)
,

√
3λ

1 + λ

)
, Z1(λ) = γ

(
λ,

2π

3

)
=

(√
3 (1− λ)

2− λ
,

3λ

2(2− λ)
, 0

)
,

X2(λ) = γ
(
λ,

4π

3

)
=

(
0,−3(1− λ)

2(1 + λ)
,−

√
3λ

1 + λ

)
, Z2(λ) = γ(λ, 2π) =

(
−

√
3 (1− λ)

2− λ
,

3λ

2(2− λ)
, 0

)
.




(3)

One easily finds a parametrization Tλ of the tangent to Cλ at the point γ(λ, t):

Tλ(t) =





{
(x, y, z) ∈ R

3
∣∣x = τ1(λ, t, µ), y = τ2(λ, t, µ),

z = τ3(λ, t, µ); µ ∈ R} if t ∈ [−2π/3, 2π/3],
{
(x, y, z) ∈ R

3
∣∣x = τ1(λ,

4π
3
− t, µ), y = τ2(λ,

4π
3
− t, µ),

z = −τ3(λ, 4π
3
− t, µ); µ ∈ R

}
if t ∈ (2π/3, 2π],





(4)

with

τj(λ, t, µ) = κj(λ, t) + µ κ̇j(λ, t) , κ̇j =
dκj(λ, t)

dt
for j = 1, 2, 3 ,
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Figure 2: Touching curves Cλ for λ = 0, 0.1, 0.2, . . . , 0.9, 1, and the ellipsoid Q0.3 in the
box −1.5 ≤ x, y, z ≤ 1.5; the dashed line belongs to C0.3.

where

κ̇1(λ, t) =
(1− λ)(λ+ cos t)

(1 + λ cos t)2
, κ̇2(λ, t) =

(1− λ+ λ2) sin t

(1 + λ cos t)2
,

κ̇3(λ, t) =
λ[λ(1 + cos t)− 1] sin t

(1 + λ cos t)2
√
1 + 2 cos t

.

Now we consider the function 1 + λ cos t in the denominators of κ1, κ2, κ3. It vanishes in the
interval [−2π/3, 2π/3] for t = ± arccos(−1/λ) if λ ∈ R\ (−1, 2). (For λ = −1, we have t = 0;
and for λ = 2, t = ±2π/3.) 1+λ cos t has no zeros in [−2π/3, 2π/3] if λ ∈ (−1, 2). Therefore,
κ1, κ2, κ3 are continuous functions if λ ∈ (−1, 2); they are not continuous if λ ∈ R \ (−1, 2).
So we have to distinguish the following cases:

Case 1, −1 < λ < 2 : Since κ1, κ2, κ3 are continuous functions, and

γ2(λ, 2π/3) = Z1(λ) = γ1(λ, 2π/3), γ2(λ, 2π) = Z2(λ) = γ1(λ,−2π/3),

the curve Cλ is closed (see Figure 2).

Case 2, λ ∈ R \ [−1, 2] : The parametrization γ(λ, t) of Cλ has poles for

t1 = −arccos
(
− 1

λ

)
, t2 = arccos

(
− 1

λ

)
, t3 =

4π

3
− arccos

(
− 1

λ

)
, t4 =

4π

3
+ arccos

(
− 1

λ

)
.

Therefore, Cλ consists of four branches. We calculate the asymptotes of Cλ at the poles.
For t ∈ [−2π/3, 2π/3] the tangent Tλ(t) intersects the plane x = 0 at the point with the
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Figure 3: Extended oloid O (left) and hyperboloid Q4 (right) together with the touching
curve C4 (solid lines) and the four common generators Gj(4), j = 1, 2, 3, 4, (dashed lines)
within the box −4 ≤ x, y, z ≤ 4.

coordinates

y = κ2(λ, t)−
κ̇2(λ, t)

κ̇1(λ, t)
κ1(λ, t) =

λ− 2 + (2λ− 1) cos t

2(λ+ cos t)
,

z = κ3(λ, t)−
κ̇3(λ, t)

κ̇1(λ, t)
κ1(λ, t) =

λ(1 + cos t+ cos2 t)

(λ+ cos t)
√
1 + 2 cos t

,

and z = 0 at

x = κ1(λ, t)−
κ̇1(λ, t)

κ̇3(λ, t)
κ3(λ, t) =

(λ− 1)(1 + cos t+ cos2 t)

[λ(1 + cos t)− 1] sin t
,

y = κ2(λ, t)−
κ̇2(λ, t)

κ̇3(λ, t)
κ3(λ, t) = −1 + λ+ (2− λ) cos t

2[λ(1 + cos t)− 1]
.

For t = t1 one finds that the asymptote Tλ(t1) intersects the plane z = 0 at the point

(x1, y1, z1) =

(
1− λ+ λ2

2 + λ− λ2

√
1− 1

λ2
,
2− 2λ− λ2

2λ(λ− 2)
, 0

)
,

and the plane x = 0 at

(x̃1, ỹ1, z̃1) =

(
0 ,

1− 4λ+ λ2

2(λ2 − 1)
,
1− λ+ λ2

λ2 − 1

√
λ

λ− 2

)
.

Hence, a parametrization A1(λ) of the asymptote Tλ(t1) is

A1(λ) = {(x, y, z) ∈ R
3
∣∣ x = τ̃1(λ, ν), y = τ̃2(λ, ν), z = τ̃3(λ, ν); ν ∈ R}
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with

τ̃1(λ, ν) := x1 + ν (x̃1 − x1) =
1− λ+ λ2

2 + λ− λ2

√
1− 1

λ2
(1− ν) ,

τ̃2(λ, ν) := y1 + ν (ỹ1 − y1) =
2− 2λ− λ2

2λ(λ− 2)
+ ν

(1− λ + λ2)2

λ(λ− 2)(λ2 − 1)
,

τ̃3(λ, ν) := z1 + ν (z̃1 − z1) = ν
1− λ+ λ2

λ2 − 1

√
λ

λ− 2
.

In order to abbreviate the notation, we set

A1(λ) = {(τ̃1(λ, ν), τ̃2(λ, ν), τ̃3(λ, ν)) | ν ∈ R} .

The remaining asymptotes are

t = t2 : A2(λ) = {(−τ̃1(λ, ν), τ̃2(λ, ν), τ̃3(λ, ν)) | ν ∈ R} ,
t = t3 : A3(λ) = {(−τ̃1(λ, ν), τ̃2(λ, ν), −τ̃3(λ, ν)) | ν ∈ R} ,
t = t4 : A4(λ) = {( τ̃1(λ, ν), τ̃2(λ, ν), −τ̃3(λ, ν)) | ν ∈ R} .

Figure 4 shows as an example two projections of the touching curve C−1.4 (thick lines). The
projection onto the plane x = 0 (see left-hand picture) is part of a hyperbola with the center
(y = 71/238 ≈ 0.298, z = 0).

Case 3, λ = ∞ : For γ∗(t) := limλ→∞ γ(λ, t) one easily finds

γ∗ : [−2π/3, 2π] → R
3 , t 7→ γ∗(t) =

{
γ∗1(t) if t ∈ [−2π/3, 2π/3] ,

γ∗2(t) if t ∈ (2π/3, 2π] ,

with

γ∗1(t) = (κ∗1(t), κ
∗
2(t), κ

∗
3(t)) , γ∗2(t) =

(
κ∗1
(
4π
3
− t
)
, κ∗2

(
4π
3
− t
)
, −κ∗3

(
4π
3
− t
))
,

Figure 4: Projections of C−1.4 and its asymptotes Ak(−1.4), k = 1, 2, 3, 4, onto the planes
x = 0 and y = 0, within the box −12 ≤ x, y, z ≤ 12.
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where

κ∗1(t) = limλ→∞ κ1(λ, t) = − tan t, κ∗2(t) = limλ→∞ κ2(λ, t) =
1

2
+

1

cos t
,

κ∗3(t) = limλ→∞ κ3(λ, t) =

√
1 + 2 cos t

cos t
.

The parametrization γ∗(t) of C∞ has poles for

t1 = −π

2
, t2 =

π

2
, t3 =

4π

3
− π

2
=

5π

6
, t4 =

4π

3
+

π

2
=

11π

6
,

and therefore, C∞ consists of four branches (see Figure 5).

Figure 5: Projections of C∞ and its asymptotes Ak(∞), k = 1, 2, 3, 4, onto the planes
x = 0 and y = 0 within the box −5 ≤ x, y, z ≤ 5.

For the asymptotes of C∞ we find

lim
λ→∞

A1(λ) = {(ν − 1, ν − 1/2, ν) | ν ∈ R} , lim
λ→∞

A2(λ) = {(1− ν, ν − 1/2, ν) | ν ∈ R} ,

lim
λ→∞

A3(λ) = {(1− ν, ν − 1/2, −ν) | ν ∈ R} , lim
λ→∞

A4(λ) = {(ν − 1, ν − 1/2, −ν) | ν ∈ R} .

By virtue of (3), the intersection points with the planes of symmetry are

lim
λ→∞

X1(λ) =
(
0 , 3/2 ,

√
3
)
, lim

λ→∞
Z1(λ) =

(√
3 , −3/2 , 0

)
,

lim
λ→∞

X2(λ) =
(
0 , 3/2 , −

√
3
)
, lim

λ→∞
Z2(λ) =

(
−
√
3 , −3/2 , 0

)
.

From the parametrization γ∗(t) of C∞ we have

x2 = tan2 t =
1− cos2 t

cos2 t
, y =

1

2
+

1

cos t
, z2 =

1 + 2 cos t

cos2 t
.

After the elimination of cos t we find the following algebraic equations of the projections of
C∞ onto the planes x = 0, y = 0, and z = 0:

x = 0: (y + 1/2)2 − z2 = 1 , (5)

y = 0: (x2 − z2)2 − 2(x2 + z2) = 3 , (6)

z = 0: (y − 1/2)2 − x2 = 1 . (7)
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The Eqs. (5) and (7) define hyperbolas with the respective centers (0, −1/2, 0) and (0, 1/2, 0).
The actual projection of C∞ onto the plane x = 0 (plotted with thick lines) is part of the
hyperbola (5).

Case 4, λ ∈ {−1, 2} : Cλ consists of two branches. From (3) follows for λ = −1

lim
ε→0

X1(−1 − ε) = (0,∞,∞) , lim
ε→0

X1(−1 + ε) = (0,−∞,−∞) ,

lim
ε→0

X2(−1 − ε) = (0,∞,−∞) , lim
ε→0

X2(−1 + ε) = (0,−∞,∞) ,

Z1(−1) =
(
2/
√
3, −1/2, 0

)
, Z2(−1) =

(
−2/

√
3, −1/2, 0

)
,

and for λ = 2,

X1(2) =
(
0, 1/2, 2/

√
3
)
, X2(2) =

(
0, 1/2, −2/

√
3
)
,

lim
ε→0

Z1(2− ε) = (−∞,∞, 0) , lim
ε→0

Z1(2 + ε) = (∞,−∞, 0) ,

lim
ε→0

Z2(2− ε) = (∞,∞, 0) , lim
ε→0

Z2(2 + ε) = (−∞,−∞, 0) .

4. The edge of regression

In the following we denote by R the edge of regression of the developable surface O (see [8,
pp. 119–125], and Figure 1).

Theorem 5. For t ∈ [−2π/3, 2π/3], the parametric equations of R are given by

x = g1(t) =
sin t− tan t

3
, y = g2(t) =

2 + 3 cos t− 3 cos2 t− 2 cos3 t

6(1 + cos t) cos t
,

z = ±g3(t) = ± (1 + 2 cos t)3/2

3(1 + cos t) cos t
.

Proof. R is the solution of the system of equations

fλ(x, y, z) = 0 , f ′
λ(x, y, z) =

∂

∂λ
fλ(x, y, z) = 0 , f ′′

λ (x, y, z) =
∂2

∂λ2
fλ(x, y, z) = 0

with variable λ (see [2, pp. 523–524]). Since the touching curve Cλ is the intersection curve
of the quadric Qλ and the quadric defined by f ′

λ(x, y, z) = 0, the parametric functions κ1, κ2,
κ3 of Cλ are not only solutions of

fλ(κ1(λ, t), κ2(λ, t), κ3(λ, t)) = 0, but also of f ′
λ(κ1(λ, t), κ2(λ, t), κ3(λ, t)) = 0 .

Furthermore, one finds

f ′′
λ (x, y, z) =

x2

(1− λ)3
+

3y2(λ− 1)λ− y (2− 3λ− 3λ2 + 2λ3)

(1− λ+ λ2)3
+
z2

λ3
− 9(λ− 1)λ

(1− λ+ λ2)3
.

We solve the equation f ′′
λ (κ1(λ, t), κ2(λ, t), κ3(λ, t)) = 0 for λ and obtain

λ = φ(t) :=
1 + 2 cos t

(2 + cos t) cos t
.

This yields x = g1(t), y = g2(t), z = g3(t), where gj(t) := κj
(
φ(t), t

)
for j = 1, 2, 3 . Due

to the symmetry of O with respect to the plane z = 0, we also have x = g1(t), y = g2(t),
z = −g3(t).
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Corollary 6. In terms of the parameter λ, the edge of regression is given by

R = {(r1(λ), r2(λ), r3(λ)) | λ ∈ R \ [0, 1]} ∪ {(−r1(λ), r2(λ), r3(λ)) | λ ∈ R \ [0, 1]}
∪ {(−r1(λ), r2(λ), −r3(λ)) | λ ∈ R \ [0, 1]} ∪ {(r1(λ), r2(λ), −r3(λ)) | λ ∈ R \ [0, 1]} ,

where

r1(λ) =

√
(λ− 1)3 [2− λ+ 2ρ(λ)]

λ [2− λ+ ρ(λ)]
, r2(λ) =

λ2 + 2λ− 2 + (λ− 2) ρ(λ)

2λ [2− λ+ ρ(λ)]
,

r3(λ) =
sgn(λ)

√
λ [2− λ+ 2ρ(λ)]

2− λ+ ρ(λ)
, ρ(λ) = sgn(λ)

√
1− λ+ λ2 .

Proof. We consider the function

φ : [−2π/3, 2π/3] → R , t 7→ φ(t) =
1 + 2 cos t

(2 + cos t) cos t
,

used in the proof of Theorem 5. We denote by φ1 the restriction of φ to the interval (−2π/3, 0),
and by φ2 the restriction of φ to (0, 2π/3). One easily finds the respective inverse functions

φ−1
1 (λ) = −arccos

1− λ+ ρ(λ)

λ
, φ−1

2 (λ) = arccos
1− λ+ ρ(λ)

λ

with ρ(λ) := sgn(λ)
√
1− λ+ λ2 and λ ∈ R \ [0, 1], hence

r1(λ) := κ1
(
λ, φ−1

1 (λ)
)
=

√
(λ− 1)3 [2− λ+ 2ρ(λ)]

λ [2− λ+ ρ(λ)]
,

r2(λ) := κ2
(
λ, φ−1

1 (λ)
)
=
λ2 + 2λ− 2 + (λ− 2) ρ(λ)

2λ [2− λ+ ρ(λ)]
,

r3(λ) := κ3
(
λ, φ−1

1 (λ)
)
=

sgn(λ)
√
λ [2− λ+ 2ρ(λ)]

2− λ+ ρ(λ)
,

and
κ1
(
λ, φ−1

2 (λ)
)
= −r1(λ) , κ2

(
λ, φ−1

2 (λ)
)
= r2(λ) , κ3

(
λ, φ−1

2 (λ)
)
= r3(λ) .

This implies x = ±r1(λ), y = r2(λ), z = r3(λ), and, due to the symmetry of O with respect
to the plane z = 0, also x = ±r1(λ), y = r2(λ), z = −r3(λ).

5. The self-polar tetrahedron

Theorem 7. The faces of the common self-polar tetrahedron P of the inscribed quadrics Qλ

are formed by the planes x1 = 0, x3 = 0, 2x2 =
√
3 ix0, and 2x2 = −

√
3 ix0.

Proof. In a tangential system of quadrics there are four which degenerate to conics, and their
planes are the faces of the common self-polar tetrahedron [6, pp. 205], [7, p. 254], or [1, p. 136].
Qλ degenerates if in (1) one of the denominators in f̃λ(x0, x1, x2, x3) vanishes.

For λ = 0 follows x23 = 0, and therefore the plane x3 = 0 delivers the first face of the
tetrahedron P. For λ = 1 we have x21 = 0, and therefore x1 = 0 is the second face of P.
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The two remaining faces correspond to the roots of the equation 1 − λ + λ2 = 0, i.e., to
λ1 =

(
1 + i

√
3
)
/2 and λ2 =

(
1− i

√
3
)
/2. So we have

(
x2 +

(
1
2
− λ1

)
x0
)2

=
(
x2 −

√
3
2
ix0
)2

= 0 ,
(
x2 +

(
1
2
− λ2

)
x0
)2

=
(
x2 +

√
3
2
ix0
)2

= 0 .

Hence, the planes 2x2 =
√
3 ix0 and 2x2 = −

√
3 ix0 are the remaining two faces of P.

The degenerate quadrics Q0 and Q1 are the circles kA and kB, respectively. The conics of the
degenerate quadrics Qλ1

and Qλ2
have the equations

fλ1
(x, y, z) =

x2
(

1
2
−

√
3
2
i
)2 +

z2
(

1
2
+

√
3
2
i
)2 − 1, fλ2

(x, y, z) =
x2

(
1
2
+

√
3
2
i
)2 +

z2
(

1
2
−

√
3
2
i
)2 − 1.

6. Common generating lines of Qλ and O
Only two of the conic sections Q0, Q1, Qλ1

, Qλ2
are real. Therefore (see [6, p. 206]), the

quadrics Qλ are divided into two sets; one of these sets consists of ruled surfaces, each having
four common generating lines with the developable surface O. Clearly, these ruled surfaces
are the one-sheeted hyperboloids Qλ, λ ∈ R \ [0, 1], and the hyperbolic paraboloid Q∞.

Theorem 8. (i) For fixed value of λ ∈ R \ [0, 1], the four common generating lines of the
one-sheeted hyperboloid Qλ and the extended oloid O are

G1(λ) = { ( ω̃1(m, λ), ω̃2(m, λ), ω̃3(m, λ)) |m ∈ R} ,
G2(λ) = { (−ω̃1(m, λ), ω̃2(m, λ), ω̃3(m, λ)) |m ∈ R} ,
G3(λ) = { (−ω̃1(m, λ), ω̃2(m, λ), −ω̃3(m, λ)) |m ∈ R} ,
G4(λ) = { ( ω̃1(m, λ), ω̃2(m, λ), −ω̃3(m, λ)) |m ∈ R} ,

with

ω̃1(m, λ) = (1−m)

√
(λ− 1)(2− λ+ 2ρ(λ))

−|λ| ,

ω̃2(m, λ) = (1−m)
λ− 2− 2ρ(λ)

2λ
+m

2λ− 1− ρ(λ)

2(1 + ρ(λ))
,

ω̃3(m, λ) = m
sgn(λ)

√
λ(2− λ+ 2ρ(λ))

1 + ρ(λ)
,

where ρ(λ) = sgn(λ)
√
1− λ+ λ2.

(ii) G1(λ), G2(λ), G3(λ), G4(λ) are the tangents to R, and to Cλ, in the respective points

P1(λ) = (r1(λ), r2(λ), r3(λ)) , P2(λ) = (−r1(λ), r2(λ), r3(λ)) ,
P3(λ) = (−r1(λ), r2(λ),−r3(λ)) , P4(λ) = (r1(λ), r2(λ),−r3(λ))

with rj(λ) according to Corollary 6 for j = 1, 2, 3 .
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Proof. (i) As already known, the parametric equations of the generating lines of O are

x = ω1(m, t) = 1−m) sin t,

y = ω2(m, t) = (1−m)
(
−1

2
− cos t

)
+m

(
1

2
− cos t

1 + cos t

)
,

z = ±ω3(m, t) = ± m
√
1 + 2 cos t

1 + cos t
.

We substitute x = ω1(m, t), y = ω2(m, t), z = ω3(m, t) in fλ(x, y, z) = 0 and solve this
equation for t. Thus, we find

t = ±t̃(λ) with t̃(λ) = arccos
1− λ±

√
1− λ+ λ2

λ
.

Since we are only interested in real solutions, we can write

t̃(λ) = arccos
1− λ+ ρ(λ)

λ
(8)

with the function ρ from Corollary 6. This implies

ω1(m,±t̃(λ)) = ±(1−m)

√
(λ− 1)(2− λ+ 2ρ(λ))

|λ| ,

ω2(m,±t̃(λ)) = (1−m)
λ− 2− 2ρ(λ)

2λ
+m

2λ− 1− ρ(λ)

2(1 + ρ(λ))
,

ω3(m,±t̃(λ)) = m
sgn(λ)

√
λ(2− λ+ 2ρ(λ))

1 + ρ(λ)
.

We put ω̃j(m, λ) := ωj(m,−t̃(λ)) for j = 1, 2, 3. This yields G1(λ) and G2(λ). Due to the
symmetry of Qλ and O with respect to the plane z = 0, the lines G3(λ) and G4(λ) follow.

(ii) By virtue of (4), the tangent

Tλ(t) = {(τ1(λ, t, µ), τ2(λ, t, µ), τ3(λ, t, µ)) | µ ∈ R} , t ∈ [−2π/3, 2π/3] ,

to Cλ is a generating line of Qλ for all values of t that are solutions of

fλ (τ1(λ, t, µ), τ2(λ, t, µ), τ3(λ, t, µ)) = 0 .

One finds t = ±t̃(λ) with t̃(λ) from (8). At first we consider only t = −t̃(λ). Calculation
shows that

κj(λ,−t̃(λ)) = rj(λ) , j = 1, 2, 3.

Hence, the tangent T (1)(λ) := Tλ(−t̃(λ)) touches Cλ at the point P1(λ) = (r1(λ), r2(λ),
r3(λ)) ∈ R. According to [2, p. 489], T (1)(λ) is equal to the tangent to R at this point. The
common generating lines are tangents to the edge of regression [6, p. 206]. Thus one finds

ω̃j(m̂(λ), λ) = rj(λ) for j = 1, 2, 3, where m̂(λ) :=
1 + ρ(λ)

2− λ+ ρ(λ)
.

It follows that T (1)(λ) = G1(λ). Due to symmetry with respect to the planes x = 0 and z = 0,
with τ̃j(λ, µ) := τj(λ,−t̃(λ), µ) we also have

T (2)(λ) := {(−τ̃1(λ, µ), τ̃2(λ, µ), τ̃3(λ, µ)) | µ ∈ R} = G2(λ) ,

T (3)(λ) := {(−τ̃1(λ, µ), τ̃2(λ, µ),−τ̃3(λ, µ)) | µ ∈ R} = G3(λ) ,

T (4)(λ) := {( τ̃1(λ, µ), τ̃2(λ, µ),−τ̃3(λ, µ)) | µ ∈ R} = G4(λ) .
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As an example, Figure 3 shows the common generating lines G1(4), G2(4), G3(4), G4(4) of
Q4 and O.

7. The development of O
Now we consider the development of the extended oloid O onto its tangent plane E. For
this, we define a cartesian (ξ, η)-coordinate system in E as follows: Let E touch O along the
generating line

L0 = {ω1(m, 0), ω2(m, 0), −ω3(m, 0) |m ∈ R}
(see (2) and the proof of Corollary 4). Then L0 is the η-axis, and the line perpendicular to
L0 at the point m = 0 is the ξ-axis.

Any curve C ⊂ O is developed onto a plane curve C∗ ⊂ E. A parametrization of C∗ by the
arc length t of the double circular arc C0 can be obtained from the vector transformation in
[3, p. 114, Theorem 4]. For the sake of brevity, we set in the following c = cos t and s = sin t;
while ⌊·⌋ denotes the integer part of ‘ · ’.

Theorem 9. The development of the touching curve Cλ into the plane E is the curve

C∗
λ = {(κ∗1(λ, t), κ∗2(λ, t)) | t ∈ R}

with the parametrization

κ∗1(λ, t) = sgn(t) ·
⌊
3 |t|
4π

+
1

2

⌋
· 4π

3
√
3
+ sgn(h(t)) · κ̃1(λ, h(t)) , κ∗2(λ, t) = κ̃2(λ, h(t)) ,

where

κ̃1(λ, t) =
2
√
3

9

(
arccos

√
2 c√

1 + c
+

(1− 2λ) |s|
√
2(1 + 2c)

(1 + λc)
√
1 + c

)
,

κ̃2(λ, t) =

√
3

9

(
ln

2

1 + c
+

4 + 7λ+ (11λ− 4)c

1 + λc

)
,

h(t) = t− sgn(t) ·
⌊
3 |t|
4π

+
1

2

⌋
· 4π
3
.

Proof. After the substitution x = κ1(λ, t), y = κ2(λ, t), z = −κ3(λ, t) (see Corollary 4) in the
vector transformation [3, p. 114, Theorem 4], a straight-forward calculation yields

ξ = ˜̃κ1(λ, t) =
2
√
3

9

(
arccos

√
2 c√

1 + c
+

(1− 2λ) s
√
2(1 + 2c)

(1 + λc)
√
1 + c

)
,

η = κ̃2(λ, t) =

√
3

9

(
ln

2

1 + c
+

4 + 7λ+ (11λ− 4)c

1 + λc

)
.

κ̃2(λ, t) is valid for t ∈ [−2π/3, 2π/3]. The periodic continuation of κ̃2(λ, t) gives κ∗2(λ, t),
which is valid for t ∈ R.

˜̃κ1(λ, t) is valid only for t ∈ [0, 2π/3]. The restriction of κ∗1(λ, t) to t ∈ [−2π/3, 2π/3] must
be an odd function. Replacing sin t by |sin t| in ˜̃κ1(λ, t), we get the even function κ̃1(λ, t),
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Figure 6: The curves C∗
λ for λ = 0, 0.1, 0.2, . . . , 0.9, 1

t ∈ [−2π/3, 2π/3]. Now, κ⋄1(λ, t) := sgn(t) · κ̃1(λ, t) is the required restriction of κ∗1(λ, t). We
get

κ⋄1(λ, 2π/3)− κ⋄1(λ,−2π/3) =
4π

3
√
3
,

and therefore, using the step function

sgn(t) ·
⌊
3 |t|
4π

+
1

2

⌋
· 4π

3
√
3
,

we have found κ∗1(λ, t), valid for t ∈ R.

Examples of curves C∗
λ with λ ∈ [0, 1] are shown in Figure 6. The curve C∗

∞ and the
development of the edge of regression R are shown in Figure 7.

Figure 7: C∗
∞ (thick), development of R (thin), C∗

0 and C∗
1 (dashed)
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