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Abstract. In this paper we use (from [6] or [12]) the definition of the energy of a
curve on a surface and show that in a Liouville surface the energy integrals along
the diagonals of a net rectangle (Liouville maps are conformal) are equal. This
result allows a generalization to Liouville manifolds, which is stated and proved in
this paper. A series of different surfaces with an induced Liouville metric are given
in Euclidean spaces. One example is given in the pseudo-Euclidean (Minkowski)
plane. The material presented here also relates to my previous article [1].
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1. Length and energy of a curve in a manifold

The length L(p) and the energy E(p) of a curve p : [0, 1] → M in a Riemannian manifold M

are given by the following expressions (see [6, Chapter 9, p. 194]), and they are related by the
Schwarz inequality (with equality if and only if ‖ṗ‖ is constant, that means p is parametrized
proportionally to arc length):

L(p) =

∫ 1

0

‖ṗ‖dt =
∫ 1

0

√

〈ṗ, ṗ〉dt,

E(p) =

∫ 1

0

‖ṗ‖2dt =
∫ 1

0

〈ṗ, ṗ〉dt,

L2(p) ≤ E(p),

where ṗ is the tangent vector of the curve, and 〈 · , · 〉 is the scalar product in the tangent
space TM .
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Another representation of the length L and energy E of a curve ϕ(γ(t)) : [0, 1]
γ→ R

m ϕ→
M ⊂ R

n in a manifold M is given by the following expressions, which are related by the
Schwarz inequality:

L(ϕ(γ(t))) =

∫ 1

0

√

√

√

√

m
∑

i,j=1

gij(γ(t)) (xi ◦ γ′(t)) (xj ◦ γ′(t)) dt,

E(ϕ(γ(t))) =

∫ 1

0

(

m
∑

i,j=1

gij(γ(t)) (xi ◦ γ′(t)) (xj ◦ γ′(t))

)

dt,

L2(ϕ(γ(t))) ≤ E(ϕ(γ(t))).

2. The Liouville line element as a special case of the Stäckel line

element

W. Blaschke [3] gives the following formula (1) for the Stäckel line element in three dimen-
sions,

ds2 =

∣

∣

∣

∣

∣

∣

U V W

U1 V1 W1

U2 V2 W2

∣

∣

∣

∣

∣

∣









du2

∣

∣

∣

∣

V1 W1

V2 W2

∣

∣

∣

∣

− dv2
∣

∣

∣

∣

U1 W1

U2 W2

∣

∣

∣

∣

+
dw2

∣

∣

∣

∣

U1 V1

U2 V2

∣

∣

∣

∣









,

where U , U1, U2 are functions of u alone, etc., and he shows that the Stäckel line element
is a necessary and sufficient condition for Ivory’s theorem, when one considers the geodesic
diagonals and distances [3, p. 662]. This answers a question posed by Stachel [11].

K. Zwirner, a student of Blaschke, considers in his dissertation [15] a special form of
Stäckel line element,

ds2 = (U − V )(U −W )du2 + (V − U)(V −W )dv2 + (W − U)(W − V )dw2

=

∣

∣

∣

∣

∣

∣

U2 V 2 W 2

U V W

1 1 1

∣

∣

∣

∣

∣

∣

(

du2

V −W
− dv2

U −W
+

dw2

U − V

)

.

An example of such a Zwirner line element are the ellipsoidal coordinates (using Jacobi
elliptic functions) from [4, eq. (2.28)] or [7, p. 211]. This line element also appears in [13], the
dissertation of another student of Blaschke.

In the case
∣

∣

∣

∣

V1 W1

V2 W2

∣

∣

∣

∣

=

∣

∣

∣

∣

U1 W1

U2 W2

∣

∣

∣

∣

=

∣

∣

∣

∣

U1 V1

U2 V2

∣

∣

∣

∣

the Stäckel line element reduces to a Liouville line element

ds2 = (U − V +W )
(

du2 − dv2 + dw2
)

.

Liouville parametrizations are isothermal and therefore conformal. The sphere provided in
the [4, eq. (3.51)]) is Liouville parametrized by Jacobi elliptic functions.

If in the Liouville line element two of the functions U , V , W vanish, say V = W = 0,
then we get a Clairaut line element

ds2 = U
(

du2 − dv2 + dw2
)

.
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The Mylar balloon in [8, (eq. (4.12)] is Clairaut parametrized by Jacobi elliptic integrals.
As Blaschke mentioned in [3], the generalization of these line elements to n dimensions

is straightforward.

3. A property of Liouville surfaces

We can state and prove the following theorem about Liouville surfaces:

Theorem 1. Let A = (a1, a2)
t and C = (c1, c2)

t be two points in the plane R
2. Construct

the rectangle ABCD, with the points B = (c1, a2)
t and D = (a1, c2)

t. The diagonals of the
rectangle are then (for t ∈ [0, 1]): γ1(t) = A + t(C − A) and γ2(t) = B + t(D − B).
Consider now the image curves p1(t) = ϕ(γ1(t)) and p2(t) = ϕ(γ2(t)), where ϕ : R2 → R

n is
a Liouville map with

g11 = 〈ϕx1
, ϕx1

〉 = f1(x1) + f2(x2) = 〈ϕx2
, ϕx2

〉 = g22, g12 = 0 = g21,

and the Liouville line element

ds2 = (f1(x1) + f2(x2))(dx
2
1 + dx2

2).

Then the energies of these diagonals are equal, i.e., E(p1(t)) = E(p2(t)).

Proof. For the energy of a diagonal we have

E(ϕ(γ(t))) =

∫ 1

0

g11(γ(t))
(

(x1 ◦ γ′(t))
2
+ (x2 ◦ γ′(t))

2
)

dt.

It turns out that for both diagonals γ1(t) = A + t(C − A) and γ2(t) = B + t(D − B) the
expression

(

(x1 ◦ γ′(t))2 + (x2 ◦ γ′(t))2
)

is actually the same constant with respect to t. To
see this, we first differentiate the diagonals with respect to t and get γ′

1(t) = C − A and
γ′
2(t) = D − B. Then

(

(x1 ◦ γ′
1(t))

2 + (x2 ◦ γ′
1(t))

2) = (c1 − a1)
2 + (c2 − a2)

2

= (a1 − c1)
2 + (c2 − a2)

2 =
(

(x1 ◦ γ′
2(t))

2 + (x2 ◦ γ′
2(t))

2)
.

Because of this identity it suffices to show that
∫ 1

0

g11(γ1(t))dt =

∫ 1

0

g11(γ2(t))dt.

In detail, we have
∫ 1

0

f1(a1 + t(c1 − a1)) + f2(a2 + t(c2 − a2))dt

=

∫ 1

0

f1(c1 + t(a1 − c1)) + f2(a2 + t(c2 − a2))dt,

which is obviously true. This completes the proof.

Remark 1. All surface examples considered in this article are Liouville surfaces. Therefore we
can apply this theorem to show that the energies of the diagonals are equal and do not need
complicated calculations. For this reason all examples are corollaries which follow from this
theorem.

Remark 2. In all the following examples I use the rectangle ABCD and its diagonals γ1(t) =
A+ t(C −A) and γ2(t) = B + t(D − B) (for t ∈ [0, 1]).
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4. An example of a Liouville parametrized sphere

In the article [4] we find a sphere (formula (3.51)) which is Liouville parametrized by Jacobi
elliptic functions (a reference for Jacobi elliptic functions and elliptic integrals is [5]). We can
prove the following corollary:

Corollary 2. Consider the diagonals p1(t) = ϕ(γ1(t)) and p2(t) = ϕ(γ2(t)), where

ϕ : [−2K, 2K]× (K + i[0, 2K ′]) → E
3, ϕ(x, y) =









k sn(x) sn(y)

i
k

k′
cn(x) cn(y)

1

k′
dn(x) dn(y)









.

Then the energies along the diagonals are equal, i.e., E(p1) = E(p2).

Proof. This sphere has a Liouville line element

ds2 = k2(− sn2(x)− (− sn2(y)))(dx2 − dy2).

Here we used the short hand notation sn(x) = sn(x, k), etc. where k is the elliptic
modulus, k′ =

√
1− k2 and K = K(k), K ′ = K(k′) are the quarter periods of the elliptic

functions, with

K(k) = F(1; k) =

∫ 1

0

1√
1− t2

√
1− k2t2

dt.

This parametrization covers the whole sphere once for (x, y) ∈ [−2K, 2K]× (K + i[0, 2K ′]),
see Figure 1 (made with wxMaxima).

5. An example of a Clairaut parametrized surface

By using elliptic integrals of the first and second kind

F(z; k) =

∫ z

0

1√
1− t2

√
1− k2t2

dt and E(z; k) =

∫ z

0

√
1− k2t2√
1− t2

dt,

the author of [8] parametrizes a surface in eq. (4.12) called the Mylar balloon (see Figure 2).
We can prove the following result concerning the Mylar balloon:

Figure 1: Elliptic coordinates on the sphere
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Corollary 3. Consider the diagonals p1(t) = ϕ(γ1(t)) and p2(t) = ϕ(γ2(t)), where
ϕ : ]−∞,∞[× [0, 2π[ → E

3 with

ϕ(x, y) =



















r cos(y)√
cosh 2x

r sin(y)√
cosh 2x

√
2r

(

E

(√
2 sinh(x)

√

cosh(2x)
,

1√
2

)

− 1

2
F

(√
2 sinh(x)

√

cosh(2x)
,

1√
2

))



















.

Then the lengths along these diagonals are equal as well as the energies, i.e.,

L(p1) = L(p2) and E(p1) = E(p2).

Proof. This parametrization has the Clairaut line element

ds2 =
r2

cosh(2x)
(dx2 + dy2),

whis is a special case of a Liouville line element. The statement about the lengths follows
from the rotational symmetry of the surface which makes the two diagonals symmetric.

6. A construction of Clairaut surfaces

Corollary 4. Consider the diagonals p1(t) = ϕ(γ1(t)) and p2(t) = ϕ(γ2(t)) where
ϕ : ]−∞,∞[× [0, 2π[ → E

3 with a differentiable radius function r : R → R and

ϕ(x, y) =







r(x) cos(y)
r(x) sin(y)

∫ x

x0

√

r2(t)− r′2(t)dt






.

Then the lengths along the diagonals are equal, as well as the energies, i.e.,

L(p1) = L(p2) and E(p1) = E(p2).

Figure 2: Parametrization of the Mylar balloon with elliptic functions



184 C-Ş. Bǎrbat: A Property of Liouville Surfaces and Manifolds

Proof. This surface has a Clairaut line element

ds2 = r2(x)(dx2 + dy2),

and because of the rotational symmetry also the lengths are equal.

7. Some minimal Liouville surfaces in E
3

From [2, eq. (4.3)] we know that every minimal Liouville surface in E
3 can be written (we set

z = x + iy, v1 = i√
2
(e1 + ie2) and v2 = e3, and the other constants are a complex number

α = α1 + iα2 6= 0 and real numbers r 6= 0, λ1 > 0, λ1 6= λ2, λ3 = 2λ2 − λ1) as

ϕ(z) = re

(

α

∫

reλ1zv1 + i
√
2 eλ2zv2 +

1

r
eλ3z v1 dz

)

.

For λp 6= 0, p = 1, 2, 3 , we get

ϕ(z) = re

(

α

(

reλ1z

λ1
v1 +

i
√
2 eλ2z

λ2
v2 +

eλ3z

rλ3
v1

))

= re

















α

















i
(

−λ1 e
λ3z + r2λ3 e

λ1z
)

√
2 rλ1λ3

−λ1e
λ3z + r2λ3 e

λ1z

√
2 rλ1λ3

i
√
2 eλ2z

λ2

































.

The other cases are either λ2 = 0 or λ3 = 0. We do not consider them here, but the proofs
are similar.

Corollary 5. Consider the diagonals p1(t) = ϕ(γ1(t)) and p2(t) = ϕ(γ2(t)) for the para-
metrization ϕ : R2 → E

3 as computed above:

ϕ(x, y) =

















α2

(

λ1e
λ3x cos(λ3y)− λ3r

2eλ1x cos(λ1y)
)

+ α1

(

λ1e
λ3x sin(λ3y)− λ3r

2eλ1x sin(λ1y)
)

√
2 rλ1λ3

α2

(

λ1e
λ3x sin(λ3y) + λ3r

2eλ1x sin(λ1y)
)

− α1

(

λ1e
λ3x cos(λ3y) + λ3r

2eλ1x cos(λ1y)
)

√
2 rλ1λ3

−
√
2eλ2x (α1 sin(λ2y) + α2 cos(λ2y))

λ2

















.

Then the energies along the diagonals are equal, as well as the lengths, i.e.,

E(p1) = E(p2) and L(p1) = L(p2).

Proof. By construction, the surface has a Liouville line element. Therefore the energies are
equal. The statement about the lengths follows by computation:

‖ṗ1(t)‖ =

√

(

(a1 − c1)
2 + (a2 − c2)

2
)

(

α2
1 + α2

2

)

2 r2
e−((1+t) a1+t c1) λ1−2 t a1 λ2

·
(

e2 t c1 λ2+2 a1 (t λ1+λ2) + e2 t c1 λ1+2 a1 (λ1+t λ2) r2
)

.
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Having done the same computations for p2(t), we can calculate the difference as

‖ṗ1(t)‖ − ‖ṗ2(t)‖ = −

√

(a1 − c1)
2 + (a2 − c2)

2
√

α2
1 + α2

2√
2 e(a1+c1)((1+2t)λ1+2tλ2)r

· (ec1(3tλ1+2λ2)+a1((1+t)λ1+4tλ2) − ea1(3tλ1+2λ2)+c1((1+t)λ1+4tλ2)

+ ec1((2+t)λ1+2tλ2)+a1((1+3t)λ1+2tλ2)r2 − ea1((2+t)λ1+2tλ2)+c1((1+3t)λ1+2tλ2)r2).

By integration we obtain the desired result for the lengths,

L(p1)− L(p2) =

∫ 1

0

‖ṗ1(t)‖ − ‖ṗ2(t)‖dt = 0.

8. A minimal Liouville surface in E
4

We refer to the example of a minimal Liouville surface in E
4 provided in [2, p. 39, Section 5]

and multiply with −1, which does not change the property of being a minimal Liouville
surface. This yields

Corollary 6. Consider the diagonals p1(t) = ϕ(γ1(t)) and p2(t) = ϕ(γ2(t)) where

ϕ : R2 → E
4, ϕ(x, y) =

√
2









− cos(y) sinh(x)
sin(y) sinh(x)
sin(x) sinh(y)
cos(x) sinh(y)









.

Then the energies along the diagonals are equal, i.e., E(p1) = E(p2).

Proof. This is a minimal Liouville surface by construction and has therefore a Liouville line
element.

9. An example of a Liouville parametrized Minkowski plane

The example discussed here is inspired by [9], where we find on page 21 an example (second
example: parabolic coordinates) in the Minkowski plane which has a Liouville line element
(see Figure 3).

Corollary 7. Consider the diagonals p1(t) = ϕ(γ1(t)) and p2(t) = ϕ(γ2(t)) with

ϕ(x, y) =
1

4

(

2(x− y)2 + (x+ y − 1)
2(x− y)2 − (x+ y + 1)

)

,

where ϕ : R2 → M
2 is a map into the Minkowski plane. Then the energies along the diagonals

are equal, i.e., E(p1) = E(p2).

Proof. With 〈v, w〉 = v1w1 − v2w2 we have

g11 = 〈ϕx, ϕx〉 = x− y,

g12 = 〈ϕx, ϕy〉 = 0,
g22 = 〈ϕy, ϕy〉 = −(x− y) = −g11.

The line element of f(x, y) is Liouville,

ds2 = (x− y)(dx2 − dy2).
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Figure 3: Map f(x, y) from the Euclidean to the Minkowski plane

10. Some facts about orthotopes

An m-orthotope is the higher dimensional analogue of a rectangle; a rectangle can be called
2-orthotope. An m-orthotope in R

m can be specified by two points P 0 = (p01, p
0
2, . . . , p

0
m)

t and
P 1 = (p11, p

1
2, . . . , p

1
m)

t with the property p0i 6= p1i for all 1 ≤ i ≤ m. It has 2m vertices (corner
points) and 2m−1 main diagonals. For the number Bm

k of k-cell facets, 0 ≤ k ≤ m, we have
Bm

k = 2m−k
(

m

k

)

(see [14]). Each k-cell facet is a k-orthotope having 2k−1 main diagonals.
As an example, consider m = 3: For the sake of brevity, let’s write 000 for P 0 and 111 for

P 1. By counting from 000 to 111 in the binary system, we get all corners of the 3-orthotope:
000, 001, . . . , 110, 111. We are interested in the main diagonals of the 3-orthotope. Start
with the point 000. Its opposite point is 111, therefore 000 –111 is a main diagonal. It is easy
to see that the point ijk has as opposite the point (1− i)(1− j)(1− k), where i, j, k ∈ {0, 1}.
To get all diagonals, we must start with the vertices belonging to an 2-cell facet, for example
all binary values starting with 0: 000, 001, 010, 011. By connecting these vertices with their
respective opposites we get the 23−1 = 4 main diagonals as 000 –111, 001–110, 010 –101, and
011–100.

This example can be generalized and the procedure can be applied to every k-cell facet
of the m-orthotope to get the main diagonals of that k-cell facet for 0 ≤ k ≤ m.

11. A property of Liouville manifolds

We can state and prove the following main theorem of this paper.

Theorem 8. Let P 0 = (p01, p
0
2, . . . , p

0
m)

t and P 1 = (p11, p
1
2, . . . , p

1
m)

t be two points in R
m.

Construct the uniquely determined l-orthotope, 0 ≤ l ≤ m, which has a main diagonal γ1(t) =
P 0 + t(P 1 − P 0) with t ∈ [0, 1]. Construct all main diagonals γk(t), 1 ≤ k ≤ 2l−1, of this
l-orthotope. Consider now the image curves pk(t) = ϕ(γk(t)) of the main diagonals under the
map ϕ : Rm → R

n with Liouville line element

ds2 =

(

m
∑

i=1

fi(xi)

)(

m
∑

i=1

dx2
i

)

.

Then the energies of all image curves of the diagonals are equal,

E(p1(t)) = E(p2(t)) = · · · = E(pk(t)) = · · · = E(p2l−1(t)).



C-Ş. Bǎrbat: A Property of Liouville Surfaces and Manifolds 187

We actually have a stronger result: in each h-cell facet, 0 ≤ h ≤ l, of the l-orthotope the
images of the main diagonals of the h-cell facet under ϕ have the same energy.

Proof. For the energy of a diagonal we have

E(ϕ(γ(t))) =

(

m
∑

i=1

∫ 1

0

fi(xi ◦ γ(t))dt
)(

m
∑

i=1

(xi ◦ γ′(t))
2

)

.

It turns out that for every 1 ≤ i ≤ m we have (xi ◦ γ′(t))2 = (p1i − p0i )
2 = (p0i − p1i )

2 and

∫ 1

0

fi(xi ◦ γ(t))dt =
∫ 1

0

fi(p
0
i + t(p1i − p0i ))dt =

∫ 1

0

fi(p
1
i + t(p0i − p1i ))dt.

Therefore the energies of the images of the main diagonals of the l-orthotope are equal.

Remark 3. For l < m we have p0i = p1i for some i, and the corresponding expressions are
fi(xi ◦γ(t)) = fi(p

0
i ) = fi(p

1
i ), respectively (xi ◦ γ′(t))2 = 0. The same applies for h-cell facets

with 0 ≤ h < m.

12. Open problems and ideas

We have shown that in every h-cell facet of each l-orthotope in a Liouville manifold the
energies of the main diagonals are the same. My intuition says that also the converse is true,
that is, if in every h-cell facet of each l-orthotope the energies of the main diagonals are equal,
then the map/manifold is Liouville. But I think that this is not easy to prove.
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