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Abstract. Let Eb be an ellipse (b =
minor axis

major axis
). In this paper we consider

different approximations by ovals, which are composed from circular arcs and have
also two axes of symmetry. We study a) three four-centered ovals (quadrarcs) Oa

4,b,

Oc
4,b, and Ol

4,b, which share the vertices with the ellipse Eb. In addition, Oa
4,b has

the same surface area, Oc
4,b has the minimum error of curvature at the vertices,

and Ol
4,b has the same perimeter length. b) Further, we investigate three eight-

centered ovals Oc
8,b, O

c−a
8,b and Oc−l

8,b , which also share the vertices with Eb. The

ovals Oc
8,b have the same curvature at the vertices, and in addition, Oc−a

8,b has the

same surface area, and Oc−l
8,b has the same perimeter length as Eb.

As a conclusion, the eight-centered oval Oc−l
8,b seems to be optimal and can therefore

be called ‘quasi-equivalent’ to Eb. We show that the difference of surface areas
Ab = A(Oc−l

8,b ) − A(Eb) is rather small; the maximum value A0.1969 = 0.007085 is

achieved at b = 0.1969. The deformation error Eb = E(Eb, Oc−l
8,b ) has the maximum

value 0.008970 which is achieved at b = 0.2379 .
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1. The ellipse and the eight-centered oval

Approximating ellipses by circular arcs has been a classic subject of study by geometers. This
has long been used for a wide range of applications, for instance in geometry, astronomy, art,
architecture. The reader can easily find a great deal of classical literature on these topics,
in special for eight-centered ovals and four-centered ovals (also named quadrarcs). This kind
of approximation, using eight-centered ovals, has recently been used to analyze architectural
constructions as amphitheaters and military forts [5, 6, 7, 15]; also in astronomy, for analyzing
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orbits, was classically considered [4]. Moreover this subject of study is continued in modern
research papers as [2, 8, 9, 10, 11, 12, 13, 14].

However, all these studies provide partial solutions only and specific constructions; and
moreover, they do not show the global equations of the infinite possible infinite approximations
depending on certain geometric properties. Here, in this paper, we study all such possible
approximations, we provide their equations, and with them we look for an approximation
which can qualify as being an ‘equivalent’ approximation.

In order to attain a similarity of results in physics or engineering applications, an approx-
imation which is equivalent to the ellipse must have exactly coinciding geometric parameters.
An eight-centered oval which is equivalent to an ellipse should have the same: center, axes,
vertices, perimeter length, curvature at the vertices, and surface area; also, it should have
little deformation in relation to the ellipse. Unfortunately, an eight-centered oval with all
these exactly coinciding geometric parameters does not exist; it cannot have all the same
geometric parameters and also the same surface area.

There are different methods of approximating curves, e.g., least squares, minimax, or-
thogonal family of polynomials. However, our approach is different; we look for the exact
coincidence of single geometric parameters. We are going to to present exact analytical for-
mulae for approximations of ellipses by eight-centered ovals and four-centered ovals. Further,
we want to show the precise numerical calculations of these approximations. And, as a con-
clusion, we want to present not the ‘equivalent’ approximation because it does not exist, but
the approximation of the ellipse by an eight-centered oval having the same center, axes, ver-
tices, perimeter length, and curvature at the vertices as the ellipse, and also having a very
similar surface area and showing little deformation in relation to the ellipse. We call this
eight-centered oval ‘quasi-equivalent’ to the ellipse.

An oval is a curve resembling a flattened circle but, unlike the ellipse, it doesn’t have a
specific mathematical definition. Therefore, right now we must lay down the definitions and
notations of this paper.

1.1. Definitions and notations

Let A, A′, B, B′, be the four vertices of an ellipse E , where A,A′ are the focal vertices and
B,B′ the transverse vertices. Without loss of generality, in the Euclidean plane E

2, we can
consider a Cartesian coordinate system R such that A = (1, 0), A′ = (−1, 0), B = (0, b),
B′ = (0,−b), where 1 > b > 0. We discard the cases b = 1 (E is a circle) and b = 0 (E is
a straight segment), because the problem trivializes. In order to highlight the parameter b,
we denote the ellipse by Eb. Therefore, the parameter b is the hypothesis parameter which
determines the problem.

We consider the infinite quantity of ovals with the vertices A, A′, B, B′. Amongst them,
we focus on the family of eight-centered ovals, which we denote by O8,b. And finally, we
consider the family of the four-centered ovals (quadrarcs) O4,b. The second family is a sub-
family of the first one.

An oval O8,b is made up by 8 circle arcs which are tangent to each other such that, in the
system R, they have the following 8 centers (see Figure 1):

Px = (x, 0), 0 < x < 1, with 1− x < b, P ′

x = (−x, 0),

Py = (0, y), with y ≤ 0, P ′

y = (0,−y),

P3 = (x3, y3) with x3 ≥ 0, y3 ≤ 0,

P ′

3 = (−x3, y3), P ′′

3 = (−x3,−y3), P ′′′

3 = (x3,−y3).
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Figure 1: Elements of the 8-centered oval O8,b (quadrarc O4,b if ry = r3).

Moreover, the oval has radii rx, ry and r3, where rx is the radius of its arcs Cx, C
′

x, with
centers Px, P

′

x respectively; ry is the radius of the arcs Cy, C
′

y with respective centers Py, P
′

y;
and r3 is the radius of the arcs C3, C

′

3, C
′′

3 , and C ′′′

3 with respective centers P3, P
′

3, P
′′

3 , and

P ′′′

3 . The curvatures of these arcs are inverse to their radii, kx =
1

rx
, ky =

1

ry
, k3 =

1

r3
.

If ry = r3 then Py = P3 = P ′

3 and P ′

y = P ′′

3 = P ′′′

3 . This special case of 8-centered oval
O8,b, noted as O4,b, is called 4-centered oval. The segments AA′, BB′ are called major axis
and minor axis of O8,b, as well as at ellipses.

The oval O8,b has 8 contact points for its 8 arcs: point Tx3 is the contact between Cx

and C3; point Ty3 is the contact between Cy and C3; points T ′′′

x3, T
′′′

y3, T
′′

x3, T
′′

y3, T
′

x3, T
′

y3 are
symmetrical to Tx3, Ty3 with respect to the axes and center point, and they are the contact
between C ′′′

3 , C
′′

3 , C
′

3 and the arcs having their centers on the x-axis and the y-axis, respectively
(see Figure 1).

In the case of O4,b, the eight contact points are reduced to four, then Tx3 = Ty3 (we call
it Txy), and similarly: T ′′′

xy = T ′′′

x3 = T ′′′

y3, T
′′

xy = T ′′

x3 = T ′′

y3, T
′

xy = T ′

x3 = T ′

y3.

1.2. Problem statements

Historically, several questions have been raised with regard to the construction of 4-centered
ovals and 8-centered ovals. Nevertheless, in this paper we take a step forward in this clas-
sic subject which has applications in physics, engineering and architecture. The problem
statements are:

Problem 1. Let Eb be an ellipse. Find — if they exist — the ovals O8,b, O4,b having the same
center, axes and vertices as Eb; and also having the same

1. surface area,
2. curvature at the vertices,
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3. perimeter length,
4. curvature at the vertices and surface area,
5. surface area and perimeter length, or
6. curvature at the vertices and perimeter length.

In the solutions of the problems, shown in the following section, we use the following notation

(see Figure 1): θ is the angle ∠(
−−→
PxA,

−−−→
PxTx3) in the oval O8,b, Θ is the angle ∠(

−−→
PxA,

−−−→
PxTxy) in

the oval O4,b, and µ is the distance d(Px, P3) between Px and P3.

2. Analytical formulae

In this section we claim the uniqueness of ovals with some geometric properties, and we
show their analytical formulae. We have proved all of them — formulae and uniqueness —
with mathematical rigor, but for the sake of brevity we do not show the proofs in detail,
since they are rather long, but straightforward and without intrinsic mathematical interest.
Nevertheless, we will make some remarks about the proofs.

Theorem 1. There is only one oval Oa
4,b sharing the vertices with the ellipse Eb, and also

having the same surface area. The x-coordinate of the corresponding circle center Px = (x, 0)
with 1− x− b < 0 is a zero of the function H

a
b as given below.

H
a
b (x) = 2

(

(1− b)(1− b− 2x)

2(1 − b− x)
+ b

)2

arctan

(

2x(1− b− x)

(1− b)(1− b− 2x)

)

− x(1− b)(1− b− 2x)

1− b− x

+(1− x)2
(

π − 2 arctan

(

2x(1− b− x)

(1− b)(1− b− 2x)

))

− πb .

(1)

For the circle center Py = (0, y) of Oa
4,b we obtain y = −(1 − b)(1− b− 2x)

2(1− b− x)
. The point Txy

of transition is Txy = (λx, y − λy), where λ = 1 +
1− x

√

x2 + y2
.

Note that at the same time we obtain a trivial 8-centered oval Oa
8,b having the same area,

simply by considering Oa
8,b = Oa

4,b.

Remark 1. The proof of Theorem 1 is based on the calculation of the surface areas of the
circular sectors using classical analytic geometry, with these surface areas depending on

∠(
−−−→
PyPx,

−−−→
PyP

′

x) = 2 arctan

(

2x(1− b− x)

(1− b)(1− b− 2x)

)

.

Theorem 2. There is no oval O4,b sharing the vertices with the ellipse Eb and also having the
same curvature at the vertices, i.e., with Ec

b(O4,b) = 0 in eq. (2).

There is only one oval Oc
4,b sharing the vertices with Eb, and also having a minimum error

Ec
b(O

c
4,b) of the curvature at the vertices with respect to Eb. The x-coordinate of the circle

center Px = (x, 0) of Oc
4,b with 1 − x − b < 0 is a zero of the function H

c
b, as given below in

eq. (3).

The quadratic error Ec
b(O4,b) between the curvatures kA(Eb) and kB(Eb) of the ellipse Eb

at the respective vertices A, B, and the curvatures kA(O4,b) and kB(O4,b) of an oval O4,b at
the vertices A, B, is defined as

Ec
b(O4,b) = (kA(Eb)− kA(O4,b))

2 + (kB(Eb)− kB(O4,b))
2
. (2)
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The function H
c
b cited above is

H
c
b(x) = x4 (4b5 − 12b4 + 12b3 − 4b2 + 8)

+ x3 (2b7 − 4b6 − 16b5 + 52b4 − 50b3 + 36b2 − 20)
+ x2 (−6b7 + 12b6 + 24b5 − 66b4 + 782b3 − 60b2 + 18)
+ x (6b7 − 5b6 − 16b5 + 39b4 − 54b3 + 37b2 − 7)
+ (b8 − 2b7 + 4b5 − 10b4 + 14b3 − 8b2 + 1) .

(3)

The minimum error Ec
b(O

c
4,b), which is never null, is

Ec min
b (Oc

4,b) =
(b2 + x− 1)2

(x− 1)2b4
+

(b− 1)2(2x+ b+ b2 − 2)2

(2x+ b2 − 1)2
6= 0.

The coordinates for the circle center Py and for the contact point Txy of Oc
4,b are the same as

those for Oa
4,b.

Remark 2. The proof of Theorem 2 is based on the partial derivative

∂

∂x
Ec

b(O4,b) =
∂

∂x

[

(kA(Eb)− kA(O4,b))
2 + (kB(Eb)− kB(O4,b))

2]

=
∂

∂x

[

(

1

b2
− 1

1− x

)2

+

(

b− 1

b+ 1
2
(1−b)(1−b−2x)

1−b−x

)2 ]

= 0.

Theorem 3. There is an infinite number of ovals Oc
8,b(θ) — not 4-centered ovals — sharing

the vertices with Eb, and having the same curvature at the vertices, i.e., with Ec
b(O

c
8,b(θ)) = 0

in eq. (4).
All of them have the same circle centers Px = (x, 0) and Py = (0, y), where x = 1 − b2 and

y = b − 1
b
, and each of these ovals Oc

8,b(θ) is determined by θ, i.e., the angle ∠(
−−→
PxA,

−−−→
PxTx3),

as given in eq. (5), and Oc
8,b(θ) has the third circle center P3(θ) as given in eq. (6).

The quadratic error Ec
b(O8,b) between the curvatures kA(Eb) and kB(Eb) of the ellipse Eb

at the vertices A, B and the curvatures kA(O8,b) and kB(O8,b) of an oval O8,b at the vertices
A, B, is

Ec
b(O8,b) = (kA(Eb)− kA(O8,b))

2 + (kB(Eb)− kB(O8,b))
2
. (4)

The infinite number of possible values of θ are those that satisfy

0 < θ <
π

2
− arctan

(

2b(b+ 1)

2b+ 1

)

. (5)

Each oval Oc
8,b(θ) has the circle center P3(θ) = (x− µ cos θ, −µ sin θ) with

µ =
1

2

b(b− 1)

b2 cos θ − b2 + b sin θ + b cos θ − b+ sin θ − 1
. (6)

Proposition 4. The geometric locus Lb3 of the circle centers P3(θ) is the arc of the ellipse
Eb3 with the equation

2b2 + 2b+ 1

(b− 1)(b+ 1)
x2 +

b2(2 + 2b+ b2)

(b− 1)(b + 1)
y2 − 2b(b+ 1)

b− 1
xy

+ (3b2 + 4b+ 2) x− b(2b2 + 4b+ 3) y +
(b− 1)(2b + 1)(b+ 2)(2b2 + 3b+ 2)

4(b+ 1)
= 0
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and the endpoints
(

0,
(2b+ 1)(b − 1)

2b

)

and

(

(b+ 2)(1 − b)

2
, 0

)

.

Each of these ovals Oc
8,b(θ) has the following transition points (see Figure 1):

Tx3 = (1− b2 + b2 cos θ, b2 sin θ) , Ty3 = (λ(1− b2 − µ cos θ), y − λy − λµ sin θ) ,

where λ = 1 +
µ+ b2

√

y2 + µ2 + (1− b2)2 + 2µ (y sin θ − (1− b2) cos θ)
.

(7)

Remark 3. In order to prove Theorem 3, we compute the y-coordinate of point Py as

y = −1

2

Ψ1

Ψ2
, where Ψ1 = 2xµ cos θ + 2µ− 2µx− 2µb+ 1 + b2 − 2b− 2x+ 2xb

and Ψ2 = −µ sin θ − b+ µ+ 1− x.

Then
Ec

b(O8,b) = (kA(Eb)− kA(O8,b))
2 + (kB(Eb)− kB(O8,b))

2

=
(

1

b2
− 1

1− x

)2

+
(

b− 1

b+ 1
2
Ψ1

Ψ2

)2

= 0.

Therefore x = 1− b2, and we have

2b2µ cos θ − 2µb2 + 2bµ sin θ + 2bµ cos θ + 2µ sin θ − b2 + b− 2µb− 2µ = 0.

Remark 4. In view of the proof of Proposition 4, we compute with the formulae of Theorem 3
the following five points:

P3(0) =

(

(b+ 2)(1− b)

2
, 0

)

and P3

(

π

2
− arctan

(

2b(b+ 1)

2b+ 1

))

=

(

0,
(2b+ 1)(b− 1)

2b

)

,

the point satisfying

∂(−µ sin θ)

∂θ
= 0 with P3

(

arccos

(

b
b+ 1

b+ b2 + 1

))

= (Ψ3, Ψ4), where

Ψ3 = −(b− 1)(b + 1)

2

3b2 − 2bΦ1 + 4b+ 2− 2Φ1

2b2 − bΦ1 + 2b− Φ1 + 1
, Ψ4 =

1

2
Φ1(b− 1)

b

2b2 − bΦ1 + 2b− Φ1 + 1
and Φ1 =

√
2b2 + 2b+ 1,

the point satisfying

∂(−µ sin θ)

∂θ
= 0 with P3

(

− arccos

(

b
b+ 1

b+ b2 + 1

))

= (Ψ5, Ψ6), where

Ψ5 = −(b− 1)(b+ 1)

2

3b2 + 2bΦ1 + 4b+ 2 + 2Φ1

2b2 + bΦ1 + 2b+Φ1 + 1
, Ψ6 = −1

2
Φ1(b− 1)

b

2b2 + bΦ1 + 2b+Φ1 + 1
,

and the point satisfying

∂(x− µ cos θ)

∂θ
= 0 with P3

(

π − arcsin
b+ 1

b+ b2 + 1

)

= (Ψ7, Ψ8), where

Ψ7 = −1

2
(b− 1)

M

N
, Ψ8 =

1

2
(b+ 1)

b− 1

bN
with Φ2 =

√
b2 + 2b+ 2,

M = 2b3 + 2b2Φ2 + 6b2 + 8b+ 4bΦ2 + 3Φ2 + 4, N = bΦ2 + 2b+ b2 + 2 + Φ2.
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The ellipse Eb3 presented in Proposition 4 is defined by these five points. Finally, by virtue of
the formulae in Theorem 3, we confirm that all points P3(θ) satisfy the equation of the ellipse
Eb3.

Theorem 5. There is only one oval Ol
4,b sharing the vertices with the ellipse Eb and having

the same perimeter length. For Ol
4,b, the x-coordinate of the circle center Px = (x, 0) is the

zero of the function H
l
b, as given below, and satisfying 1− x− b < 0.

H
l
b(x) = L− π(1 + b)

n=∞
∑

n=0

( √
π

n! (1− 2n) Γ
(

1
2 − n

)

(

1− b

1 + b

)n)2

, where

L = 4(1− x)Θ + 4

(

b+
(1− b)(1− b− 2x)

2(1 − b− x)

)

(

π

2
−Θ

)

,

Θ =
π

2
− arctan

2x(1− b− x)

(1− b)(1 − b− 2x)
, and Γ(α) =

∫

∞

0
tα−1e−tdt.

(8)

For Ol
4,b the coordinates of the circle center Py and the contact point Txy of are the same

as those for Oa
4,b. At the same time we obtain a trivial 8-centered oval Ol

8,b having the same

perimeter length, simply by setting Ol
8,b = Ol

4,b.

Remark 5. We point out that each 4-centered oval O4,b with the circle center Px = (x, 0) has

the angle Θ =
π

2
− arctan

2x(1− b − x)

(1 − b)(1− b− 2x)
(see Figure 1).

Remark 6. The proof of Theorem 5 is based on the Gauss-Kummer series [1, 3], on the remarks

given above, and on the angle ∠(
−−−→
PyPx,

−−−→
PyP

′

x).

Theorem 6. There is only one oval Oc−a
8,b sharing the vertices with Eb, having the same

curvature at the vertices, i.e., with Ec
b(O

c−a
8,b ) = 0 by eq. (4), and also the same surface area.

For Oc−a
8,b the analytic expressions for the circle centers Px = (x, 0), Py = (0, y), P3, and for

µ are the same as those for Oc
8,b(θ), but its θ is the zero of the function

H
c−a
b (θ) =

b2(b+ 1)2(2b sin θ + 2b2 cos θ − 2b2 − 1)2

2N2

(

π

2
− θ − arctan(M)

)

−
(

(1− b2)−
(

1
b
− b
))

y(y − 1)

N
sin θ +

2

b2
arctan(M)

− 2
(

1

b
− b
)2

M + 2b4θ − πb, where

M = b+ b2
cos θ − y sin θ

b(2b2 + 4b+ 2) cos θ + (3b2 + 4b+ 2)(sin θ − 1)− b2 − 2b3
and

N = (b2 + b) cos θ + (b+ 1) sin θ − b2 − b− 1.

(9)

Remark 7. The proof of Theorem 6 is based on the calculation of the surface areas of the
circular sectors using classical analytic geometry and the formulae given in Theorem 3.

Theorem 7. There is only one oval Oc−l
8,b sharing the vertices with Eb, having the same

curvature at the vertices, i.e., with Ec
b(O

c−l
8,b ) = 0 in eq. (4), and also the same perimeter

length. For Oc−l
8,b the analytical expressions for the circle centers Px = (x, 0), Py = (0, y), P3,
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and for µ are the same as those given for Oc
8,b(θ), but its θ is a zero of the function

H
c−l
b (θ) = L− π(1 + b)

n=∞
∑

n=0

( √
π

n! (1− 2n)Γ
(

1
2 − n

)

(

1− b

1 + b

)n)2

, where

L = 4b2θ +
4

b
θy + 4(b2 + µ)

(

π

2
− θ − θy

)

, θy = arctan
λ(1− b2 − µ cos θ)

−λy − λµ sin θ
,

λ = 1 +
µ+ b2

√

y2 + µ2 + (1− b2)2 + 2µ(y sin θ − (1− b2) cos θ)
, and

Γ(α) =
∫

∞

0
tα−1e−tdt.

(10)

Remark 8. The proof is based on the Gauss-Kummer series and the formulae given in Theo-
rem 3.

Remark 9. We point out that there is no 8-centered oval O8,b having the same vertices, the
same surface area and the same perimeter length as the ellipse Eb. Therefore, there is also no
4-centered oval O4,b sharing the vertices, the surface area and the perimeter length with Eb.

3. Numerical calculations

Except for the case Oc
4,b, all the above equations have implicit solutions only. Therefore, in

order to calculate the circle centers of the ovals, we must use numerical methods. In the case
Oc

4,b, by means of Ferrari’s method [16] for the zeros of fourth degree polynomial equations,
it is possible to provide an explicit solution. However, the obtained analytical expression does
not provide any effective improvement in the calculation compared to the result obtained
numerically.

The experienced reader can generate the corresponding numerical calculations, and there-
fore we do not show them here. Instead, we offer the graphs obtained by the calculations
carried out for 1000 values of b ∈ (0, 1).

In Figure 2 we show the graphs of the functions b(x) which are given implicitely by the
equations H

a
b (x) = 0, Hl

b(x) = 0, Hc
b(x) = 0, which correspond to the 4-centered ovals Oa

4,b,

Ol
4,b, and Oc

4,b, respectively. In Figure 3, the graphs b(θ) are displayed, which are given by the

equations Hc−a
b (θ) = 0 and H

c−l
b (θ) = 0, respectively correspond to the 8-centered ovals Oc−a

8,b

and Oc−l
8,b .

Table 1 shows some numerical values resulting from these calculations

4. Conclusions

4.1. Deformation error

In order to solve problems related to physics, engineering and architecture, one needs to find
an ellipse Eb or an 8-centered oval O8,b which fits to a given set of points. In these cases it is
useful to know the deformation error between the ellipse and the oval:

Definition 1. For each point p ∈ Eb, let qp ∈ O8,b be the point, which is closest to p among
all points of intersection between O8,b and the straight line perpendicular to the ellipse at p.
The maximum value of the distance d(p, qp), when p moves along the ellipse Eb, is called the
deformation error E(Eb, O8,b) between the two curves.

This gives rise to the following problem statements:
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Figure 2: Graphs of the functions b(x) given by the equations Ha
b (x) = 0, Hl

b(x) = 0,
and H

c
b(x) = 0, corresponding respectively to the 4-centered ovals Oa

4,b (lower line),

Ol
4,b (center line), and Oc

4,b (upper line).
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Figure 3: Graphs of the functions b(θ) given by the equations Hc−a
b (θ) = 0 and H

c−l
b (θ) = 0,

corresponding respectively to the 8-centered ovals Oc−a
8,b (upper line) and Oc−l

8,b (lower line).

Problem 2. Let Eb be an ellipse. Find for the approximating ovals, which have been provided
in the previous theorems, the

1. the deformation error E(Eb, Oa
4,b),

2. the deformation error E(Eb, Ol
4,b),

3. the deformation error E(Eb, Oc−a
8,b ),

4. the deformation error E(Eb, Oc−l
8,b ).

In order to solve these problems, one needs the formulae of the theorems given in the
previous section. The experienced reader can perform these numerical calculations. We
present here only the graphs obtained in calculations of 1000 values of b ∈ (0, 1).
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Table 1: Some numerical values of the graphs shown in the Figures 2 and 3.

H
a
b (x) = 0 H

l
b(x) = 0 H

c
b(x) = 0 H

c−a
b (θ) = 0 H

c−l
b (θ) = 0

b x x x θ θ

0.9 0.163300 0.164402 0.176884 0.477881 0.473885

0.8 0.311867 0.316029 0.349982 0.515540 0.506506

0.7 0.445860 0.454590 0.504895 0.560040 0.544573

0.6 0.565470 0.579727 0.637996 0.613505 0.589739

0.5 0.670943 0.690982 0.749419 0.679087 0.644457

0.4 0.762585 0.787741 0.839885 0.761643 0.712633

0.3 0.840778 0.869131 0.909987 0.869138 0.800989

0.2 0.905993 0.933833 0.960001 1.015621 0.922757

0.1 0.958826 0.979508 0.989999 1.228623 1.111048
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Figure 4: Graphs of the deformation errors E(Eb, Oa
4,b) (far right line), E(Eb, Ol

4,b) (inner

right line), E(Eb, Oc−a
8,b ) (inner left line), and E(Eb, Oc−l

8,b ) (far left line).

In Figure 4 we show the graphs of deformation errors E(Eb, Oa
4,b), E(Eb, Ol

4,b), E(Eb, Oc−a
8,b ),

and E(Eb, Oc−l
8,b ). Table 2 shows some numerical values resulting from these calculations.

4.2. An eight-centered oval which is quasi-equivalent to the ellipse

In this paper we presented the ovals Oa
4,b, O

c
4,b, O

l
4,b, O

c
8,b, O

c−a
8,b , and Oc−l

8,b , among them

a) three four-centered ovals (quadrarcs) having the same vertices as Eb; further, Oa
4,b has the

same surface area, Oc
4,b the minimum error of curvature at the vertices, and Ol

4,b the same
perimeter length as Eb; and
b) three eight-centered ovals sharing the vertices with Eb; further, Oc

8,b has the same curvature

at the vertices, and — in addition — Oc−a
8,b has the same surface area and Oc−l

8,b the same
perimeter length as Eb.

We have shown that, for any given ellipse Eb, the smallest deformation error with respect to
the ellipse Eb is reached with Oc−l

8,b . Also, we calculated the deformation error E(Eb, Oc−l
8,b ) = Eb

for all values of parameter b (see Figure 4), and we have found that Eb < 0.008970 for all b.
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Table 2: Some numerical values of the graphs in Figure 4.

b E(Eb, Oa
4,b) E(Eb, Ol

4,b) E(Eb, Oc−a
8,b ) E(Eb, Oc−l

8,b )

0.9 0.002245 0.002214 0.001383 0.001377

0.8 0.004692 0.004559 0.002811 0.002780

0.7 0.007326 0.007013 0.004271 0.004189

0.6 0.010103 0.009518 0.005723 0.005577

0.5 0.012913 0.011980 0.007105 0.006887

0.4 0.015532 0.014191 0.008312 0.008026

0.3 0.017494 0.015758 0.009101 0.008810

0.2 0.017851 0.015866 0.009010 0.008868

0.1 0.014456 0.010245 0.004999 0.004999

The maximum deformation error corresponds to the parameter b = 0.2379. In view of many
practical problems, this is a small error, and the more the error obtained for other values of
b is negligible.

Furthermore, we calculated the difference Ab = A(Oc−l
8,b ) − A(Eb) of their surface areas,

and we showed it in Figure 5. Also, we found Ab < 0.007085 for all b. The maximum surface
area error corresponds to the parameter b = 0.1969. Again, for many practical problems
this is a small error and negligible. Table 3 shows some numerical values resulting from the
calculations.
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Figure 5: Graph of the difference Ab = A(Oc−l
8,b )−A(Eb) of areas.

This leads to our final conclusion: Among the different approximations of the ellipse Eb,
as presented above, the eight-centered oval Oc−l

8,b has not only the same vertices, perimeter
length, and curvature at the vertices as Eb, but also only a small difference of the surface
areas and a small deformation error. This qualifies to call the oval Oc−l

8,b ‘quasi-equivalent’ to
the ellipse Eb.
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Table 3: Some numerical values of the graph in Figure 5.

b A(Oc−l
8,b )−A(Eb) b A(Oc−l

8,b )−A(Eb)
0.90 0.000165 0.80 0.000685

0.70 0.001461 0.60 0.002542

0.50 0.003833 0.40 0.005212

0.30 0.006447 0.20 0.007083

0.10 0.006100 0.01 0.001235
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