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Abstract. We prove that the most dense packing of three non-overlapping
congruent ellipses of aspect ratio E ∈ ]0, 1] in a square is obtained for E = 1/3 ,
with density equal to π/4. This result was already known for two ellipses (for E =
1/2), but is no longer true for an arbitrary number of non-overlapping congruent
ellipses.
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1. Introduction

The problem of packing circles in a given domain has been extensively studied (see [1], [6],
or [7]) and has many applications in practice. Packings of ellipses are also used in many
technological domains (molecules in crystals, elliptical particules, . . . ) and can be viewed
as a generalization of the previous problem. Some authors worked on the density of these
packings, see for instance [8] for an upper bound for the density of a packing of ellipses of
given areas, or [2, 4] for an algorithmic approach. The question of finding the optimal packing
of n congruent non-overlapping ellipses in a square was completely solved for n = 2 in [3], by
use of the notion on “unavoidable point” (see [1]). It turns out that this method does not
work for n = 3. So we do not know the best packings of three congruent non-overlapping
ellipses in a square, except using an algorithmic method for approaching them (see Figure 8).
Nevertheless we are able to prove that the best density is reached for three “vertical” ellipses
of aspect ratio E = 1/3 (cf. Theorem 1 below).

2. Statement of the results

Let n ∈ N
∗ and E1, . . . , En be n non-overlapping congruent ellipses of the same aspect ratio

E ∈ ]0, 1]. We can deal without loss of generality with unit ellipses i.e., we suppose that
the semi-major axis is equal to 1 (thus the common semi-minor axis is E). For each such
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Figure 1: Configurations of optimal density for one, two or three unit ellipses

configuration, there is a square of minimal side length Sn(E) containing these ellipses, and
we denote by sn(E) = inf Sn(E) the smallest value of Sn(E) under all such possible config-
urations. In this paper, we are interested in the density of these optimal packings. We will

denote it by dn(E) =
nπE

s2n(E)
and we focus on its maximum dn = Max {dn(E) |E ∈ ]0, 1]}. It

is well known that d1(E) = πE/2(1 + E2), thus d1 = π/4 is attained for a circle, and we
proved in [3] that d2 = π/4 again, the maximum being obtained for two “vertical” ellipses of
aspect ratio E = 1/2.

It turns out that this density result remains true for three ellipses.

Theorem 1. The optimal density of three non-overlapping congruent ellipses of the same

aspect ratio is d3 = π/4. Moreover, this maximum is attained for three “vertical” ellipses of

aspect ratio E = 1/3.

Unfortunately, this cannot be generalized to all values of n. An easy way to see this
is to consider hexagonal packings of unit circles in a rectangle. Indeed, let n,m be two
integers. If we pack m lines of n tangent unit circles as in Figure 2, we obtain a rectangle
of size (2n + 1) times (2 + (m − 1)

√
3). We apply a vertical stretching with factor E =

(2n+1)/
(

2 + (m− 1)
√
3
)

in order to have a square. The condition E < 1 will be realized if

m > (2n+
√
3− 1)/

√
3. The previous circles are transformed into ellipses of semi-axis 1 and

......

......

......

......

Figure 2: Hexagonal packing of circles in a rectangle
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E, and the density of the new packing becomes

m · n · πE
(2n+ 1)2

=
nπ

(

2n+ 1− (2−
√
3)E

)

√
3(2n+ 1)2

.

which has the limit π/2
√
3 as n tends to infinity. More precisely, it is easy to see that, for each

fixed E in ]0, 1], this density is greater than π/4 for n ≥ 5 and m ≥ (2n+1−E(2−
√
3))/E

√
3.

Consequently, the density of the packing will also be greater than π/4.

3. Proof of the theorem

Recall that we consider three non-overlapping congruent unit ellipses E1, E2, E3 of the same as-
pect ratio E contained in a square of length S3(E). We must show that, for each configuration

and each E ∈ ]0, 1], we have
3πE

S2

3
(E)

≤ π

4
, or equivalently

S3(E) ≥
√
12E. (1)

Suppose that there is an ellipse which is not tangent to the others. Then one can move it just
a little bit without changing the sides of the square. Hence we can assume that each of these
ellipses is tangent to another one. Moreover, one can see that the tangent lines cut the square
in four polygons in general (see Figure 3), three of these polygons containing E1, E2, E3. We
divide the proof in two parts, depending on whether these polygons are quadrilateral (or even
triangles) or pentagons.

Figure 3: Pentagonal and quadrilateral cases

3.1. The quadrilateral case

This case is easy, for if a quadrilateral (or a triangle) contains a unit ellipse E of aspect ratio
E, then its area is bigger than 4E. One can see this for instance by stretching E into a unit
circle and observing that the unit square is the quadrilateral of smallest area containing it.
Note that a one-dimensional stretching preserves the ratio of areas. Thus we conclude that
the area S3(E) of the square containing E1, E2, and E3 is greater or equal 3× 4E = 12E, and
(1) is verified.
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3.2. The pentagonal case

Before starting the proof, let us notice that it is possible to have a configuration of two
pentagons and one triangle, but this case is also easy. In fact, the minimal area of a pentagon
containing a unit circle is 5 tan(π/5) whereas the minimal area of a triangle containing a unit
circle is 3

√
3. Thus, if the common tangent lines of the three ellipses cut a square into two

pentagons and one triangle, its area is greater than
(

10 tan(π/5) + 3
√
3
)

E ≥ 12E.
The difficult case is the one of a single pentagon, because a pentagon containing E may

have an area less than 4E. So, we have to look at things more closely. In order to see in
detail what happens in each polygon (see Figure 4), we shall use the following lemmas which
we are not going to prove (similar calculations can be found in [3] and [4]).

Lemma 1. Let Eα be the ellipse of semi-axes 1 and E ∈ ]0, 1], tangent to the Cartesian

segments [O, x) and [O, y), forming the angle α ∈ [−π/2, π/2] with the horizontal direction.

Then Eα is parametrized by:

t ∈ [0, 2π] 7−→
{

x(t) = cos(α) cos(t)− E sin(α) sin(t) + λα

y(t) = sin(α) cos(t) + E cos(α) sin(t) + µα

∈ R
2

where λα =
√

cos2(α) + E2 sin2(α), µα =
√

sin2(α) + E2 cos2(α) are the coordinates of the

center Ωα of Eα.

Lemma 2. The ellipse Eα is tangent to the x-axis at a point (xα, 0) with

xα = λα − sin(2α)(1− E2)/2µα

and to the y-axis at a point (0, yα) with

yα = µα − sin(2α)(1− E2)/2λα.

O
x

y

 

Ωα

λα

µα

Eα

α
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α

slope mα

Lα

lα

Figure 4: Tangent lines to the ellipse Eα
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Moreover, the tangent line to Eα passing through the point (Lα, 0), Lα ≥ xα, has slope

mα =
2µα(Lα − λα) + sin(2α)(1−E2)

Lα(2λα − Lα)
,

and the tangent line to Eα through the point (0, lα), lα ≥ yα, has slope

m′

α =
lα(2µα − lα)

sin(2α)(1− E2)− 2λα(µα − lα)
.

The same result holds for a unit ellipse Eβ of aspect ratio E forming the angle−β ∈ [0, π/2]
with the x-axis (see Figure 5).
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Figure 5: Tangent lines to the ellipse Eβ

This time, the slopes of the tangent lines are

mβ = −2µβ(Lβ − λβ) + sin(2β)(1− E2)

Lβ(2λβ − Lβ)
(2)

m′

β = − lβ(2µβ − lβ)

sin(2β)(1−E2)− 2λβ(µβ − lβ)
. (3)

Now our goal is first to put together the two previous ellipses and secondly to see if there is
still some room available for a third ellipse Eγ (see Figure 6).

(i) The slopes m′

α and m′

β must be equal. This leads to:

lβ = λβm
′

α + µβ +
√

λ2

βm
′2
α + µ2

β +m′

α sin(2β)(1− E2).

Thus we know the side of the square (denoted by c):

c = lα + lβ = lα + λβm
′

α + µβ +
√

λ2

βm
′2
α + µ2

β +m′

α sin(2β)(1− E2).
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Figure 6: Pentagonal case in details

(ii) Let us search for a non-negative ǫ and an angle γ such that we can put the ellipse Eγ in
the pentagon at the bottom of the square (see Figure 6). By the use of Lemma 2, we have
the following system of slopes for this pentagon:

(Σ)



















2µγ(c− ǫ+mβ(c− Lβ)− λγ) + sin(2γ)(1− E2)

λ2
γ − (c− ǫ+mβ(c− Lβ)− λγ)2

=
−1

mβ

µ2

γ − (c− Lα − ǫ/mα − µγ)
2

sin(2α)(1− E2)− 2λγ(µγ − (c− Lα − ǫ/mα))
=

−1

mα

.

Due to (1), the following proposition gives us a proof of the theorem.

Proposition 1. If we suppose c <
√
12E, then the system (Σ) does not admit a solution.

Proof: The system (Σ) is equivalent to the following one:

{

ǫ = c+mβ(c− Lβ)− (λγ +mβµγ)− εβ · R
ǫ = −λα +mα(c− Lα − µγ)− εα · R .

where εα = ±1, εβ = ±1, and R =
√

m2

βµ
2
γ + λ2

γ +mβ sin(2γ)(1− E2).

Moreover, εβ = 1 because c− ǫ+mβ(c− Lβ) ≥ λγ +mβµγ (one can see that by drawing
a straight line parallel to the one of slope −1/mβ passing through the point (λγ, µγ)), and
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E= 0.01 E= 0.02 E= 0.03 E= 0.04 E= 0.05 E= 0.06 E= 0.07 E= 0.08 E= 0.09

E= 0.1 E= 0.11 E= 0.12 E= 0.13 E= 0.14 E= 0.15 E= 0.16 E= 0.17 E= 0.18

E= 0.19 E= 0.2 E= 0.21 E= 0.22 E= 0.23 E= 0.24 E= 0.25 E= 0.26 E= 0.27

E= 0.28 E= 0.29 E= 0.3 E= 0.31 E= 0.32 E= 0.33 E= 0.34 E= 0.35 E= 0.36

E= 0.46 E= 0.47 E= 0.48 E= 0.49 E= 0.5 E= 0.51 E= 0.52 E= 0.53 E= 0.54

E= 0.55 E= 0.56 E= 0.57 E= 0.58 E= 0.59 E= 0.6 E= 0.61 E= 0.62 E= 0.63

E= 0.64 E= 0.65 E= 0.66 E= 0.67 E= 0.68 E= 0.69 E= 0.7 E= 0.71 E= 0.72

E= 0.73 E= 0.74 E= 0.75 E= 0.76 E= 0.77 E= 0.78 E= 0.79 E= 0.8 E= 0.81

E= 0.82 E= 0.83 E= 0.84 E= 0.85 E= 0.86 E= 0.87 E= 0.88 E= 0.89 E= 0.9

E= 0.91 E= 0.92 E= 0.93 E= 0.94 E= 0.95 E= 0.96 E= 0.97 E= 0.98 E= 0.99

Figure 7: Best packings found by the stochastic algorithm

εα = −1 because c− Lα − ǫ/mα ≥ µγ + λγ/mα (draw the straight line parallel to the one of
slope −1/mα passing through the point (λγ, µγ)).

For the sake of simplicity, we will note M = mβ , λ = λγ and µ = µγ. By a symmetry
argument, we can restrict our attention to γ ∈ [0, π/2]. It could be shown that the function

ϕ(γ) = c+M(c− Lβ)−
√

M2µ2 + λ2 +M sin(2γ)(1− E2)− (Mµ+ λ)

is negative, which contradicts with ϕ(γ) = ǫ ≥ 0 due to the previous system. (It can easily
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be seen by using a computer, so we do not prove this strictly.)
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Figure 8: Density graph for three ellipses

For the convenience of the reader, we join drawings of the best packings found by Thierry
Gensane1 for three unit ellipses with aspect ratio E varying from 0.01 to 1 with step 0.01,
and the corresponding density graph (see Figures 7 and 8). I would like to thank him for his
contribution and valuable discussions on the subject. He used a stochastic algorithm based on
an inflation formula (see for instance [5]) which was already implemented in [3] to verify our
theoretical results for two ellipses. The idea is to inflate the given ellipses until they contact,
then to shrink them just a bit in order to move by an arbitrary little rotation-translation and
so on, as if we had shaken them.

Even if there is some discontinuity on these drawings between 0.38 and 0.39, the density
function is continuous (but not differentiable !).

Finally, this algorithm motivates the conjecture that the maximal density for the best
packing of four ellipses in a square is again π/4, and it would be interesting to know for which
values of n it is still true.
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